Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. VII* Dynamics of nitrogen mineralization potentials and microbial biomassExport / Share PlumX View Altmetrics View AltmetricsDalal, R.C. and Mayer, R. J. (1987) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. VII* Dynamics of nitrogen mineralization potentials and microbial biomass. Australian Journal of Soil Research, 25 (4). pp. 461-472. ISSN 0004-9573
Article Link: https://doi.org/10.1071/SR9870461 AbstractThe dynamics of nitrogen mineralization potential (N0) and mineralization rate constant (k) were studied in six major soils which had been used for cereal cropping for up to 20-70 years. In the top 0.1 m layer of virgin soils, N0 varied from 110 ± 22 mg kg-1 soil (Riverview) to 217 ± 55 mg kg-1 soil (Langlands-Logie), representing about 13% and 11%, respectively, of total N in these soils. Upon cultivation and cropping, N0 declined by 1 7 ± 0.5 mg kg-1 yr-1 (Riverview) to 4.8 ± 2.0 mg kg -1 yr -1 (Billa Billa). This represented < 20% of total N lost annually from the top layer (0-0.1 m depth) of these soils. The k values varied less than the N0 values, both within and among soils, and were also less affected by cultivation than N0. The mineralizable N in cultivated soil during cropping for periods up to 70 years can be estimated from N0 and k values, taking No as 5% of total N for soils of <40% clay and 15% of total N for soils of >40% clay and k as 0.066 week-1 at 40°C (0.027 week-1 and 0.054 week-1 at 25°C and 35°C, respectively). Organic C and N contained in the 'stabilized' microbial biomass (determined after 30 weeks' pre-incubation) accounted for 1.7-38% of total organic C and 2.0-5.1% of total N in the six soils studied. The microbial biomass C and N declined with cultivation in most soils, biomass N representing 10-23% of the total annual loss of N0. The microbial biomass, urease activity and total N, in addition to a number of other soil properties [e.g. light-fraction (<2 Mg m-3) C, sand-size C, CEC and ESP], were significantly correlated with N0 and k, thus indicating the existence of a myriad of environments for the activity, association and stability of microbial biomass and potentially mineralizable N in soil.
Repository Staff Only: item control page Download Statistics DownloadsDownloads per month over past year |