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Abstract. It is well known that the response to selection for grain yield is improved with the use of appropriate
experimental designs and statistical analyses. The issues are more complex for quality traits since the data are
obtained from a 2-phase process in which samples are collected from the field then processed in the laboratory. This
paper presents a method of analysis for quality trait data that allows for variation arising from both the field and
laboratory phases. Initially, an analysis suitable for standard varietal selection is presented. This is extended to include
molecular genetic marker information for the purpose of detecting quantitative trait loci. The technique is illustrated
using two doubled haploid wheat (Triticum aestivum L.) populations in which the trait of interest is milling yield.

Additional keywords: mixed model, statistical analyses, milling QTL, molecular genetic map, wheat, 2-phase
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Introduction

Despite the importance of selection for quality traits in crop
improvement programs, little attention has been given to
statistical aspects of analysing quality trait data. The data are
usually obtained from a 2-phase process in which lines are
grown in designed field experiments (phase I) then grain
samples from the field plots are processed in the laboratory
(phase II). It is well known that the response to selection for
trait data that are measured in the field, in particular grain
yield, can be improved with the use of sound field design and
statistical analysis techniques (see Cullis and Gleeson 1991;
Cullis et al. 1998). Little research has been conducted into
the more complex design and analysis issues of quality trait
data but the use of appropriate methodology is likely to
enhance selection. This is important both for varietal
selection and for the identification of quantitative trait loci
(QTLs). In this paper we focus on the genetic mapping of
milling yield in wheat (Triticum aestivum L.) but the issues
and concepts apply to many other quality traits and crops. 

Milling yield data may be affected by non-genetic
variation from both the field and laboratory phases. The field

experiment phase is characterised by spatial variation, so
called because it is linked to the spatial location of plots in
the field. This may reflect natural variation (due to
fluctuations in soil fertility, for example) and extraneous
variation (often linked to management practices).
Experimental design and subsequent analysis should be
aimed at controlling this variation and include row–column
and neighbour balanced designs. In terms of analysis, many
authors have recognised the need to model spatial variation
in the field (Wilkinson et al. 1983; Besag and Kempton
1986; Gleeson and Cullis 1987; Cullis and Gleeson 1991;
Gilmour et al. 1997). Gilmour et al. (1997) presented a
general approach that is widely used in Australian plant
breeding programs for the analysis of grain yield. It has been
shown to improve both the accuracy and the precision of
varietal yield estimates. 

Like grain yield data, milling yield data may be affected
by field variation but additionally by variation from the
laboratory phase. In terms of the latter, potential sources
include variation associated with the order in which samples
are milled within a day, and variation from day to day. The
experimental laboratory design, namely the order of milling
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samples, should be aimed at controlling this variation.
However, there are additional design issues, arising from the
2-phase nature of the design. The literature on the design of
2-phase experiments is limited. McIntyre (1955) provided
some broad guidelines but the types of experiments
considered were relatively simple compared with milling
yield experiments. When varietal selection is the aim, key
issues are the number of field replicates to be milled, the
number of laboratory checks, or duplicates of field samples,
and the allocation of varieties to days and positions within a
day. Current practice often involves the milling of a single (or
composite) field replicate with little regard as to the order of
processing. As pointed out by McIntyre (1955), the use of
several field replicates is essential to obtain a valid estimate
of error for varietal comparisons. Laboratory checks
(subsamples from a uniform source of grain) or duplicates of
field samples (single grain samples split into two and milled
separately) may be included for a number of reasons. They
allow the partitioning of the total error in milling yield data
into field and laboratory components. Without them we may
be unable to identify spatial variation in the field, thereby
sacrificing the associated gains in response to selection.
Laboratory checks are an inefficient means of achieving this
since they use resources without increasing information on
the material of interest. Therefore, unless there is insufficient
grain, the use of duplicate samples is preferred. Duplicates
are standard practice in other types of 2-phase experiments
(McIntyre 1955; Brien 1983; Wood et al. 1988). With respect
to the order of processing, we should aim to accommodate
laboratory variation, but should also be mindful of the link
between the field and laboratory design. For example, it may
be advantageous to break any confounding between field and
laboratory trend by ensuring that varieties that are
neighbours in the field are milled far apart.

As is the case with experimental design, there is little
literature on the analysis of quality trait data. Brien (1983)
provided a useful framework for determining the analysis of
variance (ANOVA) table appropriate for orthogonal 2-phase
designs. Wood et al. (1988) considered designs with non-
orthogonal block structure. Quality trait experiments are
generally more complex than those considered by Brien
(1983) and Wood et al. (1988). In this paper we present a
mixed model analysis for quality trait data that is consistent
with the approaches of Brien (1983) and Wood et al. (1988),
but allows greater flexibility for modelling spatial and
laboratory variation. 

As discussed by Moreau et al. (1999), statistical design
and analysis concepts are often neglected in genetic mapping
experiments for detecting QTLs. They stressed the need for
accounting for spatial field variation when mapping grain
yield and made the comment that ‘computer programs for
QTL detection based on interval mapping do not take [this
variation] into account’. They stated that the programs could
be used on spatially adjusted means, rather than raw data, but
that ‘... an integrated one-step approach seems better than
proceeding in two steps’. The comments of Moreau et al.
(1999) for grain yield apply equally to the detection of QTLs
in quality trait data. In this paper we consider the mapping of
milling yield in 3 doubled haploid (DH) populations. We use
a 1-step mixed model approach in which QTLs are detected
via regressions on pairs of marker covariates (Whittaker et
al. 1996), this being done simultaneously with the modelling
of field and laboratory trend. A detailed account of the mixed
model approach to interval mapping is presented in
Eckermann et al. (2001, this issue). The examples
demonstrate the implications of ignoring field and
laboratory variation when mapping milling yield in wheat.

Description of data

Phenotypic data

The plant material comprises doubled haploid (DH) lines
from two mapping populations, derived from crossing the
variety Cranbrook with Halberd (Cran × Hal) and CD87 with
Katepwa (CD × Kat) (see Kammholz et al. 2001, this issue).
The lines were grown in replicated field trials, each trial
being laid out as a rectangular array of rows and columns
(Table 1). All trials were designed as randomised complete
blocks with two replicates for DH lines and often extra
replicates of parental or check varieties. For some DH lines
there was only sufficient seed to sow a single replicate. The
CD × Kat population was split into quick (Q) and mid (M)
maturing lines and grown in separate trials (Table 1).

Grain samples from the field trials were milled in
laboratories using various regimes. Usually only a subset of
the field plots was sampled, the exception being the trial for
the quick maturing CD × Kat lines (Table 2). The samples for
Cran × Hal were milled using a Quadramat Junior Mill,
whereas all others were milled using a Buhler Mill. This is
reflected in the number of samples processed per day. The
samples for Cran × Hal were not milled according to any
experimental design protocols. The two field replicates for a

Table 1. Field trials for two wheat mapping populations
Q, quick; M, mid maturing lines

Population Location Year DH lines Other lines Rows Columns DH lines with 1 rep.

Cranbrook × Halberd Roseworthy 1996 170 3 29 12 –
CD87× Katepwa Roma (Q) 1998 60 4 10 14 –
CD87 × Katepwa Roma (M) 1998 154 4 24 14 4
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given DH line were milled consecutively. A single laboratory
check was milled each day, always in the first half of the day.
The number of samples varied from day to day. The samples
from all other trials were milled according to designs based on
some simple statistical principles. In the absence of
information about efficient 2-phase designs for milling data,
the following designs were adopted. The design for CD × Kat
(mid maturing trial) was based on a resolvable incomplete
block design for the lines sampled from the field. Days on
which samples were milled were regarded as blocks with
complete replicates comprising 17 blocks. Field replicates
were confounded with laboratory replicates. Laboratory
checks were added to the design with a systematic grid of one
check per day, cycling through the positions each day. Extra
checks were added to maintain a complete 2-way layout of
days by samples per day. The design for CD × Kat (quick
maturing) was similar except that a neighbour balanced
design was used instead of the incomplete block design.

Maps

The genetic maps were produced using protein (seed stor-
age protein) and DNA markers. The DNA markers includ-
ed RFLPs, AFLPs, and microsatellites (Chalmers et al.
2001, this issue). The map for Cran × Hal comprised 813
markers on 21 pairs of chromosomes, while for CD × Kat
there were 414 markers on 18 pairs of chromosomes. For
the purposes of interval mapping we chose markers ap-
proximately equally spaced at a distance of 10 cM (centi-
morgans). In terms of the choice of distance there were
two key factors, namely the resolution of the map and the
statistical correlation between marker covariate data. At
small separations marker locations may be unreliable and
the correlation between the associated covariate data so
strong that the pair of markers is uninformative in terms of
QTL detection (Hackett et al. 2001). The choice of 10 cM
separation resulted in a map of 358 markers for Cran ×
Hal and 215 markers for CD × Kat.

Statistical models 

Extended mixed model for the analysis of quality trait data

In this section we extend the mixed model approach of
Gilmour et al. (1997) for the analysis of field data to the
analysis of 2-phase quality trait data such as milling yield in
wheat.

Let y(n × 1) be the vector of milling yield data for n
samples. The number of samples is given by n = np+nd where
np is the number of field plots from which samples are taken
and nd is the number of duplicated field samples or
laboratory checks. The base-line model for the milling yield
for the ith sample is given by 

yi = di′µ + ai′g + bi′f + li (1)

where g(ng × 1) is the vector of random effects for the DH lines
and f (np × 1) is the vector of random field plot effects. For
simplicity we assume that all np plots in the field are sampled
for milling. Elements in the vector µ(nt × 1) represent means for
nt different types of sample. For example, laboratory and field
checks have their own means that are distinct from the mean
for the DH lines. The vectors ai

(ng × 1), bi
(np × 1), and di

(nt × 1) pick
out the DH line, field plot, and sample type associated with
the ith sample. Then, for example, if the ith sample is a
laboratory check, there are no DH line or plot error effects so
that all elements in ai and bi are zero. The term li represents the
error for the sample arising from the laboratory process.

The model in Eqn 1 can be used when selection is the
primary aim of the milling yield experiment. Fitting the
model will provide estimates of genetic merit together with
some measure of confidence. The latter is vital otherwise
response to selection may be hindered. In order to calculate
valid confidence measures we must fit terms in the model to
properly define the error structure. In an analysis of variance
(ANOVA) setting we would speak of the definition of
‘strata’. In milling yield data there are two error strata:
associated with the field and the laboratory. Following
McIntyre (1955) and Brien (1983) the appropriate error term
on which to base confidence measures for the estimated
genetic effects is the field plot error term. Thus in an

Table 2. Milling process for grain samples from field trials
Q, quick; M, mid maturing lines

Population DH lines DH lines
with 1 rep

Field 
checks

Days Samples per 
day

Field samples Samples of lab. 
check

Cranbrook × Halberd 167 2 48 16 16–22 290 17
CD87 × Katepwa (Q) 60 4 – 18 9 140 22
CD87 × Katepwa (M) 118 4 1 34 9 264 42

Table 3. ANOVA table showing sources of variation for milling 
yield data

Effects are classified as fixed or random

Term Model effects Fixed or
random

Variance
structure

Field

Genotype g Random σg
2 Ing

Error f Random Ω

Laboratory

Error l Random R
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ANOVA sense the genetic effects are nested within the field
plot stratum. This structure is shown in the ANOVA
decomposition in Table 3. The decomposition corresponds to
the model in Eqn 1, the key to defining the error structure
being the inclusion of the terms for field and laboratory
error. This facilitates the calculation of valid confidence
measures for the genetic effects. 

We note that if a single (or composite) field replicate only
is milled then genetic and plot error effects are confounded.
Since it is not possible to estimate a plot error variance, no
valid confidence measures can be calculated. It may not be
possible to separate field and laboratory error. This may
occur when there are insufficient duplicate field samples or
laboratory checks or when one of the error components
dominates. We may also choose to confound field and
laboratory errors, constructing a laboratory design to achieve
this. In either case, if it is not possible to separate the two
sources of error the term f is dropped from the model and li
then represents the pooled effect of field and laboratory error
for the ith sample. 

The model in Eqn 1 is known as a mixed model since it
involves a mixture of fixed effects (µ) and random effects (g,
f and l). Each vector of random effects is assumed to have a
Gaussian distribution with zero mean. The genetic effects gj

are assumed to be independently and identically distributed
(IID) with variance σg

2 (see Table 3). The joint distribution of
the field and laboratory error effects has a variance matrix of
the form:

where Ω(np × np) and R(n × n) are symmetric positive definite
matrices. Initially, we assume the effects in each set of errors
to be IID with Ω = σp

2 Inp
 and R = σl

2 In. Graphical diagnostics
based on estimates of plot error effects and of laboratory error
effects from the IID model are used to identify departures
from the IID assumptions. For example, smooth spatial field
trends may be identified. This can be accommodated in the
analysis by extending the base-line model in Eqn 1 to include
a correlation model for Ω (see Gilmour et al. 1997, for details
on possible model choices). The diagnostics may also reveal
the need to add (fixed and/or random) terms to the base-line
model in order to accommodate field and/or laboratory
trends. For example, we may add a term for random day
effects to accommodate non-systematic day-to-day variation
in the milling process. The modelling is a sequential process
involving the use of diagnostics and formal tests of
significance (see Gilmour et al. 1997).

Incorporation of molecular marker information

Estimation of the size and location of an isolated QTL

If the aim of the milling experiment is to conduct interval
mapping for the DH lines, we can extend the model in Eqn 1

by proposing a sub-model for the genetic effects. The model
for the jth DH line is given by: 

gj = βL xLj + βR xRj + uj (2)

where xLj and xRj are covariate values for the jth DH line for
a pair of flanking (left and right) markers and uj is the
residual genetic effect, that is, due to genetic influences other
than the two markers. The covariates indicate the marker
types so take only two possible values, namely ‘+1’ or ‘–1’.
The size and location of a potential QTL between flanking
markers are determined by the regression coefficients βL and
βR. This regression approach to interval mapping was
developed by Whittaker et al. (1996) (also see Eckermann
et al. 2001, this issue).

Substituting Eqn 2 into Eqn 1 and writing in matrix
notation gives:

y = Dµ + βLAxL + βRAxR + Au + Bf + l (3) 

where A(n × ng), B(n × np), and D(n × nt) are matrices with rows
given by ai′, bi′, and di′ (i = 1... n). The vectors xL, xR, and u
have elements xLj,xRj and uj (j = 1... ng) and the vector l has
elements li. When regressions for mapping are included in
the model the distributional assumptions relate to the
residual genetic effects uj rather than the genetic effects as a
whole. We denote their variance by σu

2. The ANOVA
decomposition for this model is shown in Table 4.

Standard interval mapping programs carry out an
identical regression to that in Eqn 3 but make no allowance
for field or laboratory trends and use a simple error term,
which is a composite of residual genetic effects, and field
and laboratory error. Often the data comprise DH line means.
If we let y+

(ng × 1) be the vector of mean milling yields for the
DH lines the regression model used in standard interval
mapping programs is given by: 

y+ = µ + βLA+xL + βRA+xR + e+ (4)

where µ is the constant term, A+
(ng × ng) is an indicator matrix

analogous to A in Eqn 3, and e+ represents the (composite)
error term for the regression.








Ω

R 

 

0

0 

Table 4. ANOVA table showing sources of variation for 
mapping of milling yield data

Effects are classified as fixed or random

Term Decomposition Model 
effects

Fixed or 
random

Variance 
structure

Field

Genotype Left marker xL Fixed
Right marker xR Fixed
Residual genetic u Random σu

2Ing
Error f Random Ω

Laboratory

Error l Random R
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In general, estimates of the regression coefficients and
associated significance tests from analyses based on Eqn 3
and Eqn 4 will differ. Agreement will occur only in the
simplest situation, for example, when all DH lines are
equally replicated and there are no non-orthogonal sources
of variation (such as spatial variation in the field or day
effects in the laboratory). 

Detection of multiple QTLs

If the existence of multiple QTLs is proposed, the model
in Eqn 3 can be extended to a multiple regression with the
inclusion of a number of marker pairs. The selection of
markers to be included is a difficult problem (see e.g.
Moreau et al. 1999). In the data sets under study here the
number of DH lines was insufficient to enable the fitting of
all markers simultaneously (as done in Whittaker et al.
1996). We chose a selection procedure commencing with the
fitting of a sequence of pair wise regression models using
successive pairs of markers. Marker pairs with estimated
regression coefficients of opposite sign were discarded
immediately since these are deemed inadmissible. Of the
remainder, pairs were selected if the test of the hypothesis
that both regression coefficients are zero was rejected (see
Whittaker et al. 1996). The threshold for significance was set
at P < 0.01. The chosen set of marker pairs was then included
in a multiple regression and re-assessed for admissibility.
Regression coefficients from the final model comprising all
admissible marker pairs were used to estimate the size and
location of the QTLs (see Whittaker et al. 1996).

Mixed model estimation

Estimates of the fixed and random effects in a mixed model
are obtained as solutions to the mixed model equations
(Henderson 1950). This provides best linear unbiased esti-
mates (BLUEs) of the fixed effects and best linear unbiased
predictors (BLUPs) of the random effects. Variance parame-
ters can be estimated using the method of residual maximum
likelihood (REML) (Patterson and Thompson 1971).

We used the samm (Butler et al. 2000) functions in S-Plus
(Mathsoft 1999) to estimate all models. These functions call
the core routines of ASREML (Gilmour et al. 1999), which
is an efficient computer program for the estimation of linear
mixed models.

Examples

Cranbrook × Halberd cross

We use the mixed model technique described in the statistics
section to map the milling yield data from the trial conducted
at Roseworthy in 1996 (see Table 1 and Kammholz et al.
2001, this issue). We stress that the results must be
interpreted with caution since there was no experimental
design in the laboratory phase. Unlike a designed experiment
we have no recourse to randomisation theory and we have
very limited information with which to partition field and
laboratory error. This example, however, highlights some
important experimental design issues and the impact of
accounting for sources of variation.

Initially, we considered the analysis in the absence of
mapping, that is, based on the model in Eqn 1. This is of
interest in its own right when selection is the primary aim. It
is also useful as the first step when mapping is the aim since
it simplifies identification of appropriate trend models for
field and laboratory variation. The trend models thus
identified are then maintained (but the parameters re-
estimated) as pairs of marker covariates are added to the
model. 

We began with a simple variance component model, that
is, with the assumption of IID effects for the genetic effects,
field plot errors, and laboratory errors. Field and laboratory
variation contributed similar amounts to the total error
(Table 5). Graphical diagnostics based on estimates of plot
error effects and laboratory error effects from the IID model
led to the identification of smooth spatial field trends and
random effects associated with day-to-day variation in the
laboratory. The former was accommodated in the model
using a separable correlation structure for Ω with an identity
(independence) model in the column direction and an
autoregressive process of order 1 in the row direction
(denoted ID × AR1). Both the field trend model and the
random day effects were significant. To illustrate the spatial
field trend, Fig. 1 contains the estimated plot error effects
graphed against field row number for each field column.
Clearly, the milling yield of a sample is affected by the
spatial location of the field plot from which it originates. For
example, samples from low numbered rows in columns 8–12
have much lower (approximately 2% lower) milling yields
than those in high numbered rows in the same columns. The

Table 5. REML estimates of variance components from IID model for mixed model analysis of 
milling yield data 

Q, quick; M, mid maturing lines

Population Location Year Genetic Error variance 
variance Field Laboratory

Cranbrook × Halberd Roseworthy 1996 6.20 1.27 1.12
CD87 × Katepwa Roma (Q) 1998 0.86 0.61 0.49
CD87 × Katepwa Roma (M) 1998 4.15 1.32 0.29
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day on which samples were milled also had an impact in the
Cran × Hal data, with a difference of 2.5% in the average
milling yield between the lowest/highest yielding days. The
cause of variation between days was unknown. Experience in
analysing milling yield data has shown that unexplained day-
to-day variation is common. 

There was substantial disagreement between the
estimates of the DH means from the mixed model and the
raw means (Fig. 2). This is mainly due to the fact that the two
field replicates of an individual line were milled on the same
day so that variation between lines milled on different days
was confounded with the day-to-day variation associated
with the laboratory process. Since the latter was large this
has resulted in large adjustments for some DH lines. In
selecting the top 20 lines only 13 of the lines from the
analysis would also be chosen using the raw means.

We then considered mapping the milling yield data and
fitted a sequence of models, maintaining the trend models
just described, but adding successive pairs of marker
covariates. The covariates were defined such that a value of
‘+1’ indicated a Cranbrook marker type and ‘–1’ a Halberd

marker type. The pair-wise regressions led to the selection of
9 pairs of markers for the multiple regression (Table 6). 

The same regression approach was applied to the raw
means of the DH lines. That is, using the model in Eqn 4
rather than Eqn 3. This resulted in the selection of 11 pairs of
markers (Table 6). The raw means were also analysed using
Map Manager (Manly et al. 2000). The LRS (likelihood ratio
statistic) for the marker pairs selected in both the modelling
and standard approaches is given in Table 6. The statistical
model underlying the standard approach and Map Manager
(Manly et al. 2000) is very similar so general agreement is
expected. Discrepancies may arise for several reasons,
including the use of a different type of test statistic and
variations in interval sizes. Table 6 shows reasonable
agreement between the results for the standard approach and
Map Manager (Manly et al. 2000). There are, however,
substantial differences between these and the results from the
mixed modelling approach.

The 9 marker pairs identified in the mixed modelling
approach were then included together in the regression
model and re-assessed. This resulted in a final regression
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Table 6. Marker pairs selected from pair-wise regressions for Cranbrook × Halberd using 
mixed modelling and standard regression approaches: regression test statistics and LRS 

statistic from Map Manager
Critical value (P = 0.01) for all test statistics is 9.2 (significant values in bold type)

Chromo- Flanking markers Modelling Standard Map Manager
some Left Right

2B PAGC.MCGA2 wmc154 7.7 10.4 7.4
2B wmc154 PACA.MCCC1 8.4 10.4 9.5
2D PAGA.MCAG121 BCD410(C) 8.5 10.0 9.2
3B PAGC.MCCT7 Iha.B1.2 11.4 9.4 7.4
3B PAAT.MCAC5 PAAA.MCAT3 10.2 10.2 8.0A

4A pAAT.mCGT2 CDO506 9.9 7.4 6.6
5A PAGG.MCTG2 ABG397 12.3 12.9 12.7
5A ABG397 BCD21 14.9 14.3 18.3A

5B PACT.MCCA1 PAGG.MCAA5 12.4 16.4 9.9A

6B PAGG.MCGT260 gwm626 8.1 10.4 14.1
7B PACA.MCAA1 PACA.MCTG1 10.0 –B 5.6
7D PAAC.MCTT1 CD01400 14.0 14.3 13.2A

7D CD01400 wmc405 13.2 12.2 10.5

A Map Manager included more than one pair in this interval; largest LRS given.
B Inadmissible pair (regression coefficients with opposite sign).
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Table 7. QTLs identified in mixed modelling multiple regression approach to mapping Cranbrook × 
Halberd milling yields

Chromo- Flanking markers QTLs
some Left/right Regression DistanceA Size of P-value

coefficient effect for effect

3B PAAT.MCAC5 –0.49 5.8 –0.576 0.037
PAAA.MCAT3 –0.06

5B PACT.MCCA1 0.19 37.5 0.745 0.007
PAGG.MCAA5 0.48

7D PAAC.MCTT1 –0.37 4.1 –0.691 0.0004
CDO1400 –0.32

A Distance is measured in cM from the left marker.

Table 8. QTLs identified in standard multiple regression approach to mapping Cranbrook × Halberd 
mean milling yields

Chromo- Flanking markers QTLs
some Left/right Regression DistanceA Size of P-value

coefficient effect for effect

2B wmc154 –0.50 3.3 –0.588 0.012
PACA.MCCC1 –0.08

2D PAGA.MCAG121 0.60 4.7 0.847 0.0001
BCD410(C) 0.24

5B PACT.MCCA1 0.20 39.5 0.922 0.002
PAGG.MCAA5 0.62

7D PAAC.MCTT1 –0.51 3.3 –0.823 0.0001
CDO1400 –0.31

A Distance is measured in cM from the left marker.

Fig. 3. Distribution of covariate values for each day of milling for flanking markers of QTL identified on chromosome 2D for Cranbrook
× Halberd using a standard mapping approach.
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5B

Cranbrook × Halberd CD87 × Katepwa

A BA B

P < 0.05

P < 0.005

Fig. 4. Comparison of QTLs obtained for milling yield from (A) Map Manager and (B) the mixed modelling approach, for
two crosses, Cranbrook × Halberd and CD87 × Katepwa. The schematic chromosome on the left is the standard C-banded
karyotype for chromosome 5B. For the genetic maps a scale of 50 cM (centiMorgans) is provided and the grey lines indicate
the alignment of the maps using shared markers. The alignment of the genetic maps with the physical maps utilised the locations
of markers published previously, as described in Chalmers et al. (2001, this issue).
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model with 3 marker pairs. The regression coefficients, size
of the effect, and location (distance from left flanking
marker) of the associated QTLs are given in Table 7. Also
given is the P-value for the significance of the QTL effect. In
terms of the standard regression approach the 11 significant
marker pairs from the pair-wise regressions were included
together, leading to a final model with 4 marker pairs
(Table 8). 

Both the mixed modelling and standard mapping
approaches have identified QTLs between the same pairs of
markers on chromosomes 5B and 7D. The size and
significance of the effect was over-estimated using the
standard approach. Of greater concern, however, is that the
two approaches have identified other QTLs in different
locations. The standard approach has not detected the QTL on
chromosome 3B, but has detected QTLs on 2B and 2D.
Differences between the two approaches may have been
anticipated on the basis of the difference between the adjusted
and raw DH means and the unequal replication of DH lines
(see Fig. 2). However, the apparently highly significant QTL
on 2D requires further investigation. It appears to reflect
effects associated with days of milling, a very significant
source of variation in the Cran × Hal data, rather than a true

QTL. The distribution of covariate values for the two markers
across days of milling was very uneven (see Fig. 3). The ideal
situation would be characterised by half the samples on any
given day having a marker covariate value of ‘+1’ and the
other half ‘–1’. If this were the case then even in the presence
of large day effects there would be no adjustment to the
regression coefficients in the model. But with the uneven
distribution (Fig. 3) the fitting of day effects has resulted in
the disappearance of the QTL between these markers. 

Figure 4 summarises the locations of QTL outputs for
chromosome 5B from the mapping program Map Manager
(Manly et al. 2000) and the mixed model analysis. This
chromosome was chosen because it also shows a significant
QTL in a second cross that was analysed (CD87 × Katepwa,
see below). The QTL location data from Map Manager and
the pair-wise regression step of the mixed modelling
approach are shown with the respective significance of the
QTLs along the chromosome.

CD87 × Katepwa cross

Due to practical considerations the quick (Q) and mid (M)
maturing lines were grown in separate field trials. They
were then milled separately in the laboratory, that is, on a
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Fig. 5. DH means from CD87 × Katepwa milling yield data. The maturity of DH lines is indicated as ‘+’ (mid) or ‘�’ (quick).
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different set of days. We note that the splitting of the lines
in both phases was not optimal for the purposes of
mapping the combined set. In the analysis we
accommodated the separation by fitting separate means,
genetic variances, and field and laboratory error variances
for each trial. This is analogous to the spatial analysis of a
series of variety trials (Cullis et al. 1998). The estimated
variance components from the IID model are shown in
Table 5. The genetic variance for the M lines was far
greater than for the Q lines. Field and laboratory variation
contributed similar amounts to the total error in the Q line
trial but in the M line trial, field error dominated. Note that
data for 2 laboratory checks and one field sample in the M
data set and one field sample in the Q data set were found
to be erroneous so were omitted. In the Q line trial there
were temporal trends in milling yield within a day and this
was modelled using a separable correlation structure for R,
namely an ID×AR1 model (for days and samples within
days). It was not possible to identify any field trend. In the
M line trial there was field trend in the row direction that
was modelled as for the Cran × Hal data set. There were
also significant random effects associated with days of
milling. The estimated means from the mixed model and
the raw means show reasonable agreement (Fig. 5). The
greater strength of agreement compared with the Cran ×
Hal data is due in part to the use of the laboratory designs. 

We then considered mapping the milling yield data. The
covariates were defined such that a value of ‘+1’ indicated a
CD87 marker type and ‘–1’ a Katepwa marker type. The
pair-wise regressions using the mixed modelling approach
led to the selection of 3 pairs of markers for the multiple
regression (Table 9). Standard pair-wise regressions applied
to the raw means of the DH lines also led to the selection of
3 pairs of markers, but a different set than that obtained from
the spatial modelling (Table 9). There was general agreement
between the test statistics for the standard pair-wise
regressions and the LRS from Map Manager (Manly et al.
2000). The results from the mixed modelling approach were
quite different.

The regression coefficients, size of the effect, and
location (distance from left flanking marker) of the
associated QTLs from the multiple regressions for the mixed
modelling and standard approaches are given in Tables 10
and 11. Also given is the P-value for the QTL significance.
Since the QTL on chromosome 2D identified using the
standard approach was not isolated, no size or position could
be calculated.

Discussion

Quality trait data such as milling yield in wheat routinely
exhibit variation associated with both the field and the
laboratory. This variation must be accounted for at the design

Table 9. Marker pairs selected from pair-wise regressions for CD87 × Katepwa using mixed 
modelling and standard regression approaches: regression test statistics and LRS statistic from 

Map Manager
Critical value (P = 0.01) for all test statistics is 9.2 (significant values in bold type)

Chromo- Flanking markers Modelling Standard Map Manager
some Left Right

1D wmc432 P35.M395 9.9 2.0 1.5A

2D BCD175 wmc025.1 5.1 14.2 9.7A

2D wmc025.1 ABC.451 7.7 17.7 9.1A

5B P41.M482 P34.M519 9.2 5.2 4.2
6B P34.M503 P42.M501 9.9 9.4 8.7

A Map Manager included more than one pair in this interval: largest LRS given.

Table 10. QTLs identified in mixed modelling multiple regression approach to mapping CD87 
× Katepwa milling yields

Chromo- Flanking markers QTLs
some Left/right Regression DistanceA Size of P-value

coefficient effect for effect

1D wmc432 0.25 20.3 0.448 0.014
P35.M395 0.15

5B P41.M482 –0.21 4.2 –0.347 0.010
P34.M519 –0.14

6B P34.M503 0.08 9.3 0.368 0.005
P42.M501 0.28

A Distance is measured in cM from the left marker.
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stage and in the subsequent statistical analysis. In this paper
we have presented a mixed model analysis that
accommodates potential sources of variation. The analysis
was originally developed for the purpose of standard
selection of lines with superior milling yield. We have
extended the approach for the identification of isolated
QTLs for the trait. A further, natural application is marker-
assisted selection.

A difficulty with mapping and marker-assisted selection
is the choice of markers to include in the regression model.
Standard mapping programs avoid this problem since they
only perform a sequence of pair-wise marker regressions.
Many authors (e.g. Whittaker et al. 1996; Hackett et al.
2001) conduct QTL mapping using a multiple regression,
that is, the simultaneous regression on a number of marker
pairs. Usually the number of markers is far in excess of the
number of lines so only a subset of marker covariates can be
included at any one time. In this paper a sequence of pair-
wise marker regressions was used as the first step for marker
selection. Many other selection methods have been consid-
ered (e.g. Moreau et al. 1999) but the relative merits of the
methods are unclear. Whittaker et al. (1996) pointed out that
for QTL detection the selection of the ‘best’ subset of varia-
bles to include is a more complex problem than in the stand-
ard regression context. For example, in order to estimate
QTL locations and effects it is not individual markers that are
candidates for inclusion or exclusion from the model, but
rather pairs of flanking markers.

In terms of experimental design there are a number of
issues to be resolved. If standard selection is the aim, some
progress should be possible since the focus of the design is
the lines themselves. Research is required to provide
efficient arrangements of the lines in the field and in the
laboratory. Adequate replication is required in both phases.
With better designs, that is, with the spatial field location and
milling ordering of lines in some way balanced for field and
laboratory trend, there should be much smaller adjustments
to line mean yields than observed in the Cranbrook ×
Halberd data set, for example. If mapping or marker-assisted

selection is the aim, the experimental design issues are more
complex since the marker covariates would then need to be
allocated in some optimal way. 

The finding of a QTL for milling yield on chromosome
5B in both the Cranbrook × Halberd and CD87 × Katepwa
crosses is of particular interest. The alignment of the two
genetic maps with the physical map of chromosome 5B
(Fig. 4) suggests that in both crosses the QTL is located in
the distal region of the long arm. It is therefore possible that
the same QTL is being assayed in the two crosses. The
markers that flank this 5B-QTL are currently under further
investigation, in order to validate the possibility that they
define a region of the chromosome carrying a significant
QTL for milling yield.
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