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REVIEW

Climate change increases net CO2 assimilation in the leaves of strawberry, but 
not yield
Christopher Michael Menzel

Department of Agriculture and Fisheries, Nambour, Queensland, Australia

ABSTRACT
Fruit growth in strawberry is dependent on photosynthesis in the leaves. The main scenarios 
for climate change include an increase in the concentration of CO2 in the atmosphere and an 
increase in temperature. This review examined photosynthesis in strawberry. The mean photo-
synthetic photon flux (PPF) for the saturation of CO2 assimilation was 1,031 ± 447 µmol per m2 

per s, the median was 1,000 µmol per m2 per s, and the range was from 467 to 2,200 µmol per 
m2 per s (N = 59). The mean concentration of CO2 for the saturation of assimilation was 869 ±  
306 ppm, the median was 900 ppm, and the range was from 410 to 1,750 ppm (N = 32). The 
optimum temperature range for CO2 assimilation was 20° to 30°C, with lower photosynthesis at 
lower or higher temperatures. The optimum temperatures for photosynthesis are higher than 
those for flowering and fruit growth. The impact of climate change on production varies across 
growing areas. In warm locations, higher temperatures increase photosynthesis, but not yield. 
In cool locations, higher temperatures increase plant growth and the length of the production 
season, but this comes at the expense of flower initiation.
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Introduction

Climate change has increased the temperature and the 
concentration of CO2 in the atmosphere in the last 100  
years compared with earlier periods (Bâki Iz, 2022; 
Meinshausen et al., 2022; Solomon et al., 2009; Wang et 
al., 2023a). For instance, the concentration of CO2 in the 
atmosphere near Mauna Loa in Hawaii increased from 
320 ppm in 1960 to 420 ppm in 2020 (Bâki Iz, 2022). 
Additionally, the global surface temperature increased by 
nearly 1°C from 2001 to 2020 compared with 1850 to 
1900 (Wang et al., 2023a). These changes in CO2 and 
temperature have increased photosynthesis in many 
plants. However, the increase in carbon assimilation 
under higher CO2 and temperature is often accompanied 
by a decrease in flower and fruit development (Lee et al.,  
2017; Pereira et al., 2017; Srinivasan et al., 2017).

Elevated temperatures have a greater effect on pro-
ductivity than elevated CO2. The impact of tempera-
ture on yield can be due to higher average 
temperatures or short-term increases in temperatures 
above the optimum range (Campoy et al., 2019; 
Chavan et al., 2019). The effect of global warming on 
the changes in temperature varies across regions and 
ecosystems and between days and nights (Cox et al.,  
2020; Hou et al., 2018; Shi et al., 2023; Sun et al., 2014; 
Zheng et al., 2021). There can also be differences 
between the temperature of the canopy (Tc) and that 
of the air (Ta) (Guo et al., 2023). These authors 

demonstrated that the differences between Tc and Ta 
ranged from 0° to 6°C across the globe.

Some models predict higher yields in the short- 
term with climate change and lower yields in the 
long-term, while others predict lower yields across 
both periods or under current conditions (Amani- 
Male et al., 2024; Benlloch-González et al., 2019; 
Challinor et al., 2014; Hammer et al., 2020; Heide & 
Sønsteby, 2020; Lollato et al., 2020; Ma et al., 2021; 
Minoli et al., 2022; Mistry et al., 2017; Petersen, 2019; 
Ray et al., 2019; Schlenker & Roberts, 2009; Vogel et 
al., 2019; Wang et al., 2022a, 2020b; Yin & Leng, 2022; 
Zhang et al., 2017). Warming is also expected to 
decrease net cropping frequency (the number of crop-
ping cycles per year at a given location) across the 
globe by 4.2 ± 2.5% by 2050 (Zhu et al., 2022).

A study across the globe indicated that the impact 
of climate change on maize varied across regions 
(Ocwa et al., 2023). An increase in temperature of 1° 
to 4°C decreased yield by 5 to 14% in warm areas and 
increased yield by less than 5% in cold areas. In non- 
crop species, changes in temperature affect the persis-
tence or expansion of plants across ecosystems 
(Anderson et al., 2020). Grüter et al. (2022) demon-
strated that coffee was vulnerable to climate change, 
with a negative impact in all the main producing 
regions. The areas suitable for avocado and cashew 
are expected to expand globally, while in the main 
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producing countries, the areas of highest suitability 
will decrease.

Productivity is difficult to estimate because the 
changes in CO2, temperature and water supply vary 
across regions (Mohammadi et al., 2023). There are also 
uncertainties in how species respond to environmental 
conditions. Keeping warming to within 1.5°C is less 
problematic than to within 2.0°C (Leng, 2018; 
Schleussner et al., 2018; Wang et al. 2023a). The develop-
ment of adapted cultivars and other mitigating strategies 
can reduce the impact of climate change on productivity 
(Abramoff et al., 2023; Zhang et al., 2022).

Strawberry is one of the most popular fruit crops, 
and the most important of the berry fruit in the family 
Rosaceae (Borrero & Borrero-Domínquez, 2023; 
Hancock, 2020; Hancock et al., 2000; Mezzetti et al.,  
2018; Porter et al., 2023). Total production is 14 mil-
lion tonnes each year, with major production in 
China, California and Europe (Lei et al., 2021; 
Samtani et al., 2019).

The plants are adapted to a wide range in ecological 
conditions, in terms of light levels, rainfall, daylength and 
temperature (Bird et al., 2021; Hancock, 2020; Jiang et al.,  
2023; Makaraci & Flore, 2009; Sammarco et al., 2022; 
Zareei et al., 2021). In the northern hemisphere in the 
Americas, production occurs from the high latitudes of 
Canada to the low latitudes of Mexico. In the southern 
hemisphere in the Asia-Pacific region, production occurs 
from the high latitudes of New Zealand to the low lati-
tudes of Indonesia. There are numerous cultivars devel-
oped for specific locations and a range in production 
systems, including open field and protected cropping 
(Gomes et al., 2023; Kirschbaum et al., 2023; Lustosa da 
Silva et al., 2023; Mezzetti et al., 2018; Still et al., 2023; 
Weber, 2021a, 2021b; Zhou et al., 2023).

Research has indicated that elevated CO2 and tem-
peratures affect the development of strawberry (Bethere 
et al., 2016; Dale, 2009; Dara et al., 2019; Deschenes & 
Kolstad, 2011; Døving, 2009; Elias et al., 2015; Esitken et 
al., 2009; Hong et al., 2020; Husaini & Xu, 2016; Kerr et 
al., 2018; Krüger, 2009; Lobell & Field, 2011; Lobell et al.,  
2007; Maskey et al., 2019; Morton et al., 2017; Neri et al.,  
2012; Palencia et al., 2009; Pathak et al., 2018; Qiu et al.,  
2023; Sammarco et al., 2022; Łysiak and Szot, 2023). Two 
analyses in California demonstrated that yields might 
decrease by 10% by 2050 and by 43% from 2070 to 2099 
(Deschenes & Kolstad, 2011; Lobell et al., 2007). High 
temperatures and low rainfall in November were asso-
ciated with low yields in California from 1980 to 2003 
(Lobell et al., 2007). In Florida, yields will decrease by 11% 
by the middle of the century in Hillsborough County 
(Environmental Defence Fund, 2023). It was proposed 
that production should be shifted further north to 
Marion County where temperatures in 2050 would be 
similar to those currently in Hillsborough.

Grez et al. (2020) indicated that global warming will 
decrease the yields of F. chiloensis in its native habit in 

Chile. Another report found that the distribution of 
tetraploid species of Fragaria will shrink under climate 
change in Yunnan Province in China (Yang et al., 2020). 
In contrast, the habitat for diploid species will expand. 
Gamboa-Mendoza et al. (2019) showed that plants of F. 
mexicana at 5.1°C above ambient in Mexico had 41% 
fewer flowers and 38% fewer fruit than those at ambient 
(a mean temperature of 19.6°C). Sun et al. (2012) demon-
strated that elevated temperatures overrode the benefits 
of elevated CO2 on productivity.

This paper reviews photosynthesis in strawberry. 
The main objective of the study was to assess the effect 
of environment (light, temperature and the concentra-
tion of CO2), plant physiology (leaf nitrogen, leaf 
expansion and fruit development) and genotype on 
net CO2 assimilation in the leaves. The optimum tem-
peratures for leaf expansion and yield were compared 
with those for photosynthesis to determine the impact 
of climate change on productivity.

Ultrastructure of the leaves

Most of the photosynthesis in a strawberry plant occurs 
in the leaves (Blanke, 1991, 2002). Several authors have 
provided information on the anatomy of the leaves, 
with the reports agreeing with each other (Abu Zeid et 
al., 2023; Allan-Wojtas et al., 2010; Arroyo et al., 2005; 
Avestan et al., 2021; Converse & Schaper, 1988; Fabbri 
et al., 1986; Kielkiewicz, 1985; Kitajima et al., 1973; Liu 
et al., 2020a; Mackerron, 1976; Ontivero et al., 2000; 
Papp et al., 2000, 2005; Pardo et al., 2012; Park et al.,  
1992; Sances et al., 1979; Yang et al., 2022).

A study in the United Kingdom with ‘Cambridge 
Favourite’ indicated that the leaves had a mostly uni-
form epidermis with two to three rows of oblong meso-
phyll palisade cells (containing numerous chloroplast) 
next to the adaxial or upper leaf surface (Watkins et al.,  
1992). There was a layer of spongy mesophyll cells 
below the palisade cells, with large spaces between the 
individual cells. The cytoplasm contained well-defined 
chloroplasts, mitochondria, golgi apparatus (golgi com-
plex or golgi), an endoplasmic reticulum and a nuclei. 
The nuclei had a well-defined nucleolus, with the 
nuclear chromatin condensed into clumps. The chlor-
oplasts were smooth and contained starch grains. They 
were closely associated with each other, interrupted 
only by the presence of the nucleus. The chloroplasts 
were arranged more closely together in the palisade cells 
than in the spongy cells.

The adaxial and abaxial (or lower) leaf surfaces 
have a complex epicuticular layer of wax to protect 
the leaf from injury and to reduce the loss of water 
(Blanke, 1991; Kim et al., 2009). The surfaces of the 
leaves typically have glandular and non-glandular tri-
chomes or hairs, which can help prevent infestation of 
pests such as spider mites (de Resende et al., 2020; 
Fávaro et al., 2022; Figueiredo et al., 2013).
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About 98% of CO2 uptake and water loss from most 
plants occurs through the stomatal apertures 
(Pathoumthong et al., 2023). The stomata are found 
only on the abaxial leaf surface, indicating that straw-
berry is a hypostomatous plant (Barbosa et al., 2013; 
Mackerron, 1976). The alternative arrangement of 
having stomata on both surfaces or amphistomaty 
occurs predominantly in fast-growing herbaceous 
annuals and in slow-growing perennial shrubs and 
trees (Drake et al., 2019).

Blanke and Cooke (2004) indicated that the leaves of 
‘Cambridge Favourite’ and ‘Florika’ had 320 to 360 sto-
mata per mm2. Klamkowski and Treder (2006) showed 
that leaves of ‘Salut’ had 203 stomata per mm2, and that 
the stomata were 28 µm × 23 µm. Xu et al. (2022) found 
that there was a mean (± s.e.) of 189 ± 10 stomata per 
mm2 in plants in a greenhouse in Beijing, China and a 
mean stomatal conductance (gs) of 306 ± 13 mmol per m2 

per s. The conductance of water vapour out of the leaves 
varies across cultivars. Grant et al. (2012) demonstrated 
that gs in well-watered plants ranged from 200 to 600  
mmol per m2 per s in ten cultivars in the United 
Kingdom.

Avestan et al. (2021) provided details on the size of the 
tissues within the leaves of ‘Camarosa’ in Iran. The aver-
age leaf was 230 µm thick, with 2.67 layers of palisade 
(107 µm thick) and a 68.9 µm thick layer of spongy par-
enchyma. The adaxial epidermis was 36.1 µm thick and 
the abaxial one was 18.1 µm thick. Abu Zeid et al. (2023) 
provided similar data for the same cultivar in Saudi 
Arabia. The leaves were 165.0 µm thick, with 52.8 µm of 
palisade, 36.3 µm of spongy tissue, a 29.7 µm adaxial 
epidermis and a 39.6 µm abaxial epidermis.

A study in Finland indicated that there are differ-
ences in the anatomy of leaves of F. vesca initiated in 
summer or winter (Aström et al., 2015). Leaves in 
summer had fewer layers of palisade than those in 
winter (Table 1). The first layer of the palisade tissues 
was thicker in the summer leaves. They also had more 
air spaces in the mesophyll and fewer stomata. The 
leaves initiated in winter were more adapted to cold 
than those initiated in summer. They had higher 
SPAD values (30.5 versus 7.5) and higher chlorophyll 
fluorescence (Fv/Fm of 0.66 versus 0.18).

Kasiamdari et al. (2017) provided similar data on the 
ultrastructure of commercial strawberry in Indonesia 
(Table 2). Overall, the leaves were thicker than those of 
the woodland strawberry. There was a variation in the 
thickness of the various tissues, which varied by a factor 
of 1.4 to 2.2 across the nine cultivars. These authors 
included information on the hypodermis, which forms 
a prominent layer under the epidermis in some plants. 
Takeda and Glenn (1989) described hydathodes in the 
leaves of commercial strawberry, which are responsible 
for guttation in vascular plants. The hydathodes were 
below the epidermis and opened into pores on the leaf 
surface, but had no guard cells.

Heijari et al. (2006) provided information on the orga-
nelles within the cells. The mean (± s.d. or standard 
deviation) area for a chloroplast was 21 ± 2 µm2, 13 ± 2  
µm2 for a starch grain, 0.57 ± 0.07 µm2 for a mitochon-
drion and 0.50 ± 0.03 µm2 for a peroxisome (Figure 1).

The anatomy of the leaves varies with the genotype 
and environment (Jurik et al., 1982; Salamone et al.,  
2013). Catling and Porebski (1998) studied the morphol-
ogy of 87 plants of F. chiloensis and F. virginiana from the 
Pacific coast of Canada. The leaves were rated from thin 
(index of one) to thick (index of three). The mean (± s.d.) 
scores for leaf thickness ranged from 2.51 ± 0.50 to 3.00 ±  
0.00. Genotypes of F. chiloensis generally have thicker 
leaves than other species of Fragaria. Razmi et al. (2022) 
indicated that artificial tetraploids of commercial straw-
berry had fewer stomata than a standard octoploid, 
although the stomata were larger. The tetraploids also 
had larger chloroplasts. Jurik et al. (1982) demonstrated 
that leaves of F. virginiana under high light were thicker 
(188 ± 11 µm) (mean ± s.e.) than those under low light 
(149 ± 22 µm).

The chloroplasts in the cells of the leaf harvest 
light from the sun and use the energy to produce 
sugars and other substance needed for growth 
(Häder, 2022; Oliver et al., 2023; Sierra et al., 2023). 
The basic structure of the chloroplast is similar 
across species of higher plants (Figure 2; Kang et 
al., 2022; Kirchhoff, 2019).

The important part of the chloroplast is the 
thylakoid, which is one of the most complex, highly 
organised membranes in biology (Kirchhoff, 2018; 
Svoboda et al., 2023). The thylakoid in the inner 
part of the chloroplast consists of appressed grana 
stacks and unstacked stroma lamellae (Gu et al.,  
2022; Koochak et al., 2019; Kratsch & Wise, 2000; 
Mazur et al., 2021; Zenkteler & Borkowska, 2002). 
Photosystem II (PSII) is mainly located in the 
grana stacks, whereas Photosystem I (PSI) and 
ATP synthase are mainly located in the stroma 
lamellae. The outer part of the chloroplast is com-
prised of an inner and outer membrane separated 
by an intermembrane space. The structure of 
stacked grana area changes in response to the 

Table 1. Anatomy of summer and winter leaves of F. vesca in 
Helsinki, Finland. Data show means with standard errors (s.e.). 
Means in a row followed by a common letter are not signifi-
cantly different by the Fisher’s least significant test at 5% level 
of significance. Data are from Aström et al. (2015).

Parameter Summer leaves Winter leaves

Leaf thickness (µm) 97.4 ± 2.1 a 100.0 ± 2.8 a
Height of adaxial epidermis (µm) 20.7 ± 0.6 a 21.7 ± 0.6 a
Height of abaxial epidermis (µm) 14.5 ± 0.3 a 14.8 ± 0.3 a
Number of palisade layers 1.7 ± 0.1 a 2.2 ± 0.1 b
Height of first palisade layer (µm) 22.9 ± 0.4 a 20.4 ± 0.3 b
Height of second palisade layer (µm) 16.6 ± 0.5 a 15.9 ± 0.6 a
Percentage of mesophyll air space 24.6 ± 1.8 a 14.2 ± 1.4 b
Number of stomata/mm2 205 ± 11 a 269 ± 18 b
Length of stomata (µm) 20.2 ± 0.2 b 17.4 ± 0.4 a
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environment such as light (Gjindali & Johnson,  
2023; Li et al., 2020b). The ultrastructure of the 
chloroplast also changes with variations in CO2. 
Li et al. (2020a) demonstrated that exposure of 

wheat plants to elevated CO2 (800 ppm) increased 
the number of grana lamellae and the concentra-
tion of chlorophyll in the leaves compared with 
those under ambient CO2 (400 ppm).

Table 2. Anatomy of leaves of commercial strawberry in Indonesia. Data show the means of nine cultivars with standard errors (s. 
e.) along with the range in values. Data are from Kasiamdari et al. (2017).

Height of  
mesophyll (µm)

Height of adaxial  
epidermis (µm)

Height of abaxial  
epidermis (µm)

Height of vascular  
tissue (µm)

Height of  
hypodermis (µm)

Mean (± s.e.) 278 ± 13 14.7 ± 1.0 34.7 ± 2.3 179 ± 9.0 22.8 ± 1.8
Minimum 242 10.4 23.6 127 14.8
Maximum 357 21.4 48.1 236 33.0

Figure 1. Cross-section of a strawberry leaflet using a light microscope (400 × magnification) showing palisade and spongy 
parenchyma, vascular bundle, and adaxial (upper cell layer) and abaxial epidermis (lower cell layer). Different types of epidermal 
cells are shown: (a) two-layered zone with mucilaginous lower layer and tannin containing upper layer; (b) tannin containing cells; 
and (c) empty cells. Note the presence of tannin in the vacuoles of palisade parenchyma cells (asterisk) and lipids in the spongy 
parenchyma cells (small arrow). A stoma is marked with a large arrow. ic = intercellular space. Drawn from Heijari et al. (2006).

Figure 2. Structure of a higher plant chloroplast and overview about its metabolic competence. The chloroplast takes low-energy 
components (orange box) and converts them into high-energy metabolites (blue box) using sunlight. Drawn from Kirchhoff (2019).
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Photosynthesis varies across strawberry 
species, hybrids and cultivars

Net CO2 assimilation per leaf area varies across crop 
plants and ecosystems (Cruz & Avenson, 2021; Faralli 
& Lawson, 2020; Hiker et al., 2008; Hikosaka & 
Tsujimoto, 2021; Liu et al., 2023b; Ryu et al., 2019; 
Siebers et al., 2021; Taylor et al., 2023). These varia-
tions in gas exchange are due to differences in the 
biochemistry of photosynthesis, electron transport in 
the chloroplasts and in the diffusion of CO2 from the 
atmosphere to the chloroplasts (Álvarez-Iglesias et al.,  
2022; Joubert et al., 2023; Matuszyńska et al., 2019; 
Prado & De Moraes, 1997; Yan et al., 2023).

The efficiency of photosynthesis is related to the mor-
phology of the leaf and the concentrations of the photo-
synthetic pigments, including chlorophyll and 
carotenoids (Cutolo et al., 2023). Luo et al. (2019) demon-
strated that the inclusion of leaf chlorophyll content 
improved models of photosynthesis in deciduous forests, 
croplands, grasslands, savannas and wetlands, but had 
mixed impacts in shrublands and evergreen forests, and 
negative impacts in evergreen needleleaf forests.

Kulberg et al. (2023) found that photosynthesis in six 
subtropical trees in Florida was limited mainly by the 
conductance of CO2 through the stomata, with leaf bio-
chemistry less important. In contrast, photosynthesis in 
rose in China was limited more by biochemistry (60%) 
than by the diffusion of CO2 through the leaf (Wang et al.,  
2023b). Cultivars of rice with high gas exchange had 
larger mesophyll cells and more chloroplasts than those 
with low exchange (Mathan et al., 2021). The better 
cultivars had fewer mesophyll cells, and a larger surface 
area exposed to the intercellular spaces.

Photosynthesis varies with different species, 
hybrids and cultivars of strawberry (Table S1). The 
mean (± s.d.) net CO2 assimilation was 12.7 ± 5.0 µmol 
per m2 per s, the median was 11.7 µmol per m2 per s, 
and the range was from 5.0 to 22.4 µmol per m2 per s 
(Figure 3; N = 41). There is less information on the 

efficiency of photosynthesis per unit light intercep-
tion. The mean apparent quantum yield (AQY or ɑ) 
was 0.034 ± 0.024 µmol per µmol, the median was 
0.034 µmol per µmol, and the range was from 0.030 
to 0.038 µmol per µmol (Figure 3; N = 6).

It is difficult to compare the results across studies 
because of variations in environmental conditions 
during the measurements. There were also differences 
in the growing conditions and both short- and long- 
term studies. Reekie et al. (2005) demonstrated that 
net CO2 assimilation was 34 to 41% higher in the field 
than in growth chambers. Light levels were three to 
five times higher in the field.

Apparent quantum yield indicates the efficiency of 
photosynthesis as the ratio of oxygen consumption to 
light absorption (Lei et al., 2023; Singsaas et al., 2001; 
Timm et al., 2002; Zhang et al., 2006). Lin et al. (2022) 
demonstrated that there was a strong relationship 
between net CO2 assimilation and AQY across nine 
arid and semi-arid sites in China (P < 0.01, R2 = 0.84). 
Fu et al. (2015) reported that an increase in the mean 
temperature of 1°C under global warming increased 
AQY by 11.1% across plant communities on the 
Tibetan Plateau. Hdider and Desjardins (1994) indicated 
that mean (± s.e.) AQY was 0.053 ± 0.003 µmol per µmol 
for strawberry in growth cabinets. Apparent quantum 
yield ranged from 0.037 to 0.077 µmol per µmol. 
Skillman (2008) found that mean AQY was 0.052 ±  
0.003 µmol per µmol across C3 plants (N = 127). 
Estimates of AQY in wheat in China varied from 0.060 
to 0.103 µmol per µmol depending on the model used to 
describe the relationship between photosynthesis and 
light (Ye & Yu, 2008).

Wild species of strawberry, including F. chiloensis, F. 
virginiana, F. moschata, F. nilgerrensis and F. vesca have 
higher net CO2 assimilation than commercial strawberry 
(Cameron & Hartley, 1990; Fallahi et al., 2000; Hancock 
et al., 1989; Harbut et al., 2010, 2012). Gao et al. (2017) 
found that the diploid F. pentaphylla had higher gas 
exchange than the tetraploid F. moupinensis in China, 

Figure 3. Box plots showing the distribution of maximum net CO2 assimilation (A) and apparent quantum yield (AQY or ɑ) in 
species, hybrids and cultivars of strawberry (N = 41 or 6). Data are from the various authors shown in Table S1.
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suggesting that polyploidy was associated with low gas 
exchange. Hancock et al. (1989) indicated that there were 
moderate correlations between net CO2 assimilation and 
the proportion of F. chiloensis-derived genes in 20 culti-
vars and breeding lines in Michigan in the United States 
(r = 0.58 in the field and r = 0.85 in a glasshouse).

Fallahi et al. (2000) suggested that the differences in 
gas exchange between F. chiloensis and commercial 
strawberry were associated with changes in leaf anatomy. 
F. chiloensis had thicker leaves than commercial straw-
berry (188 µm versus 169 µm), mainly due to a thicker 
palisade (84 µm versus 62 µm) and spongy mesophyll 
(146 µm versus 120 µm). The leaves of F. chiloensis had 
higher mesophyll conductance (gm = 87.5 mmol CO2 per 
m2 per s versus 62.1 mmol CO2 per m2 per s). Kanno et al. 
(2022) investigated gas exchange in seven cultivars in 
Japan. Net CO2 assimilation was correlated with stomatal 
conductance (gs) (P < 0.01, r = 0.89 or 0.88). However, 
their analysis does not mean that higher photosynthesis 
was due to higher CO2 diffusion.

There is limited information on the genetics of 
photosynthesis in strawberry. Gas exchange is con-
trolled by genes in the chloroplasts as well as those in 
the nucleus (Chen et al., 2023; Theeuwen et al., 2022). 
During evolution, many genes of ancestral chloro-
plasts have been transferred from the chloroplast 
into the nucleus (Dobrogojski et al., 2020). However, 
the genes which are essential for photosynthesis have 
been retained in the chloroplast.

The genome of chloroplasts has been determined 
for several cultivated and wild species (Bai et al., 2017; 
Cheng et al., 2017; Harrison et al., 1997; Honjo et al.,  
2009; Huang et al., 2019a; Li et al., 2021a; Song et al.,  
2023; Sun et al., 2021). Different types of photosynth-
esis-related genes respond differently to hybridisation 
and chromosome doubling within Fragaria (Wang et 
al., 2018). In China, the species were divided into two 
groups based on variations in the genomics of the 
chloroplast (Li et al., 2021a). Species in the first 
group were mainly from western China, while species 
from the second were mainly from Europe and the 
Americas. Commercial strawberry has the smallest 
chloroplast genome within Fragaria. The genome 
encodes 112 unique genes, comprising 78 protein- 
coding genes, 30 tRNA genes and 4 rRNA genes.

Siddique et al. (2021) examined the genetics of chlor-
ophyll content in Korea. In many crops, there is a strong 
relationship between photosynthesis and the concentra-
tion of chlorophyll (Fleischer, 1935; Li et al., 2018). 
Siddique and colleagues used SPAD values to estimate 
chlorophyll levels in the leaves (Himelrick et al., 1992; 
Takeda & Tworkoski, 1999). The first set of plants com-
prising 186 individuals was developed from an F2 popu-
lation from ‘Benihoppe’ × ‘105 (14–9)’. The second set 
comprising 158 individuals was developed from an F2 
population from ’26 (8–9)’.

The SPAD values from the first population ranged 
from 34.0 to 57.9, while those from the second ranged 
from 20.0 to 62.9. Broad-sense heritability (H2) ranged 
from 0.44 to 0.55, indicating moderate heritability. A 
total of seven QTL, including major and minor effects, 
common and specific to populations explained 1.4 to 
26.4% of the phenotypic variation in SPAD values. 
SPAD values reflect the concentration of nitrogen in 
the leaves of plants, with photosynthesis promoted 
with high nitrogen levels (Güler et al., 2006).

Diurnal changes in photosynthesis

Carbon assimilation in the leaves of plants varies over 
the day. In C3 species, net CO2 assimilation peaks in 
the late morning or at midday and declines in the 
afternoon or peaks in the morning and afternoon, 
with lower values at midday or a midday depression 
(Bunce, 2021; Gómez et al., 2005; Koester et al., 2016; 
Kumudini, 2004; Miao et al., 2021). Under some con-
ditions, there is a short rise in gas exchange before the 
sun sets. The changes in net CO2 assimilation are due 
to changes in environmental conditions influencing 
gas exchange and changes in leaf physiology.

The increase in photosynthesis in the morning reflects 
increasing light levels, while the decrease in the afternoon 
reflects increasing evaporative demand and closing of the 
stomata (Maxwell, 2002; Singsaas et al., 2000). Zhang et 
al. (2023b) demonstrated that net CO2 assimilation in 
trees in the Amazonian forests responded positively to 
vapour pressure deficit (VPD) in the morning, but nega-
tively in the afternoon. Gas exchange in the afternoon was 
6.7 ± 2.4% (s.e.) lower than in the morning. Variations in 
leaf physiology affect gas exchange. Nomura et al. (2022) 
indicated that lower net CO2 assimilation in eggplant 
reflected the accumulation of non-structural carbohy-
drates in the leaves.

Gas exchange in strawberry increases in the early 
morning to peak between late morning and early after-
noon (Iwao et al., 2021; Kimura et al., 2020, 2023; Li & 
Gao, 2015; Nakai et al., 2022; Yokoyama et al., 2023). For 
instance, Yokoyama et al. (2023) found that net CO2 
assimilation on a sunny day in May in Japan increased 
from 11.8 µmol per m2 per s at 0700 h to 15.0 µmol per 
m2 per s between 0900 and 1300 h and then decreased to 
11.0 µmol per m2 per s at 1700 h. The changes in photo-
synthesis reflected changes in light levels, temperature 
and the opening and closing of the stomata.

In growth chambers, photosynthesis was stable 
under artificial light (Le et al., 2021; Wu et al., 2012). 
Garcia and Kubota (2017) noted a different response, 
with gas exchange in a greenhouse in Arizona, United 
States decreasing from 0900 to 1500 h. Light levels 
were maintained during the measurements, with a 
PPF of 1,000 µmol per m2 per s. The concentration 
of CO2 was 400 ppm. The authors indicated that gas 
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exchange was not related to differences in light or 
VPD and suggested that changes in leaf physiology 
(accumulation of leaf carbohydrates) were important.

Seasonal changes in photosynthesis

Net CO2 assimilation varies over the season in plants 
(Araque et al., 2012; Bunce, 1982; Chang et al., 2016; 
Prado et al., 2001; Reich et al., 1991b), although there 
are exceptions where gas exchange is stable (e.g. Greer,  
2019 for apple in New South Wales, Australia). The 
pattern of carbon assimilation varies across species 
and ecosystems. In some plants, key drivers of the 
response include changes in water supply, temperature 
or snow-fall (Bosiö et al., 2014; Guan et al., 2018; Zhou 
et al., 2018).

Gas exchange in strawberry varies over days or 
weeks (Bunce, 2001; Garcia & Kubota, 2017; 
Kerkhoff et al., 1988; Sung & Chen, 1991; Yokoyama 
et al., 2023), although there are exceptions (Calderón- 
Zavala et al., 2022 in a glasshouse in Mexico). In 
Taiwan, gas exchange peaked 70 days after planting 
and then decreased (Sung & Chen, 1991). A study in 
Korea demonstrated that net CO2 assimilation nearly 
doubled from 8 February to 9 March (10.5 µmol per 
m2 per s to 18.0 µmol per m2 per s), reflecting higher 
light levels in the greenhouse (Choi, 2021b). 
Differences in carbon assimilation over the season 
also reflect changes in temperature (Kimura et al.,  
2023).

Relationship between photosynthesis and 
light

Solar radiation drives photosynthesis, cell metabolism 
and growth in plants (Coe & Lin, 2018; Lazár et al.,  
2022; Li et al., 2023a; Stirbet et al., 2020; Tcherkez & 
Limami, 2019). The chloroplasts absorb the radiation 
and use the energy to convert CO2 from the atmosphere 
to the sugars needed for growth. Photosynthesis can be 
limited by external factors such as light, the concentration 
of CO2 and temperature. Gas exchange is also affected by 
the arrangement of cells in the leaves, the arrangement of 
the chloroplasts within the cells and by the density of the 
stomata per leaf area (Leister, 2023; Sharkey, 1985). 
Leaves respond to average and instantaneous light con-
ditions (Li et al., 2023b).

Wright and Sandrang (1995) calculated that straw-
berry produces 1.34 g of shoot dry matter for each 
megajoule of solar radiation intercepted by the leaves. 
Global estimates of light use efficiency (LUE) across 
numerous ecosystems ranged from 0.73 ± 0.22 g per 
MJ to 1.30 ± 0.55 g per MJ in two studies (He et al.,  
2022a; Tang et al., 2020).

The interception of light through a plant canopy 
can be described by a non-linear function using a 
light extinction co-efficient or k (Lacasa et al.,  

2021). A low value of k indicates that much of the 
radiation reaches the leaves in the bottom of the 
canopy (Zhang et al., 2014). These authors reported 
that the average value of k was 0.56 across 88 terres-
trial ecosystems. Croplands had the highest values of 
k (0.62), while needleleaf forests had the lowest 
(0.45). Savé et al. (1993) collected data on the dis-
tribution of leaf area in the canopy of ‘Chandler’ 
strawberry in Spain after seven months. The bulk of 
the leaf area was found from 20 to 30 cm above the 
soil level (63% of total), with less from 10 to 20 cm 
(28%) or from 0 to 10 cm (9%).

Net CO2 assimilation per leaf area is higher under 
moderate or high radiation than under low radiation. 
For most C3 and C4 plants, a photosynthetic light- 
response curve describes the relationship between 
net CO2 assimilation and photosynthetic photon flux 
or PPF (Coe & Lin, 2018; Stirling et al., 1994). 
Maximum values of PPF are about 2,500 µmol per 
m2 per s and reflect radiation at noon in summer in 
many locations. The light-response curve is defined by 
three parameters. These are the maximum quantum 
yield of CO2 assimilation, derived from the slope of 
the initial linear response of CO2 uptake to PPF, the 
upper asymptote, representing the light-saturated rate 
of assimilation and the convexity coefficient, describ-
ing the curvature between the end of the linear phase 
and the asymptote.

The relationship between net CO2 assimilation and 
PPF varies over the short and long term. The leaves of 
plants adapt to variations in the light environment, 
with changes in leaf anatomy and biochemistry 
(Poorter et al., 2019). Leaves of strawberry under 
shade moved to full sun had higher CO2 exchange 
than those maintained in the full sun for the whole 
time (Jurik et al., 1979). In contrast, leaves in the full 
sun moved to shade had lower exchange than those 
maintained under the shade for the whole time.

Choi (2021a) obtained different results for commercial 
strawberry in Korea. The plants were grown with 0, 3, 5 or 
7 hours of shade each day (no light), providing 1,285, 
1,139, 770 or 364 mol of photosynthetic active radiation 
(PAR) per m2 during the experiment. Photosynthesis was 
measured after six weeks, with a PPF of 1,000 µmol per 
m2 per s, CO2 of 400 ppm and a temperature of 25°C. Net 
CO2 assimilation was 29, 42 or 62% higher in the control 
(18.0 µmol per m2 per s) than after 3, 5 or 7 hours of 
shading. Higher photosynthesis in the controls was asso-
ciated with higher stomatal conductance (gs, r = 1.00) and 
lower leaf chlorophyll a and b (r = −0.56 and −0.56). 
Estimates of CO2 uptake based on long-term conditions 
are better than those based on instantaneous 
measurements.

The light-response curve is dependent on other envir-
onmental conditions. The light-saturated rate of assim-
ilation is greater under high than under low CO2 and 
greater under moderate than under low temperatures 
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(Chen et al., 2022c). The relationship between gas 
exchange and radiation also depends on the ratio of 
direct and diffuse light. There is a greater proportion of 
diffuse light under cloud cover or fog (Baguskas et al.,  
2021; Durand et al., 2021; Yan et al., 2020). Net gas 
exchange is greater under fog than under clear skies for 
the equivalent incoming radiation (Baguskas et al., 2021).

Information was collected on the effect of solar radia-
tion on net CO2 assimilation in strawberry (Table S2). 
The mean maximum net CO2 assimilation from the 
light-response curves was 13.9 ± 5.8 µmol per m2 per s, 
the median was 13.7 µmol per m2 per s, and the range was 
from 2.9 to 30.0 µmol per m2 per s (Figure 4; N = 62). Gas 
exchange was saturated with a mean PPF of 1,031 ± 447  
µmol per m2 per s, a median of 1,000 µmol per m2 per s, 
and the range was from 467 to 2,200 µmol per m2 per s 
(Figure 4; N = 59). The mean apparent quantum yield (ɑ) 
was 0.043 ± 0.014 µmol per µmol, the median was 0.038  
µmol per µmol, and the range was from 0.030 to 0.064  
µmol per µmol (Figure 4; N = 11). Variations in the 
response reflect different cultivars, temperatures and con-
centrations of CO2.

Chen et al. (2022c) examined the effect of light, 
CO2 and temperature on gas exchange in ‘Hong yan’ 
in a greenhouse in Hefei, Anhui Province, China. Net 
CO2 assimilation was measured using a Li-6800 

portable photosynthesis system, using PPFs from 100 
to 2,000 µmol per m2 per s, CO2 from 200 to 1,500 
ppm and temperatures from 18° to 32°C.

The effect of radiation on photosynthesis followed a 
typical light-response curve and was depended on CO2 
and temperature. Maximum (± s.e.) net CO2 assimila-
tion was higher at high CO2 (800 ppm) than at low 
CO2 (400 ppm) (14.5 ± 0.4 µmol per m2 per s versus 
6.0 ± 0.4 µmol per m2 per s) (Figure 5; Temperature of 
29°C). Gas exchange was saturated with a PPF of 
1,500 µmol per m2 per s at high CO2 and with a PPF 
of 1,150 µmol per m2 per s at low CO2. Maximum net 
CO2 assimilation was higher at 29°C than at 18°C (6.0  
± 0.4 µmol per m2 per s versus 3.3 ± 0.01 µmol per m2 

per s) (Figure 5; CO2 of 400 ppm). Gas exchange was 
saturated with a PPF of 1,250 µmol per m2 per s at 
29°C and with a PPF of 350 µmol per m2 per s at 18°C.

Relationship between photosynthesis and CO2

The leaves of plants absorb CO2 from the atmosphere 
when the stomata are open, with the gas reaching the 
thylakoids in the chloroplast (Gardner et al., 2023; 
Pang et al., 2023; Potkay & Feng, 2023). At the same 
time, water vapour from inside the leaves is lost to the 
atmosphere. The CO2 is converted to sugars through 

Figure 4. Box plots showing the distribution of maximum net CO2 assimilation (A), the photosynthetic photon flux (PPF) associated 
with the saturation of assimilation and apparent quantum yield (AQY or ɑ) in strawberry (N = 43, 49 or 11). Data are from the 
various authors shown in Table S2.
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the process of photosynthesis. There is a strong rela-
tionship between photosynthesis and the concentra-
tion of CO2, with net CO2 assimilation increasing with 
increasing CO2 and then stabilising. The concentra-
tion of CO2 can be measured in the intercellular spaces 
(Ci), surface of the photosynthetic mesophyll cells 
(Cw) or chloroplasts (Cc) in C3 plants (Kirschbaum,  
1994; Manter & Kerrigan, 2004; Márquez et al., 2023; 
Sharkey et al., 2007).

The relationship between net CO2 assimilation and 
CO2 is described by A/Ci or A/Cc curves (Coursolle et al.,  
2019; Moualeu-Ngangue et al., 2016; Zeng et al., 2010; 
Zhou et al., 2019). The response to high CO2 varies 
across species and ecosystems and with light and tem-
perature (Hu et al., 2022; Kabir et al., 2023; Liu et al.,  
2022; Mndela et al., 2022; Wullschleger, 1993). Poorter et 
al. (2022) conducted a meta-analysis of the response of 
C3 plants to CO2 across 630 experiments. Average values 
of net CO2 assimilation more than doubled over CO2 
from 200 to 1,200 ppm and was saturated at 1,500 ppm. 
Trees showed the greatest response to CO2, followed by 
fertilised C3 crops and grasses (Ainsworth & Long, 2005). 
Shrubs, legumes and forbs were less responsive. Zheng 
and Peng (2001) examined the effect of CO2 on the 
physiology of plants across 84 studies. Net CO2 assimila-
tion increased by 40.4% in C3 plants when the concen-
tration of CO2 was increased by a factor of 1.7 to 2.3 
compared with ambient conditions (340 to 400 ppm). 
Experiments conducted in growth chambers are more 
reliable than those in the open field where there are 
variations in the concentration of CO2 above the plants 
(Allen et al., 2020).

Information was collected on the relationship 
between photosynthesis and the concentration of 
CO2 in strawberry (Table S3). The mean maximum 

net CO2 assimilation was 25.3 ± 10.1 µmol per m2 

per s, the median was 27.4 µmol per m2 per s, and 
the range was from 4.8 to 40.0 µmol per m2 per s 
(Figure 6; N = 28). Photosynthesis was saturated 
with a mean CO2 of 869 ± 306 ppm, a median of 
900 ppm, and the range was from 410 to 1,750 
ppm (Figure 6; N = 26). The concentration of CO2 
used in the analyses was measured in the atmo-
sphere (Ca), and occasionally in the air spaces 
between the cells in the leaf (Ci) or in the chlor-
oplasts (Cc). There were also variations in light and 
temperature conditions (Table S3).

Chen et al. (2022c) examined carbon assimilation 
in ‘Hong yan’ in China. The photosynthetic photon 
flux (PPF) ranged from 100 to 2,000 µmol per m2 per s, 
CO2 ranged from 200 to 1,500 ppm and the tempera-
ture ranged from 18° to 32°C. The effect of CO2 on 
photosynthesis followed a typical CO2-response curve 
and was dependent on the PPF and the temperature. 
Maximum (± s.e.) net CO2 assimilation was higher at 
high PPF (1,500 µmol per m2 per s) than at low PPF 
(600 µmol per m2 per s) (15.3 ± 3.0 µmol per m2 per s 
versus 12.2 ± 3.2 µmol per m2 per s) (Figure 7; 
Temperature of 29°C). Gas exchange was saturated at 
a CO2 of 800 ppm at both light levels. Maximum net 
CO2 assimilation was higher at 29°C than at 18°C 
(16.3 ± 3.0 µmol per m2 per s versus 5.2 ± 0.3 µmol 
per m2 per s) (Figure 7; PPF of 1,500 µmol per m2 

per s). Gas exchange was saturated at a CO2 of 800 
ppm at 29°C and at 600 ppm at 18°C.

Plants adapt to higher CO2, with maximum rates of 
photosynthesis decreasing after long-term exposure 
(Ainsworth et al., 2002; Hassan & Ito, 2023; Shin et 
al., 2022; Smith & Dukes, 2013; Thompson et al., 2017; 
Wang et al., 2020a; Zheng et al., 2019). This response 

Figure 5. Relationship between net CO2 assimilation (ANet) and photosynthetic photon flux (PPF) in strawberry in China. The 
response to light was examined at low or high CO2 and at low or high temperatures. Standard conditions were a CO2 of 400 ppm 
and a temperature of 29°C. The responses to PPF followed exponential regressions, where ANet = a × (1 – exp. (-b × PPF)) (P <  
0.001, R2s = 0.88 to 0.98). Data are from Chen et al. (2022c).
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is associated with changes in leaf anatomy, biochem-
istry and nutrient concentrations. For instance, Wang 
et al. (2020a) indicated that effect of elevated CO2 on 
photosynthesis declined across most terrestrial regions 
of the globe from 1982 to 2015. These changes were 
correlated with lower nutrient concentrations and 
levels of soil water. Liang et al. (2023) surveyed gas 
exchange in 444 species under elevated CO2 and tem-
perature. They showed that elevated CO2 decreased 
stomatal aperture in the short term and stomatal den-
sity and size in the long term.

Bunce (2001) investigated the effect of elevated 
CO2 on the performance of strawberry over 300  
days in growth chambers in Maryland, United 
States. Average net CO2 assimilation for plants at 
600 ppm CO2 was 35.1 µmol per m2 per s when 
measured at 950 ppm compared with 42 µmol per 
m2 per s for those without supplemented CO2 (353 

ppm during the day). Acclimation to elevated CO2 
was evident on two-thirds of the days when gas 
exchange was measured.

Keutgen et al. (1997) indicated that plants exposed 
to high CO2 (750 or 900 ppm) for two months had 
lower gas exchange than those exposed to moderate 
CO2 (600 ppm). Elevated CO2 induced nutrient defi-
ciencies in the plants growing in sand culture. 
Osborne et al. (1997) reported different results for 
the related Indiana strawberry, Duchesnea indica, 
which is an understory plant in the forests of 
Maryland. Plants exposed to CO2 of 670 ppm for 
three and half-years had higher net CO2 assimilation 
(4.7 ± 0.1 µmol per m2 per s) than those exposed to 
380 ppm (3.3 ± 0.6 µmol per m2 per s). The plants 
under elevated CO2 had lower concentrations of leaf 
nitrogen (362 ± 9 mg per m2) than those under ambi-
ent CO2 (402 ± 20 mg per m2).
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Figure 6. Box plots showing the distribution of maximum net CO2 assimilation (A) and the concentration of CO2 associated with 
the saturation of assimilation in strawberry (N = 23 or 22). Data are from the various authors shown in Table S3.

Figure 7. Relationship between net CO2 assimilation (ANet) and CO2 (ppm) in strawberry in China. The response to CO2 was 
examined at low or high light and at low or high temperatures. Standard conditions were a photosynthetic photon flux (PPF) of 
1,500 µmol per m2 per s and a temperature of 29°C. The responses to CO2 followed exponential regressions, where ANet = a × (1 – 
exp. (-b × CO2)) (P < 0.001, R2s = 0.79 to 0.85). Data are from Chen et al. (2022c).

10 C. M. MENZEL



Relationship between photosynthesis and 
temperature

Temperature is a key factor driving photosynthesis 
(Chen et al., 2022a; Moore et al., 2021; Yamaguchi et 
al., 2019). Temperature affects the conductance of CO2 
from the outside of the leaves to the chloroplasts and 
controls the chemistry of carbon fixation (Bahar et al.,  
2018; Leister, 2020; Leister et al., 2023). Short- and 
long-term temperatures affect leaf anatomy and phy-
siology (Baruah et al., 2023; Han et al., 2007; Huang et 
al., 2022; Venzhik et al., 2023; Wu et al., 2023).

Most plants have a broad optimum for net CO2 

assimilation, with gas exchange only decreasing at 
extreme temperatures, usually above 30° or 35°C 
(Matsuda & Takaragawa, 2023). Some plants have 
high rates of gas exchange at temperatures above 30° 
C (e.g. Al‐Salman et al., 2023 with sorghum). Huang et 
al. (2019b) demonstrated that the optimum tempera-
ture for growth across ecosystems was lower than that 
for photosynthesis. The average optimum for growth 
was 23.6° ± 6.0°C, while the average optimum for gas 
exchange was higher than 30°C.

The optimum temperatures for photosynthesis vary 
across species and ecosystems (Chang et al., 2021; Liu,  
2020; McGowan et al., 2020; Medlyn et al., 2002; 
Phillips et al., 2022; Reich et al., 2015; Scafaro et al.,  
2017; Tan et al., 2017). Crous et al. (2022) indicated that 
the optimum for CO2 assimilation in 101 evergreen 
species increased by 0.34°C for every 1°C increase in 
the local temperature. Photosynthesis is affected by 
conditions during the time of measurement and with 
those during growth (Coast et al., 2022; Cox et al.,  
2023). The optimum range for CO2 assimilation is 
higher for plants under moderate temperatures than 
those under low temperatures (Hikosaka et al., 2006; 
Sage & Kubien, 2007; Zaka et al., 2016).

A meta-analysis of productivity of forest trees across 
52 studies and 522 observations noted that net CO2 
assimilation increased by 9.9% when the temperature 
increased from 0.3° to 10°C (Yuan et al., 2018). The 
data were collected from sites between 30° to 60°S 
latitude, indicating cool to cold locations. Wang and 
Wang (2022) investigated the effect of temperature on 
gas exchange across 107 studies. Temperatures of 1° to 
17°C above ambient decreased net CO2 assimilation by 
18.4%. The study explored the response of plants across 
a range of ecosystems, including crops, wild herbaceous 
plants and forest species.

Wang et al. (2019) demonstrated that the negative 
effect of elevated temperatures on gas exchange was 
greater in C4 species than in C3 species, and greater if 
applied for more than a year. Scafaro et al. (2023) 
indicated that the rates of both Rubisco carboxylation 
and electron transport within the chloroplast were lim-
ited at high temperatures. The optimum temperature 

for electron transport was 28.1°C for cool-season spe-
cies and 31.9°C for warm-season species.

The response to temperature is dependent on light 
and CO2 (Dusenge et al., 2019; Morison & Lawlor,  
1999). Photosynthesis is higher under high PPFs and 
high CO2. Temperatures during the day are correlated 
with solar radiation in temperate and subtropical 
regions, whereas warm weather can be associated 
with cloud cover in wet tropical regions. Climate 
change is associated with increases in CO2 in the 
atmosphere and increases in average temperatures 
(Bagley et al., 2015).

The relationship between photosynthesis and tem-
perature was explored in strawberry (Table S4). The 
optimum temperatures for net CO2 assimilation varied 
across the studies, reflecting differences in cultivars, leaf 
age, light and CO2. The optimum ranged from 20° to 
30°C, with lower photosynthesis at lower or higher 
temperatures. There was a broad range in temperature 
where photosynthesis was satisfactory, with CO2 assim-
ilation only decreasing sharply at extremes. Kimura et 
al. (2020) demonstrated that the optimum for maxi-
mum carboxylation (Vcmax) was higher than that for the 
rate of light-saturated electron transport (Jhigh). The 
first process was increasing at 35°C, whereas the second 
started to decrease at 35°C. Leaf temperature during the 
experiment ranged from 15° to 35°C.

There is an interaction between temperature and 
CO2 on photosynthesis. Wada et al. (2010) examined 
the relationship between photosynthesis and tempera-
ture under controlled-environment conditions in Japan 
(Figure 8). The plants were exposed to temperatures 
from 10° to 30°C and to low or high CO2 (400 or 1,000 
ppm). Maximum net CO2 assimilation was higher 
under high CO2 (39.9 µmol per m2 per s) than under 
low CO2 (21.4 µmol per m2 per s). The optimum range 
for photosynthesis was 20° to 25°C at low CO2 and 25° 
to 30°C at high CO2. Oda (1997) conducted similar 
work in the same area (Figure 8). The plants were 
grown at temperatures from 10° to 35°C at low or 
high CO2 (360 or 1,350 ppm). Maximum net CO2 
assimilation was higher under high CO2 (8.1 µmol per 
m2 per s) than under low CO2 (3.7 µmol per m2 per s). 
The optimum range for photosynthesis was 13° to 23°C 
at low CO2 and 23° to 33°C at high CO2.

Photosynthesis is affected by extreme and average 
conditions. Fu et al. (2023) examined the effect of envir-
onmental stress (PPF of 1,800 µmol per m2 per s and a 
temperature of 38°C) on gas exchange in ‘Xuelixiang’ 
strawberry in China. Control plants were exposed to a 
PFF of 400 µmol per m2 per s and a temperature of 23°C. 
Net CO2 assimilation ranged from 10 to 13 µmol per m2 

per s in the controls. In contrast, net CO2 assimilation 
decreased to 5 µmol per m2 per s after eight hours of 
stress. Poor gas exchange after stress was associated with 
low stomatal conductance (gs).
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Leaves can adapt to changes in temperatures. 
Leaves initiated at high temperatures have higher 
maximum net CO2 assimilation than those initiated 
at low temperatures. There is a shift in the optimum 
range for photosynthesis, with the range higher when 
the plants are exposed to warm weather.

Chabot (1978) examined the effect of temperature 
on gas exchange in F. vesca in growth chambers in 
New York. The plants were grown at 10°/2°, 20°/10°, 
30°/20° or 40°/30°C and data collected on photosynth-
esis after five weeks. The temperature in the leaf 
chamber ranged from 10° to 35°C. Net CO2 assimila-
tion was highest under moderate growth temperatures 
from 20° to 30°C (Figure 9). Maximum carbon fixa-
tion occurred from 20° to 25°C during the time of 
measurement, except at the coldest regime. Each 
growth regime produced a different response 
curve. There was a shift in the optimum in the 
direction of the prevailing growth regime. There 
was an improvement in gas exchange at higher 
growth temperatures, except for the leaves at 10°/ 
2°C. Photosynthesis was less sensitive to tempera-
ture when the plants were grown at higher tem-
peratures. Low photosynthesis at extremes was 
associated with closure of the stomata.

Chabot and Chabot (1977) investigated the relation-
ship between photosynthesis, leaf anatomy and tempera-
ture in New York. Net CO2 assimilation adapted to 
higher temperatures during growth, with gas exchange 
limited only by extreme conditions. Plants with higher 
rates of carbon assimilation had thinner leaves than 
those with lower rates and dense mesophylls.

Relationship between photosynthesis and 
nitrogen

Most of the nitrogen in the leaves of higher plants is 
used in the proteins required for photosynthesis 
(Evans & Clarke, 2019). Low concentrations of nitro-
gen decrease the diffusion of CO2 from the atmo-
sphere to the chloroplasts and decrease the efficiency 
of CO2 assimilation (Gao et al., 2023; Kattge et al.,  
2009; Li et al., 2022; Mu & Chen, 2021).

The allocation of nitrogen to the leaves and to the 
chloroplasts varies across species and ecosystems 
(Khan et al., 2022; Luo et al., 2021). A study around 
the globe found that a mean of 18.2 ± 6.2% of nitrogen 
in the leaves was allocated to the photosynthetic 
enzyme ribulose-1,5-bisphosphate carboxylase-oxyge-
nase (RuBisCO). In many wild and crop plants, there 
is a strong relationship between net CO2 assimilation 
and total nitrogen per leaf area recorded as mmol per 
m2 (Evans, 1989; Hikosaka, 2004; Hikosaka et al.,  
2002; Ripullone et al., 2003; Sinclair & Horie, 1989).

The relationship between gas exchange and nitro-
gen was examined in strawberry (Table S5, N = 15). 
Net CO2 assimilation or net assimilation rate (NAR) 
was usually higher with high nitrogen, although there 
were exceptions. The results were difficult to compare 
because of different proxies used to measure the 
amount of nitrogen applied to the plants or the con-
centration of nitrogen in the leaves. There were varia-
tions in cultivar, temperature and CO2.

Moon et al. (1990) investigated the effect of nitro-
gen on carbon assimilation in two genotypes of F. 
chiloensis in Arizona. The plants were grown in a 

Figure 8. Relationship between net CO2 assimilation (ANet) and temperature (T, oC) in strawberry in Japan. The response to 
temperature was examined at low or high CO2. For Wada et al. (2010), standard conditions were a photosynthetic photon flux 
(PPF) of 2,000 µmol per m2 per s. For Oda (1997), standard conditions were a PPF of 552 µmol per m2 per s. For Wada et al. (2010): 
ANet (µmol per m2 per s) at 400 ppm CO2 = Intercept +1.79 × T − 0.038 × T2 (P = 0.007, R2 = 0.99). For Oda (1997): ANet (µmol per 
m2 per s) at 360 ppm CO2 = Intercept +1.24 × T − 0.030 × T2 (P = 0.027, R2 = 0.94).
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greenhouse under natural, light with a PPF of 20.2 ±  
3.7 mol per m2 per day. The day/night temperatures 
were 22°/17°C. The plants were given 0, 100, 200 or 
300 mg N per litre, with 40% coming from NH4-N and 
60% from NO3-N. Higher applications increased leaf 
nitrogen up to 200 mg N per litre, with greater accu-
mulation in ‘CA11’ than in ‘RCP37’.

There were strong positive linear relationships 
between net CO2 assimilation and nitrogen per leaf 
area or Na (Figure 10; R2 = 0.83 or 0.91). The slope 
from the regression or the photosynthetic nitrogen use 
efficiency (PNUE) was higher in ‘RCP37’ (0.32) than 
in ‘CA11’ (0.26). The first cultivar was from a high- 
nutrient inland site, while the second cultivar was 
from a low-nutrient dune site near the Pacific Ocean. 
Leaf nitrogen ranged from 50 to 250 mmol per m2 and 
net CO2 assimilation ranged from 10 to 60 µmol per 
m2 per s. In a study across crops, leaf nitrogen ranged 
from 10 to 300 mmol per m2, and net CO2 assimilation 
ranged from 2 to 45 µmol per m2 per s (Evans, 1989).

Yousefi et al. (2023) grew plants with different 
amounts of nitrogen in a greenhouse in Iran. They 
found that plants given 180 mg N per litre had higher 
concentrations of nitrogen in the shoots (2.07% DW) 
than those given 120 mg N per litre (1.32% DW). The 
plants given high nitrogen had higher concentrations 
of chlorophyll (1.63 mg per g FW versus 1.35 mg per g 
FW) and higher photosynthetic efficiency (Fv/Fm of 
0.82 versus 0.78). A study in Korea found a strong 
correlation (r = 0.75) between chlorophyll 

fluorescence (Fv/Fm) and relative chlorophyll content 
(SPAD) in a growth chamber (Arief et al., 2023). 
SPAD values typically reflect the concentration of 
nitrogen in leaves (Wu et al., 2020).

Changes in photosynthesis with leaf 
development

There are changes in the rate of photosynthesis as 
leaves emerge, unfold, expand and senesce 
(Niinemets, 2016; Schultz, 2003; Suzuki & Takahashi,  
2020; Wujeska-Klause et al., 2019). Net CO2 assimila-
tion reaches a maximum after the leaves are fully 
expanded. This period of gas exchange lasts for a few 
days to several months, depending on the species and 
growing conditions. Increases in photosynthesis in 
young leaves reflect increases in the concentration of 
chlorophyll, while decreases in old leaves reflect the 
export of nitrogen and other mobile nutrients to new 
growth.

Arney (1953a, 1953b, 1954) found that a leaf 
emerged every eight to ten days in ‘Royal Sovereign’ 
from June to September in the United Kingdom. Pérez 
de Camacaro et al. (2002) indicated that leaf produc-
tion was linear over 64 days in one cultivar and linear 
over 96 days in two cultivars. A leaf was produced 
every two to five days during the main period of 
growth. Le Mière et al. (1998) demonstrated that 
plants in glasshouses produced 1.1 leaves per week at 
12°C and 1.8 leaves per week at 28°C. Leaf production 

Figure 9. Relationship between net CO2 assimilation (ANet) and temperature (T, oC) in F. vesca in New York, United States. The 
plants were grown at 10°/2°, 20°/10°, 30°/20° or 40°/30°C and photosynthesis measured after five weeks. The temperature in the 
leaf chamber ranged from 10° to 35°C and the photosynthetic photon flux (PPF) was 800 µmol per m2 per s. For 10°/2°C: ANet (µmol 
per m2 per s) = Intercept + 0.582 × T − 0.013 × T2 (P = 0.118, R2 = 0.60). For 20°/10°C: ANet (µmol per m2 per s) = Intercept + 
0.490 × T − 0.012 × T2 (P = 0.004, R2 = 0.95). For 30°/20°C: ANet (µmol per m2 per s) = Intercept + 0.441 × T − 0.001 × T2 (P = 0.022, 
R2 = 0.87). For 40°/30°C: ANet (µmol per m2 per s) = Intercept + 0.342 × T − 0.006 × T2 (P = 0.002, R2 = 0.97). Data are from Chabot 
(1978).
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was nearly linear over 120 days in Wisconsin, with a 
leaf produced every six to thirteen days (Jahn & Dana,  
1970.).

Leaf senescence is the final stage of leaf develop-
ment when the leaves turn from green to yellow (Zhao 
et al., 2022). These changes are accompanied by a 
decrease in the contents of chlorophyll and proteins 
and a decrease in photosynthesis (Song et al., 2014). 
The life-span of leaves varies across species and grow-
ing conditions (Chabot & Hicks, 1982; Edwards et al.,  
2014; Reich et al., 1991a). In a study conducted across 
189 deciduous and 506 evergreen species, the leaves 
lived for 1.48 to 258 months (Van Ommen Kloeke et 
al., 2012). Arney (1947) collected data on leaf ageing 
and senescence in strawberry in Southampton in the 
United Kingdom. The leaves began to turn yellow after 
87.0 ± 20.1 days, the median time was 84.5 days, and 
the range was from 55.0 to 126.0 days. Jurik and 
Chabot (1986) demonstrated that the leaves of the 
wild strawberry, F. virginiana lived mostly for 50 to 
150 days, depending on the season and habitat in the 
forest of New York.

The relationship between photosynthesis and 
leaf development was explored in strawberry 
(Table S6). The authors measured net CO2 assim-
ilation per leaf area under controlled-environment 
conditions. The youngest leaves were 1 to 3 days- 
old, while the oldest leaves were 60 to 65 days-old. 
The effect of leaf age on gas exchange was mixed. 
In some of the studies, photosynthesis was accep-
table over a broad range of development. In the 
others, photosynthesis was optimal in the middle 
of leaf development, with lower photosynthesis in 
young or old leaves.

Effect of fruit growth on photosynthesis

Photosynthesis in plants is affected by the demand for 
carbohydrates (Kerkhoff et al., 1988; Neales & Incoll,  
1968). The effect of fruit growth on gas exchange is 
mixed. In some studies, leaves on trees or branches with-
out fruit had lower CO2 assimilation than those with fruit 
(Fujii & Kennedy, 1985). In the second scenario, differ-
ences between the two treatments were limited to a part 
of the season (DeJong, 1986; Nii, 1993; Roper et al., 1988; 
Vemmos, 1994; Wang et al., 2010). Finally, in the third, 
there were no differences in gas exchange between fruit-
ing and non-fruiting plots (Rom & Ferree, 1986) or gas 
exchange was greater in non-fruiting branches (Heerema 
et al., 2014).

Palmer et al. (1997) explored the effect of fruit 
thinning on the physiology of apple trees in New 
Zealand. There was a strong relationship between 
photosynthesis and the density of fruit production. 
Net CO2 assimilation increased with crop load up 
to a maximum of 12 fruit per m2 of leaf area (R2  

= 0.85).
The relationship between photosynthesis and fruit 

development was examined in strawberry (Table S7). 
The authors measured net CO2 assimilation in various 
tissues, including the young or old leaves or the whole 
canopy. A two-sided t-test was used to determine if CO2 
assimilation in non-fruiting plants was lower than that in 
fruiting plants (P < 0.05). The null hypothesis that the 
mean ratio equals one was then rejected. The mean 
relative CO2 assimilation in the non-fruiting plants com-
pared with fruiting plants was 0.90 ± 0.15, the median 
was 0.85, and the range was from 0.71 to 1.27 (N = 12, P  
= 0.042). The null hypothesis was rejected, indicating that 

Figure 10. Relationship between net CO2 assimilation (ANet) and the concentration of nitrogen per leaf area (Na) in two cultivars of 
F. chiloensis in Arizona, United States. Standard conditions were a photosynthetic photon flux (PPF) of 1,400 to 1,600 µmol per m2 

per s and a temperature of 20°C. For ‘RCP37’: ANet (µmol per m2 per s) = Intercept + 0.331 × Na (P < 0.001, R2 = 0.91). For ‘CA11’: 
ANet (µmol per m2 per s) = Intercept + 0.261 × Na (P < 0.001, R2 = 0.83). Data are from Moon et al. (1990).

14 C. M. MENZEL



plants without fruit had slightly lower CO2 assimilation 
than those with fruit.

The response across the experiments was variable, 
reflecting differences in the tissues used to measure 
photosynthesis and differences in the times when the 
data were collected. Lower CO2 assimilation in fruit-
ing plants than in non-fruiting plants is associated 
with lower concentrations of nitrogen in the leaves 
(Heerema et al., 2014).

Photosynthesis by the canopy

Estimates of canopy photosynthesis based on models 
of individual leaves are problematic (Bagley et al.,  
2015; Gara et al., 2019; Kim & Verma, 1991; 
Terashima & Hikosaka, 1995; Zhang et al., 2023a). 
This is because net CO2 assimilation in the canopy 
does not reflect CO2 assimilation in the leaves at the 
top of the canopy (Cannell & Thornley, 1998). There 
are large spatial variations in light interception and 
leaf nitrogen throughout the canopy (Lauarn et al.,  
2015). Leaves in the lower canopy also adapt to shade.

There is limited information on canopy photosynth-
esis in strawberry. Choma et al. (1982) studied the phy-
siology of ‘Hecker’ in Virginia. The leaf area of the plants 
ranged from 0.045 to 0.057 m2 over six weeks, and net 
CO2 assimilation ranged from 11.0 to 16.5 µmol per m2 

per s. Average leaf area was 0.050 ± 0.002 m2 and average 
net CO2 assimilation was 14.2 ± 0.8 µmol per m2 per s. 
Schaffer et al. (1986) conducted a similar experiment in 
Florida using ‘Tribute’. Leaf area (0.012 to 0.082 m2 per 
plant) and net CO2 assimilation per plant increased over 
six weeks. In contrast, net CO2 assimilation per leaf area 
decreased from 12.0 to 6.7 µmol per m2 per s. There was a 
strong negative linear relationship between CO2 assim-
ilation per leaf area and leaf area per plant (P = 0.032, R2  

= 0.65). The results of this experiment suggest that the 
leaves at the bottom of the canopy became shaded as the 
plants grew.

Yoshida and Morimoto (1997) modelled photo-
synthesis in ‘Nyoho’ in Japan. Net CO2 assimilation 
was related to the area of the ground covered by the 
canopy (m2) and was 20% higher in December than 
from February to March. This was because the plants 
had a higher leaf area index (LAI) in December. Net 

CO2 assimilation was saturated at a PPF of 1,150 µmol 
per m2 per s with a CO2 of 400 to 500 ppm. Net CO2 
assimilation was saturated with a CO2 of 1,000 ppm 
with a PPF of 460 µmol per m2 per s. The responses to 
light and CO2 were similar to those for single leaves 
(Figures 5 and 8).

Le et al. (2021) compared photosynthesis in single 
leaves and the canopy of ‘Sachinoka’ in Japan. Mean net 
CO2 assimilation was similar in the two groups under 
high light and CO2 (Table 3). In contrast, net CO2 assim-
ilation was higher in the leaves than in the canopy under 
low light and CO2. The lower leaves were too shaded 
under low light to contribute to carbon fixation. The 
leaves in the middle and lower canopy were older than 
those measured at the top of the canopy. Photosynthesis 
in the canopy was saturated at a PPF of 1,379 µmol per m2 

per s with a CO2 of 400 ppm.

Effect of climate change on photosynthesis, 
leaf area expansion and yield

The main scenarios for climate change include an 
increase in the concentration of CO2 in the atmosphere 
and an increase in average temperatures. The effect of 
climate change on yield depends on the effect of CO2 and 
temperature on photosynthesis and the effect of tempera-
ture on leaf area expansion and fruit growth.

Net CO2 assimilation increases with increasing CO2 
up to about 1,000 ppm and is satisfactory over a broad 
range of temperatures from 20° to 30°C (Figures 8 and 
9). The leaves adapt to high CO2 and this dampens the 
response. There is a shift in the optimum temperatures 
for photosynthesis, with the optima higher when 
plants are grown under warm weather and elevated 
CO2. It is not clear if models based on leaves predict 
photosynthesis by the canopy. Research in Japan sug-
gests that there is close agreement between CO2 assim-
ilation in leaves and the canopy only under high light 
and high CO2 (Le et al., 2021). A recent analysis 
indicated that yield decreases by 60 g per plant for 
each 1°C increase in temperature (Menzel, 2023). 
However, this study did not take into account changes 
in carbon production under climate change.

Net CO2 assimilation is affected by changes in 
CO2 and temperature. Gas exchange is higher 

Table 3. Gas exchange in single leaves and the whole canopy of ‘Sachinoka’ strawberry in Japan. The plants were grown in a 
greenhouse under artificial light with different concentrations of CO2. The temperature was 23°C. Means in a column followed by a 
common letter are not significantly different by the Fisher’s least significant test at 5% level of significance. PPF = photosynthetic 
photon flux. Data are from Le et al. (2021).

Tissue

PPF of 200 µmol/m2/s and  
CO2 of 400 ppm

PPF of 1,000 µmol/m2/s and  
CO2 of 1,000 ppm

Net CO2 assimilation 
(µmol/m2/s)

Stomatal conductance 
(mmol/m2/s)

Transpiration 
(mmol/m2/s)

Net CO2 assimilation 
(µmol/m2/s)

Stomatal conductance 
(mmol/m2/s)

Transpiration 
(mmol/m2/s)

Single leaf 7.5 b 215 a 2.4 b 26.1 a 314 a 3.4 b

Whole plant 5.0 a 347 b 1.0 a 26.4 a 351 a 1.7 a
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under elevated CO2 than under ambient CO2 and 
the optimum temperatures are higher (Figure 11). 
Chen et al. (2022c) demonstrated that maximum 
net CO2 assimilation was higher under CO2 of 600 
ppm than under 400 ppm (8.0 versus 6.2 µmol per 
m2 per s; PPF = 1,500 µmol per m2 per s). The 
optimum temperature range for gas exchange was 
29° to 32°C at ambient CO2. In contrast, gas 
exchange was increasing at the highest temperature 
at elevated CO2.

There are mixed effects of temperature on leaf 
growth in strawberry, although most researchers indi-
cate that leaf growth is lower above 30°C than below 
30°C. The results from some studies indicate that leaf 
growth was best from 18° to 24°C (Wang & Camp,  
2000), 22° to 30°C (Kadir et al., 2006) or 20° to 24°C 
(Hopf et al., 2022). In contrast, other experiments, leaf 
growth decreased as the temperature increased from 

12° to 28°C (Le Mière et al., 1998) or from 27° to 36°C 
(Xu et al., 2021). Le Mière et al. (1998) also showed 
that there a was strong negative linear relationship 
between yield and temperature (Figure 12). Low yields 
at high temperatures were associated with poor leaf 
area expansion and fewer berries.

High temperatures increase CO2 assimilation per 
leaf area when combined with elevated CO2. The opti-
mum temperature for photosynthesis is higher than 
that for leaf area expansion and fruit production. High 
temperatures also have an indirect effect on photo-
synthesis by reducing the area of the leaves available 
for carbon capture.

Sun et al. (2012) examined the effect of CO2 and 
temperature on yield in growth chambers in China. 
Control plants under ambient CO2 of 360 ppm and 
temperatures of 20°/15°C had low and similar yields as 
those under ambient CO2 and elevated temperatures of 

Figure 11. Relationship between net CO2 assimilation (ANet) and temperature (T, oC) under low or high CO2 in strawberry. For Oda 
(1997): ANet (µmol per m2 per s) at 360 ppm CO2 = Intercept + 1.24 × T − 0.030 × T2 (P = 0.027, R2 = 0.94) and ANet (µmol per m2 per 
s) at 1,350 ppm CO2 = Intercept + 2.18 × T − 0.038 × T2 (P = 0.034, R2 = 0.93). For Wada et al. (2010): ANet (µmol per m2 per s) at 400 
ppm CO2 = Intercept + 1.79 × T − 0.038 × T2 (P = 0.007, R2 = 0.99) and ANet (µmol per m2 per s) at 1,000 ppm CO2 = Intercept + 
3.26 × T − 0.059 × T2 (P = 0.004, R2 = 0.99). For Chen et al. (2022c): ANet (µmol per m2 per s) at 400 ppm CO2 = Intercept + 1.79 × T  
− 0.038 × T2 (P = 0.300, R2 = 0.24) and ANet (µmol per m2 per s) at 600 ppm CO2 = Intercept + 0.376 × T (P = 0.031, R2 = 0.65). The 
photosynthetic photon flux (PPF) in the three studies was 828, 2,000 and 1,500 µmol per m2 per s.
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25°/20°C or under elevated CO2 of 720 ppm and elevated 
temperatures (10.5 to 12.0 g dry weight per plant; P >  
0.05). The plants at elevated CO2 and ambient tempera-
tures had the best yields (25 g dry weight per plant; P <  
0.05). Balasooriya et al. (2018) conducted similar work in 
Australia. Net CO2 assimilation was higher at a CO2 of 
650 or 900 ppm than at 400 ppm. In contrast, tempera-
ture had only a small effect on CO2 assimilation. Yields 
were higher at intermediate CO2 and lower at 30°C than 
at 25°C. The highest yields were obtained at 25°C with a 
CO2 of 400 or 650 ppm. These results suggest that the best 
yields occur with moderate to high CO2 and low to 
moderate temperatures.

Redondo-Gómez et al. (2022) studied the effect of CO2 
and temperature on the performance of ‘Fortuna’ in 
growth chambers in Spain. The plants were grown at 
25°/14°C and 400 ppm CO2 or at 29°/18°C and 700 
ppm CO2. Plant dry weight (3.95 g versus 4.05 g) and 
net CO2 assimilation (11.8 µmol per m2 per s versus 10.0  
µmol per m2 per s) were similar in the two groups. The 
benefits of high CO2 were negated by the impacts of high 
temperature on growth and gas exchange. Zhang et al. 
(2021) assessed the effect of elevated CO2 and tempera-
tures on gas exchange in plants across 337 studies. They 
found that elevated CO2 increased net CO2 assimilation 
by 28.6%, while elevated temperatures decreased net CO2 
assimilation by 23.2%.

There is controversy about the methods used to 
assess whether higher CO2 under climate change has 
contributed to higher photosynthesis around the globe 
(Sang et al., 2021, Wang et al., 2021; Keenan et al.,  
2021, 2022; Walker et al., 2021; Wang et al., 2022b).

Some studies suggest that photosynthesis has 
increased in the past 20 years (Chen et al., 2022b; He et 
al., 2022b; He et al., 2023; Keenan & Williams, 2018), 

while others suggest that the effect of higher CO2 has 
declined (Keenan et al., 2016, 2021, 2022; Wang et al.,  
2021; Zhu et al., 2019). Chen et al. (2022a) investigated 
photosynthesis in plant communities under climate 
change. Temperatures were too high for best gas 
exchange in most of the tropics and low latitudes, 
whereas exchange was affected by water deficits in north-
ern high latitudes greater than 45°N. In some areas, 
higher photosynthesis under climate change was asso-
ciated with higher mean temperatures and a longer grow-
ing season (Finzi et al., 2020). Photosynthesis is 
dependent on canopy cover in some communities com-
plicating the relationship between carbon fixation and 
rising CO2 (Meng et al., 2023).

Rakhmankulova et al. (2023) reported on the effects of 
short-term elevated temperatures and CO2 (400 or 800 
ppm) on gas exchange in a C3 (Chenopodium quinoa or 
quinoa) and C4 plant (Amaranthus retroflexus or amar-
anth) in Russia. The plants were grown at 25° or 35°C (for 
four days) at low or high CO2 (400 or 800 ppm). Net CO2 
assimilation in quinoa decreased by 28 and 18% under 
elevated temperatures at both normal and elevated CO2 
compared with the control. Net CO2 assimilation in 
amaranth decreased an average of 33% compared with 
the control. Zheng et al. (2022) conducted similar work 
with Glycine max or soybean (C3) and Amaranthus tri-
color (C4) in China. There were four combinations of 
temperature (28° or 35°C) and CO2 (400 or 800 ppm) 
with a PPF of 600 µmol per m2 per s. In Glycine max, high 
temperatures increased gas exchange under both low and 
high CO2 compared with the other regimes. In 
Amaranthus tricolor, gas exchange was similar across 
the four regimes.

The effect of climate change on the yields of crops is 
mixed, although several reports suggest that productivity 

Figure 12. Relationship between yield and temperature (T, oC) in strawberry in the United Kingdom. Yield (g per plant) = Intercept 
− 11.92 × T (P < 0.001, R2 = 0.84). Data are from Le Mière et al. (1998).
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will decline, especially in the second half of the century 
(Gardi et al., 2022; Hasegawa et al., 2022). The benefits of 
higher CO2 are often overridden by higher temperatures 
or prolonged droughts (Ben Mariem et al., 2021; Zhou et 
al., 2021). The response to climate change varies with the 
crop and region, with the results variable across studies 
(eg. Li et al., 2021b for cotton across the globe; and Liu et 
al., 2020b for rice, wheat and maize in China). The degree 
to which productivity declines depends on whether better 
cultivars or growing technologies are adopted (Challinor 
et al., 2014; Hasegawa et al., 2022). Wilcox and Makowski 
(2014) modelled the responses in wheat. More than half 
of the simulations resulted in losses of yield when the 
mean temperature increased by more than 2.3°C or when 
CO2 was lower than 395 ppm. The effect of CO2 greater 
than 640 ppm outweighed the impact of temperatures up 
to + 2°C on yields.

Gutteridge and Gutteridge (2018) analysed the effect 
of climate change on photosynthesis and yield in crops. 
Losses of yield had less to do with photosynthesis and 
more to do with the sensitivity of flowering and fruit 
development to heat stress. They concluded that 
increasing atmospheric CO2 enhances the yields of 
major crops. However, these effects on carbon output 
are more than offset by the rise in temperatures. A 
study in the United States indicated that the yields of 
major species such as soybean and corn will decrease by 
17% for every 1°C increase in temperature (Lobell & 
Asner, 2003). Helman and Bonfil (2022) analysed the 
productivity of wheat in the major producing countries 
over six decades where the concentration of CO2 
increased by 98 ppm. They demonstrated that in two 
of the three top countries (China and the former Soviet 
Union), yields were 5.5% lower than expected, due to 
warming and drought.

The impact of climate change on strawberry produc-
tion will vary across growing areas. In warm locations 
such as California, Florida and Spain, increases in photo-
synthesis under higher CO2 are offset by decreases in 
flowering and fruiting under higher temperatures 
(Environmental Defence Fund, 2023; Maskey et al.,  
2019; Palencia et al., 2009; Pathak et al., 2018). Overall 
yields are lower. In contrast, the impact of climate change 
in cool locations in Europe is mixed. Higher temperatures 
increase growth and the length of the production season, 
but decrease flower initiation (Døving, 2009; Bethere et 
al., 2016; Esitken et al., 2009; Heide & Sønsteby, 2020).

Neri et al. (2012) reviewed strawberry cultivation in 
Europe under climate change. They divided production 
into three zones with different weather conditions. 
Northern Europe had severe winters, often characterised 
by snow cover. Central Europe had occasional severe 
winters and relatively mild autumns and springs. 
Southern Europe had mild winters, where the tempera-
ture was almost never lower than 0°C. The impact of 
climate change on production is more severe in 
Southern Europe than in the other areas.

Challenges and future prospects

Climate change affects crop production around the 
world. Elevated CO2 and temperatures increase photo-
synthesis in strawberry, at least in the short-term. 
However, the optimum temperatures for yield are 
lower than those for CO2 assimilation in the leaves. 
Climate change decreases yields in warm location, but 
may be beneficial in cool locations. The long-term 
solution to climate change is to develop heat-tolerant 
cultivars that grow and fruit under the warmer condi-
tions. Genome-wide association (GWA) and genomic 
prediction (GP) will accelerate the identification of 
adapted populations and individuals under global 
warming. These studies should examine the genes 
associated with acceptable CO2 assimilation in the 
leaves at high temperatures, and acceptable leaf, flower 
and fruit growth under the same conditions. Liu et al. 
(2023a) indicated that traditional breeding is not effi-
cient in developing cultivars adapted to warm weather. 
Genotypes with high photosynthesis will not be more 
productive under climate change, unless the better gas 
exchange is associated with better growth and fruiting.

Conclusions

Photosynthesis in strawberry is sensitive to environmen-
tal conditions and leaf physiology. There is an interaction 
between CO2 and temperature on gas exchange. 
Maximum net CO2 assimilation is 23% higher at a CO2 

of 600 ppm than at 400 ppm. Gas exchange keeps increas-
ing at 32°C at elevated CO2, whereas it is saturated at this 
temperature at low CO2. Leaf area expansion and yield 
decrease when the temperature is above 30°C, indicating 
that the optimum temperatures for these processes are 
lower than those for gas exchange. The impact of climate 
change on production varies across growing areas. In 
warm-locations, elevated CO2 and temperatures increase 
gas exchange in the leaves, but not yield. In some cool 
locations, elevated temperatures increase plant growth 
and the length of the production season. However, the 
higher temperatures in cool areas decrease flower 
initiation.
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