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Abstract. Past sorghum hybrid trials in north-eastern Australia have detected substantial genotype by environment
(G×E) interactions for yield in sampling a variable target population of environments (TPE) that is affected by
spatial and seasonal differences in crop water supply. Three datasets, comprising yields of commercial and final
stage experimental hybrids and covering 9–17 years (Y) and up to 30 locations (L), were analysed to quantify vari-
ance components for trial error, genotypic (σ2

g ), and G×E (σ2
gl, σ2

gy, and σ2
gly) interaction effects.

Whereas trial means varied 2–3-fold across seasons, a greater range was estimated for variance components of
trial error (range of 0.05–0.5), G (0–>0.3), and G×L interaction (0.05–>1.0). There was substantial seasonal varia-
tion in the ratio of σ2

g to (σ2
g +σ2

g l), and in two datasets, 73% of the seasonal σ2
gl was due to poor genetic correlations

among locations. This implies that any given set of hybrids in a random set of locations would be ranked differently
from season to season. Analysis of locations over years detected 90% of the total G×E interaction as G×L×Y, rather
than G×L or G×Y, although this was reduced by accounting for genotype maturity. To achieve repeatabilities of
>80%, trials would need to be conducted over at least 5 years and 20 locations per year.

The variable and unpredictable nature of much of the G×E interaction in the region implies that broad adaptation
to different water regimes is required, unless prior knowledge of the seasonal weather can be used to choose ‘nar-
rowly adapted’ cultivars. With current approaches, a large sample of environments is needed to identify such
hybrids, and testing across locations and years is equally important. Alternative breeding strategies based on classi-
fying environment types are discussed.

Additional keywords: drought, Sorghum bicolor, cultivar, tropical, breeding.
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Introduction
During the seasons ending in 1995–1997, Australia produced
an average of about 1.3 Mt of rain-fed sorghum at an average
yield of just under 2.0 t/ha (FAO 1997). The area planted aver-
aged 650 000 ha, although the majority of the growing region
is spread unevenly in a 200–500-km-wide strip extending for
over 1000 km from central Queensland (approx. 22°S latitude)
to northern New South Wales (32°S). Together with a high
season-to-season variability of rainfall (250–800 mm), the
extent of the region and the variety of soils generate a great
range of patterns of within-season water supply, often causing
periods of severe water deficit at almost any stage of crop
development. The crop is subject to other stresses such as
sorghum midge (Stenodiplosis sorghicolor Coquillett) and
may occasionally suffer poor nutrition given that nutrients are
supplied with the expectation that seasonal rainfall and crop
demand for nutrients will be less than optimal.

The above factors and other biotic stresses comprise a
complex ‘target population of environments’ (TPE)
(Comstock 1977) and complicate breeding programs by cre-
ating a substantial genotype × environment interaction
(G×E) in any series of variety performance tests. It is diffi-
cult to ensure that a multi-environment trial (MET) to test
new and current hybrids across a small number of locations
and years will adequately sample the existing production
TPE. Poor economies of scale compared with, for example,
the USA exacerbate the problem. Australia’s total sorghum
production is only about 8% of that of the USA, yet it is dis-
tributed over a similar geographical area. However, the
smaller market for hybrid seed cannot support the same geo-
graphical density of trials as used in the USA.

Sorghum breeding in Australia is characterised by close
relationships between the public and private sectors (Henzell
and Hare 1996). The Queensland Department of Primary
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Industries (QDPI) program has concentrated mainly on the
production of midge-resistant parental lines that are licensed
to private industry for use directly or as source germplasm.
Seed companies also develop parental lines and conduct
broad-scale testing of current and experimental hybrids in
both research and strip trials, mostly in farmer’s fields.
Beginning in the 1970s, both QDPI and the NSW
Department of Agriculture conducted field variety trials,
although the QDPI public trials were terminated in 1992.

Genotype by environment interactions and their analysis
The existence of large G×E interactions is most troublesome
for selection when it results in a change in the ranking of
genotypes across environments (Haldane 1947; Allard and
Bradshaw 1964). The definition of a superior genotype then
becomes conditional upon the environment in which the
genotypes are tested. Selecting specifically adapted hybrids
for each environment (niche breeding) is one response to this
problem and has been employed to select barley in water-
limited environments (Ceccarelli and Grando 1996).
However, this is difficult where the niche environments are
not fixed to locations, and seasons are not predictable. Given
limited resources, breeding programs in Australia generally
aim to produce broadly adapted hybrids, although seed com-
panies typically supply a suite of hybrids differing in matu-
rity and end-use purpose.

Theoretically, broadly adapted hybrids can be selected via
large-scale repeated testing (‘random sampling’) across the
production TPE. However, part of the G×E interaction may
be ‘repeatable’ and able to be either controlled or sampled in
a more stratified manner. This approach is commonly used
when dealing with pests or pathogens. For example, midge-
resistance in Australian sorghum has been greatly increased
by selection of parent lines in managed nurseries exposed to
high levels of midge (Henzell 1992; Henzell and Hare 1996).
Allard and Bradshaw (1964) suggested that if G×E interac-
tions are due to differences in soil types, and therefore asso-
ciated with locations, they should be considered repeatable,
cf. the effects of weather, which they considered were unre-
peatable. Knowledge of the production factors (e.g. water,
midge, soil fertility) that are responsible for repeatable G×E
interactions can lead to the definition of target environments
and/or management of specific selection nurseries which
enable selection for target environments, e.g. irrigated and
rain-fed treatments to select for drought tolerance in maize
(Fischer et al. 1989; Bolaños and Edmeades 1993a, 1993b;
Chapman et al. 1996) and wheat (Cooper et al. 1995). To
sample the TPE with as few trials as possible, our objective
should be to ensure that the frequencies of occurrence of dif-
ferent ‘types’ of environments match those being experi-
enced in the TPE.

The magnitude of variance associated with G×E interac-
tions can be estimated and the form of the interactions eval-
uated using METs that are routinely conducted as part of

plant-breeding programs. An understanding of the relation-
ships between several of the statistical methods (Cooper and
DeLacy 1994; Cooper et al. 1996; DeLacy et al. 1996) has
enabled the complementary application of these methods and
thus a comprehensive analysis of the magnitude and form of
G×E interactions faced by breeding programs, e.g. for sugar-
cane in Queensland (Mirzawan et al. 1993). For this
approach, 3 methods are used in combination to examine
genotypic variation and G×E in METs: (1) analysis of vari-
ance, (2) selection theory, and (3) pattern analysis. The anal-
ysis of variance is used to estimate relative sizes and,
therefore, importance of variance components for genotypic,
environmental, G×E interaction, and error sources of vari-
ance. Selection theory can determine the impact of the G×E
interactions on selection strategies that are currently used or
are being considered for use by breeding programs. Pattern
analysis methodology is used to investigate the patterns of
performance of genotypes across environments and the rela-
tionships among environments in terms of how they influ-
ence the relative performance of genotypes. All 3 statistical
methodologies used together can identify whether any
repeatable G×E interactions are expressed within the TPE
and assist in the understanding of their causes.

In this paper, we examine 3 datasets (METs) to determine
the magnitude of G and G×E interaction variance compo-
nents for yield. Our objective was to determine how the rel-
ative sizes of genotypic and G×E variance components differ
across seasons and locations and to what extent observed
G×E interactions were repeatable. Although methodologies
now exist to analyse such datasets across all years at once
(e.g. Smith et al. 1998), we emphasise here the time
sequence of variety testing as experienced in breeding pro-
grams and its effect on progress. In a further paper, we inves-
tigate one of the METs to determine whether different
locations produce similar patterns of G×E interaction over
time and relate this to the frequency of seasonal patterns of
drought as described by crop simulation models (Chapman
et al. 2000a). Finally, we use the simulation model approach
to examine temporal trends in the simulated TPE and extend
the spatial application to generate a TPE for the entire
sorghum-growing region (Chapman et al. 2000b).

Materials and methods
Datasets and site characteristics
Three datasets were used for the analysis of G×E interactions for yield.
All comprised ‘Stage 4’ (advanced) trials with the entries being current
industry hybrids or experimental hybrids that were being considered for
release. Two sets of trials were from active breeding programs: the
QDPI breeding program and Pacific Seeds breeding program (Table 1).
NSW Agriculture provided a further small set of variety testing trials.
The data sets differed in dimension, with the QDPI METs testing a
larger number of hybrids but in a smaller sample of locations relative to
the Pacific dataset, which also included sites in northern NSW. The
NSW dataset had small numbers of hybrids and was confined to NSW.
Most of the locations in all datasets were on-farm and were planted
between September and March, although up to 2 or 3 sites per year were
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on research stations managed by QDPI or Pacific. On average, greater
experimental replication was present in the QDPI and NSW METs,
whereas 69% of Pacific dataset trials were unreplicated strips. All repli-
cated trials were randomised complete block designs. An additional
characteristic of the QDPI data was that up to 3 check hybrids were
grown in every trial: Pride (early maturing, average anthesis at 61 days
after sowing), Texas RS610 (medium maturing, 63 days and ‘drought
susceptible’), and E57 (late maturing, 68 days and ‘drought tolerant’).
Throughout this paper, single years in tables or figures (e.g. 87 or 1987)
refer to the summer season of that year when the crop would normally
be harvested, i.e. 1986–87.

Pacific Seeds defines a location as one of 32 ‘segments’ (aggregated
geographical areas), sometimes described by the nearest town. The
QDPI and NSW datasets identify locations within a season uniquely by
the nearest town and are therefore ‘finer in resolution’ in the description
of a location. Until 1979 in the QDPI dataset, there were often several
trials (divided on the basis of maturity) planted on the same date at a
single location. This explains the disparity between the total number of
trials and the number of unique combinations of location and year in
QDPI datasets (Table 1). For the Pacific dataset, the disparity is due to
multiple farm trials being assigned the same ‘location’ name within a
season. As for most datasets of this type, the location is a ‘loose’ spatial
reference, which in different seasons may actually be different farms
and/or soil types subject to different management regimes.

Initially, the QDPI dataset included 35 different locations. Trials that
were known to have had substantial irrigation, or to have suffered
notable pest (especially midge) damage, were removed prior to analy-
sis. For the variance component analysis, data were retained only from
the 18 locations that remained after the data had been subjected to
sequential pattern analysis (Chapman et al. 2000a).

Data processing and estimation of trial error variance
Hybrids that were tested in fewer than 2 years were dropped from the
analysis. The data used were hybrid mean yields (at 15% grain mois-
ture) for each trial as plot data were not available. The total number of
means used was 5568, 5082, and 744 for the QDPI, Pacific, and NSW
datasets, respectively.

Trial residual variances on a plot basis (s2
ε ) were available as error

mean squares or were computed from a coefficient of variation (CV) or
standard error (s.e.) of a mean:

s2
ε = (CV/100 × µ)2 = s.e.2 × r

where µ is the mean of a single trial and r is the number of replicates in
the trial.

To accommodate variation in data quality and trial-to-trial variation
in σ2

ε , and to estimate σ2
ε for trials with no experimental estimates (e.g.

strip trials), we decided to model the structure of the observed error
variances, rather than to use the actual values. Cullis et al. (1996) used
an error variance model for this purpose:

σ2
i = exp(1 + άiδ)

where σ2
i is the expected error variance for trial i, δ is a vector of

unknown parameters, and α í is a transposed vector of explanatory vari-
ables. Variables included in α were the log of the trial mean [log(µ)],
location (l), and year (y). As the Pacific data had no σ2

ε for years 1984
and 1985, the log-linear model was fitted to these data without the year
effect. Using S-Plus (MathSoft Inc., Seattle, WA), the model was fitted
as a generalised linear model with gamma errors, a log link, and weights
of vi/2 where vi are the residual degrees of freedom associated with σ2

i
from each trial.

The weight for trial i (wi) was calculated as:

wi = ri • s– 2/ŝ 2
i

where ri is the number of replicates in trial i, ŝ2
i is the fitted error vari-

ance (actual for NSW dataset) for trial i, and s–2 is the average error vari-
ance across all trials.

Variance component analysis and selection theory
The hybrid means were processed by a residual maximum likelihood
method (Patterson and Thompson 1975) using the ASREML software
(Gilmour et al. 1995, 1998) to estimate the genotypic components of
variance, assuming genotypes (gi) in any season to be a random sample
of the currently available hybrids. Locations (lj) and years (yk) were
assumed to be fixed. The model for individual years was:

xijl = u + gi + lj + (gl)ij + εijl

and for environments over years was:

xijkl = u + gi + lj + yk + (gl)ij + (gy)ik + (gly)ijk + εijkl

where x is the lth observation of genotype i in location j (and year k in
the latter case), u is the expected mean over all genotypes and locations
(and years), and the remaining terms are the relevant main effects and
associated interactions. The data were unbalanced across years (and
often within years) for the inclusion of genotypes and locations.
Although genotypes were presumably improving with time, these trials
all contained the same 3 checks of differing maturity and adaptation.

Within years, hybrid means were processed by ASREML using the
individual-years model and the average error variance for the year, with
each trial weighted by its number of replicates. The datasets were also
processed using the trial weights (wi) described above. These analyses
provided estimates of the variance components for genotypes (σ2

g ) and
for interactions between genotype and locations (σ2

gl) within each year
of testing. The multiple-years model was applied to entire datasets to
estimate interactions between genotype and years (σ2

gy) and between
genotypes, locations, and years (σ2

gl y). Where variance components
were less than zero, that component was assumed to be zero and was
dropped from the model prior to determining the final estimates.

In each dataset, an estimate of phenotypic variance (σ2
p) was calcu-

lated using the variance components from the weighted analyses for
individual years:

σ2
p = σ2

g + σ2
gl/l + σ2

ε /(l.r)

or across years:

σ2
p = σ2

g+ σ2
gl/l + σ2

gy/y + σ2
gly/(l.y) + σ2

ε /(l.y.r)

where l, y, and r were any given number of locations, years, and repli-
cates, respectively. Several sets of values were used for l, y, and r to
compare different testing strategies. For each of these combinations,
repeatability (h2), computed in the form of a heritability (broad sense)
and defined and used as a measure of the chance of detecting the same
differences among hybrids in future experiments (Fehr 1987, p. 97),
was estimated as the ratio:

h2 = σ2
g/σ2

p

Cooper and DeLacy (1994) gave a theoretical development of rela-
tionships between direct selection and indirect selection theory as
applied to the measure of genotype performance in more than one envi-
ronment. This includes an extended discussion of an expression given
by Cockerham (1963) that partitioned the G×E interaction component
of variance (σ2

ge) into components due to heterogeneity of genotypic
variance (V) and lack of genetic correlation among environments (Lc).
The latter is of particular relevance, as this is the part of σ2

ge that can
result in changes in the ranking of genotypes across environments and
therefore complicate selection of superior hybrids. Cooper and DeLacy

G×E interactions in sorghum confound interpretation
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(1994) review expressions from Cockerham (1963) and Dickerson
(1962) to estimate the magnitudes of V and L:

for comparisons among environments j to j´ and where e is the number
of environments. Values of V and Lc were estimated for the QDPI and
NSW datasets for each year and across years. These relationships can
be developed further to estimate pooled genetic correlations and review
the relative importance of h2 when Lc is a significant part of the G×E
interaction (Cooper et al. 1996). At present, this work is being extended
to unbalanced datasets and is still under development (B. R. Cullis,
pers. comm.).

In about 80% of the 144 QDPI trials, estimated anthesis dates were
available for each hybrid. Using ASREML, we repeated the across-
years analysis of yield for the QDPI data and applied anthesis date as a
co-variate in the main effects and interactions (location and year). This
provided estimates of genetic and genotype interaction variance com-
ponents that had been adjusted for maturity effects.

Results
Mean trial yields across all years were similar for each
dataset (Table 1), but the range of yields across and within
years (Fig. 1) was larger in the QDPI and Pacific datasets
than for NSW. Estimated average trial error variance (s–2) was
substantially lower in the QDPI and Pacific datasets than in
the NSW data (Table 1). There was a linear relationship
between log (trial mean yield) and log (s2

ε) in all 3 datasets
(Fig. 2a), although several highly variable trials from NSW
lie between log mean yields of about 1 and 2. The boxplots
in Fig. 2b and c illustrate that the distribution of variability in
σ2

ε among the 156 QDPI trials varied with both location and
year. For all 3 datasets, the log (trial mean), and for the QDPI
and NSW datasets, the location and year, had a significant
(P < 0.01) influence on the magnitude of error variance
(Table 2). Over each of the seasons of the QDPI trials, esti-
mates of σ2

g using the modelled error variances were about
15% greater than if observed error variances were used (data
not presented), although the methods were highly correlated
(r = 0.98).

For all 3 datasets, estimates of σ2
g (Fig. 3a) and σ2

g l (Fig.
3b) varied 3–5-fold across years. The average values of these
components (shown in the figure legends) were greatest in
the Pacific dataset, followed by those in the QDPI and then
NSW datasets. In the QDPI dataset, σ2

g was estimated to be
zero in 1978, and this also occurred in both the Pacific and
NSW datasets in 1985. For the 8 seasons that were in
common across the 3 datasets (1984–91), the values of σ2

g
were significantly correlated between the QDPI and Pacific
datasets (r = 0.83, P < 0.05), but not between the NSW
dataset and other datasets. There was no correlation between
the datasets for the estimates of σ2

gl across years.
The ratio of σ2

g to (σ2
g+ σ2

gl) also varied greatly with season
(Fig. 3c). On all except 3 occasions, σ2

g was less than σ2
g l

(i.e. ratio <0.5). Large σ2
gl particularly dominated the Pacific

dataset in all years (average ratio of 0.08) except 1989.
Given a ‘standard’ test of 10 locations with experiments of

3 replicates in the years for which trials were actually con-
ducted, the repeatability of a MET was generally greater for
the QDPI and NSW datasets than for the Pacific dataset
(Fig. 3d). For the years in which trials overlapped (1984–91),
the average h2 was 0.65, 0.35, and 0.50 for the QDPI, Pacific,
and NSW datasets, respectively. Notably, in all except one
year, the h2 in the QDPI dataset was >0.5, whereas in the
1985 and 1986 seasons, the h2 in the Pacific and NSW
datasets was <0.1.

When analysed over all years in a dataset, σ2
g averaged

about 0.03 in the QDPI and NSW datasets, but was 3 times
larger in the Pacific dataset (Table 3). In the Pacific and NSW
datasets, the variance components σ2

gl and σ2
gy were estimated

to be negligible or negative and these terms were removed
and the analysis re-run. Standard errors of the variance com-
ponent estimates were lowest in the QDPI dataset. The σ2

gly
variance component was 3.5–6 times the size of σ2

g so that
ratios of σ2

g to the sum of σ2
g and interaction components were

<0.3 in all datasets.
When the QDPI data were adjusted for anthesis date, the

σ2
g increased by 40%, whereas both σ2

gl and σ2
gly were

decreased by at least 25% (Table 3). Together with a 10%
decrease in σ2

gl, this increased by 50% the ratio of σ2
g to all

sources of genotypic variance.
Given the same standard test described previously, but

using the variance components derived from the ‘all years’
analysis in Table 3, the h2 estimates for a 2-year testing
program were 0.58, 0.70, and 0.68 for the QDPI (without
anthesis date adjustment), Pacific, and NSW datasets,
respectively. For more extensive testing over 3 years the cor-
responding estimates were 0.66, 0.78, 0.76 or over 5 years
were 0.75, 0.86, 0.84. For up to 3 replicates, 20 locations,
and 5 years, the h2 of the QDPI dataset was 82–92% of the
average of the h2 of the Pacific and NSW datasets.

Fig. 4a and b shows the σ2
gl of the QDPI and NSW datasets,

respectively, partitioned into interaction due to heterogeneity
of variance (V), and that due to lack of genetic correlation
among locations (Lc). Seasons 1984 and 1990 are missing
from the NSW dataset where σ2

gl was negligible. In both
datasets, the G×L interaction due to Lc dominated the V
effects such that, averaged across years, Lc represented 70 and
73% of σ2

gl in the QDPI and NSW datasets,  respectively; i.e.
even within a single season, the ranking of genotypes across
locations can change greatly. Fig. 5a and b illustrates this
crossover effect for 2 consecutive years (1987–88) of QDPI
data for 3 hybrids grown in the same 7 locations. Substantial
seasonal effects on mean location yield are apparent (e.g. BW
cf. GD), as are differences in hybrid rankings at the same
location in different seasons, or at different locations within
the same season. It is, therefore, difficult to identify hybrids
that have broad adaptation to all of the environments.
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Taken across seasons and datasets, the importance of Lc is
clear (Fig. 6). For each unit of increase in σ2

gl, >70% is that
due to an increase in Lc, i.e. environments become less and
less correlated. The V effect increases at less than half of the
rate observed for Lc.

Discussion
Inter-annual variation in σ2

g and σ2
gl is a pervasive character-

istic of dryland hybrid trials of sorghum in north-eastern
Australia. Over time, it becomes apparent that most of the
G×E interaction is associated with σ2

gly, but within an active
selection program, plant breeders must deal with G×L inter-
action effects as they arise, usually over a fixed number of
seasons. Although mean yields may differ 2- or 3-fold across
seasons (Fig. 1), there was greater variation in the estimated
variance components: σ2

ε (Fig. 2), σ2
g (Fig. 3a), and σ2

gl
(Fig. 3b). Fitted trial error variances ranged almost 500-fold
across trials and up to 10-fold among locations within

seasons (Fig. 2). The average trial error variance was greater
in the NSW dataset than the others that were conducted pre-
dominantly in Queensland. Sheppard et al. (1996) found
similar differences between datasets collected by the 2 States
for wheat. Although mean yields were similar across the
sorghum datasets, there had been fewer low-yielding trials in
NSW. As there was a decrease in trial error variance with
mean trial yield (Fig. 2a), a larger sample of low-yielding
trials from NSW may have decreased the estimate of average
trial error variance, but perhaps not down to the level
observed in the other datasets.

In each dataset, estimates for both σ2
g and σ2

gl varied greatly
from season to season. Significant correlation existed
between the estimates of σ2

g from the QDPI and Pacific
datasets, which together had many locations in common.
Components derived from the smaller testing region of the
NSW dataset were not correlated with either of the other 2
datasets, even though the Pacific trials covered both States.
The ratio of σ2

g to (σ2
g + σ2

g l) was almost always <0.5, and
averaged about 0.22 across all years and datasets (Fig. 3c).
This contributed to low repeatabilities (usually <0.6) of a
‘standard’ MET of 10 locations with 3 replicates and indi-
cated that the G×L interaction is complex. Assuming that the
locations chosen each year are random, the large seasonal
variations in the ratio of σ2

g to (σ2
g+ σ2

gl) imply that the sample
of the target population of environments differs year to year.

Sampling the TPE
The TPE encompasses the range of growing conditions

that can occur across all locations and years. To select effi-
ciently for broad adaptation, a plant breeder aims to ade-
quately sample this population with as few locations and
years as possible. If the trials across all datasets are taken to
represent the TPE, then it is evident that the individual years
of testing differ greatly as adequate samples of the environ-
ments. However, in the combined analysis over years, much
of the genotype by environment interaction was partitioned

G×E interactions in sorghum confound interpretation

Table 1. Summary of characteristics of sorghum hybrid trial datasets from QDPI, Pacific Seeds, and NSW Agriculture variety testing
programs

Values in parentheses refer to total number of possible levels of a factor, and the sequences of 3 numbers are the minimum, mean, and maximum
values for factors (trial, year, location, genotype, replicate) or trial attributes [grain yield, coefficient of variation (CV), or error variance (s2

ε)]. For
locations, the minimum, mean, and maximum values refer to values within years, whereas for the other columns, they refer to values within trials.
Trials refer to the number of unique combinations of years and locations, whereas the number in parentheses is the total number of trials grown,
including those instances where more than one trial was grown at a location within a year. In QDPI and Pacific datasets, CV and s2

ε were only
available for 156/168 and 163/568 of the trials, respectively

Dataset Trials Years Locations Genotypes Reps Grain yield CV s2
ε (t/ha)2

(total) (total) (total) (total) (t/ha) (%)

QDPI 144 1974/5–1990/1 1, 6.8, 14 4, 33.1, 71 3, 3.6, 4 0.49, 4.27, 9.79 4.5, 12.4, 49.3 0.005, 0.229, 0.797
(168) (17) (18) (222)

Pacific Seeds 209 1983/4–1994/5 8, 17.4, 22 4, 8.9, 25 1, 1.8, 4 0.29, 3.59, 10.12 3, 11.4, 23.1 0.005, 0.247, 2.411
(568) (12) (28) (91)

NSW 38 1983/4–1991/2 3, 4.2, 7 6, 19.1, 32 3, 3, 3 1.79, 4.34, 7.60 7.4, 14.8, 35.8 0.072 0.400 1.616
(39) (9) (14) (20)

Table 2. Analyses of deviance for fitted log-linear model of error
variance in three sorghum variety yield datasets
All sources of variation are significant at P = 0.01

Dataset Source d.f. Deviance Residual Residual
d.f. deviance

QDPI 155 3228.4
Log 1 1253.4 154 1974.9

(trial mean)
Location 17 270.9 137 1704.0
Year 16 345.7 121 1358.3

Pacific 162 1211.2
Log 1 551.1 161 660.1

(trial mean)
Location 18 147.5 143 512.6

NSW 38 452.9
Log 1 44.1 37 408.8

(trial mean)
Location 13 156.7 24 252.1
Year 8 154.6 16 97.5
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into the 3-way component (G×L×Y). This further suggests
that the choice of locations or years to randomly sample such
a large TPE is of little consequence. Although the 2-way
interactions were significant in the QDPI dataset, their small
size would lead them to both be considered as relatively
‘unrepeatable’ in the terminology of Allard and Bradshaw
(1964). Despite these problems, if the trials could be classi-
fied as being members of different ‘environment types’
(regardless of location and year), then this might capture
repeatability that exists in the interactions of genotypes with
both locations and years. This concept is explored by
Chapman et al. (2000b).

Ideally, given sufficient operating resources and the
expectation of a normal distribution of environments from
the TPE, a breeding program would be advised to test in a
single year over a large number of geographically divergent
locations. This would maximise throughput of germplasm

for the program, but only if one could assume that, over all
the locations, the testing season represented a balanced
sample of the entire TPE. Unfortunately, in the variable
climate of north-eastern Australia, this assumption would
often be wrong as indicated by seasonal differences in esti-
mates of σ2

g and σ2
gl (Fig. 3).

Due to limited resources within a single season and the
risk of failure (e.g. a broad-scale drought), breeding pro-
grams typically employ several years of testing. Assuming 2
years with 3 replicates per trial and the variance components
given in Table 3, at least 5 (Pacific) to 7 (QDPI data) loca-
tions would be required to obtain a repeatability of discrimi-
nation among hybrids of >0.5. Ten (Pacific) to 33 (QDPI)
locations would be needed to surpass a repeatability of 0.7.
Note, though, that each ‘location’ in the Pacific dataset had
an average of 3 farm trials, so that the G×L component
includes the effects of both ‘genotype × location’ and ‘geno-

Fig. 1. Box plot of mean trial yields (t/ha) for each year of (a) QDPI, (b) Pacific Seeds, and (c) NSW
Agriculture sorghum hybrid trial datasets. The centre line of the box plot is the median, whereas the
lower and upper ends of the box are the first (1Q = 25%) and third (3Q = 75%) quartiles, respectively.
The lower and upper ends of the vertical line are the minimum and maximum values, respectively, and
not including outliers (dashes) that are >1.5 quartile ranges (3Q–1Q) below 1Q or above 3Q.
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type × farm within location’. Hence, in practice, more than
30 trials (over the 10 locations) would still be required to
obtain a repeatability of 0.7 in the Pacific dataset, i.e. effec-
tively both breeding programs would need about 30 trials.

There is a further qualifier to conclusions about sampling
based on the analysis over locations and years. Fig. 3d shows
that the repeatability would be particularly dependent upon
which seasons were encountered during testing. For
example, if the 2 seasons of testing were 1983 and 1984,
repeatabilities of >0.8 would have been obtained in each year
with 10 locations and 3 replicates. If the years of testing were
1981 and 1982, the repeatability of the results from season to
season would have been poor. A valid question would be: are
differences in repeatability due to differences in weather
from season to season or due to changes in the set of loca-

tions sampled? Unfortunately, with these datasets we cannot
easily determine whether either set of years is ‘more repre-
sentative’ of the TPE, given the lack of balance in the loca-
tions sampled each year.

Improving selection for broad adaptation in variable
environments given limited resources
The large component of G×L×Y would seem to indicate
that, in choosing hybrids, both farmers and breeders have
to ‘take conditions as they come’. Narrowly adapted
hybrids would only be useful where there is an ability to
predict the upcoming season, perhaps assisted by knowl-
edge of soil conditions at planting. There already are some
relationships between seasonal weather predictors (the El
Niño Southern Oscillation Index) and season type that may

G×E interactions in sorghum confound interpretation

Fig. 2. (a) Trial error variance (s2
ε ) versus trial mean yield (log scaled) for 3 sorghum variety trial

datasets (circles, QDPI; triangles, Pacific Seeds; squares, NSW Agriculture), and box plots (see Fig. 1
for description) of s2

ε for (b) years and (c) locations in the QDPI dataset.
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allow this to become a reality in the future, e.g. Hammer et
al. (1996). The obvious trait to be targeted for this
approach would be maturity type. Removal of this effect in
the variance analysis greatly increased the estimates of the

σ2
g compared with the interaction components (Table 3),

although the σ2
g ly was still a little more than twice σ2

g .
However, until seasonal predictors are in frequent use and
are reliable enough to modify choice of hybrids, broad

Fig. 3. For each year of sorghum variety trials conducted by QDPI, Pacific Seeds, or NSW Agriculture, REML estimates
of (a) genotypic variance components (σ2

g ); (b) genotype by location variance components (σ2
g l); (c) the ratio of σ2

g to (σ2
g +

σ2
g l); and (d) respeatability (h2), as estimated using the given variance components and fitted error variances for a MET of 10

locations with 3 replicates per location.
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adaptation to drought conditions using any given maturity
type will remain important.

Although selection for broad adaptation is difficult, there
are opportunities to be more pro-active in the use of hybrid
testing results. Cooper et al. (1996) have demonstrated theo-
retically how mismatches between the frequencies of envi-

ronment types sampled in the MET and their true frequencies
in the TPE can reduce genetic improvement for the TPE. The
lack of genetic correlation among locations that exists from
season to season could generate a ‘yo-yo’ effect (Rathjen
1994) whereby adaptation might advance and even recede in
successive seasons, depending on how representative the

G×E interactions in sorghum confound interpretation

Table 3. Variance components with standard error in parentheses derived from the genotype (g), locations (l), and years (y)
model applied to sorghum hybrid yield trials conducted by QDPI, Pacific Seeds, or NSW Agriculture

Variance components have been determined after modelling the trial error variance (see Table 2 and text). Also shown for each
dataset is the ratio of genotypic variance to all sources of genotype variation (genotypic + interactions)

Dataset σ2
g σ2

gl σ2
gy σ2

gly σ2
ε Ratio:

σ2
g/(σ2

g+σ2
gl+σ2

gy+σ2
gly)

QDPI 0.033 (0.006) 0.020 (0.004) 0.020 (0.004) 0.180 (0.006) 0.229 0.149
QDPIA 0.047 (0.007) 0.015 (0.003) 0.018 (0.003) 0.139 (0.005) 0.229 0.214
Pacific 0.100 (0.024) —B — 0.782 (0.019) 0.247 0.128
NSW 0.030 (0.013) — 0.008 (0.014) 0.097 (0.019) 0.400 0.283

A Analysis of the QDPI data using anthesis date (residual cf. each trial mean) as a co-variate in main and interaction effects for
yield.

B Estimates were small, and effectively equal to 0.0.

Fig 4. Genotype by location variance components (σ2
g l) for each year divided into that part due to heterogeneity of vari-

ance and that due to lack of correlation among environments for (a) QDPI and (b) NSW Agriculture sorghum variety
trials.
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season is of the TPE. To control these effects, Podlich and
Cooper (1998), using a simulation model of gene action,
showed that selection gain over several generations of testing
can be increased by weighting the results from the MET to
account for the mismatch with the TPE.

Some breeding programs (e.g. Fischer et al. 1989) gen-
erate artificial frequencies of well-watered and droughted

environments using management, but this requires loca-
tions where drought is assured and irrigation is available.
The approach being suggested here is one of taking the data
from variety trials and utilising the information more effi-
ciently. ‘Low stress’ seasons do still occur at a reasonable
frequency in this region (Chapman et al. 2000b) and are
often the years in which farmers make the greatest profit.
Therefore, to sample these seasons, breeders should still
include at least one partially irrigated environment in any
set of variety trials as a minimum. This is often done, but
usually to determine potential yield or ensure against disas-
ter, rather than to adequately sample the TPE. For the same
reason, low-yielding sites due to poor seasonal conditions
should not be discarded.

The successful selection of superior hybrids in this
complex TPE is dependent not only on choosing ‘represen-
tative locations’ (Chapman et al. 2000a), but on recognising
‘representative seasons’ (or combinations thereof) and
weighting information in ways which reflect the TPE, i.e.
data should be considered more reliable in seasons when the
locations generate differences that are representative of the
longer term effects. In a pro-active method of testing, one
might utilise data immediately if a set of locations in a season
is suitably representative; otherwise, extra seasons of testing
would be undertaken or environment weightings applied.
The pro-active process of extra seasons of testing is only cur-
rently used when trials are wiped out by catastrophe, but
should equally be applied in years when the data are largely
unrepresentative of the TPE. The appropriateness and degree
of weightings applied are being further investigated for
sorghum and other crops in continuing research. Some
seasons may be reasonable random samples of the TPE, but
we cannot be sure of this until environments (locations and
years together) can be placed precisely within the TPE. The
objective of on-going work in companion papers using sim-
ulation models of crop growth is to further define the
sorghum TPE, and to explain the longer term differences
observed among locations (Chapman et al. 2000a).
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