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Abstract Many native South African grass spe-
cies have become invasive elsewhere in the world. 
The application of biological control to invasive 
grasses has been approached with trepidation in the 
past, primarily due to concerns of a perceived lack of 
host specific herbivores. This has changed in recent 
times, and grasses are now considered suitable can-
didates. The Tetramesa Walker genus (Hymenoptera: 
Eurytomidae) has been found to contain species that 
are largely host specific to a particular grass species, 
or complex of closely  related congeners. Very little 
taxonomic work exists for Tetramesa in the southern 

hemisphere, and the lack of morphological variabil-
ity between many Tetramesa species has made iden-
tification difficult. This limits the ability to assess 
the genus for potential biological control agents. 
Species delimitation analyses indicated 16 putative 
novel southern African Tetramesa taxa. Ten of these 
were putative Tetramesa associated with Eragrostis 
curvula (Schrad.) Nees and Sporobolus pyramida-
lis Beauv. and S. natalensis Steud., which are alien 
invasive weeds in Australia. Of these ten Tetramesa 
taxa, eight were only found on a single host plant, 
while two taxa were associated with multiple spe-
cies in a single grass genus. The Tetramesa spp. on 
S. pyramidalis and S. africanus were deemed suitably 
host-specific to be used as biological control agents. 
Field host range data for the Tetramesa species on E. 
curvula revealed that the wasp may not be suitably 
host specific for use as a biological control agent. 
However, further host specificity testing on non-target 
native Australian species is required.

Keywords African grasses · DNA barcoding · 
Eurytomidae · Herbivorous wasps · Invasion biology · 
Tetramesa

Introduction

South Africa has been a major donor of invasive 
grasses to other parts of the world due to the percep-
tion that African  C4 grasses were more palatable to 
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livestock and resistant to grazing than native grasses 
(Visser et al. 2016). Many African grasses have sub-
sequently become invasive and highly damaging due 
to the combination of favourable traits, multiple intro-
duction events (D’Antonio and Vitousek 1992; Visser 
et al. 2016), and high propagule pressure (Firn 2009). 
Historically, very few grasses have been targeted 
using biological control, mainly due to concerns of 
potential non-target attacks on economically  valu-
able crops, tolerance to herbivory, and the belief that 
there were few or no specialist herbivores on grasses 
(Sutton et  al. 2021a). These perceptions are, how-
ever, changing with the discovery of host-specific 
taxa (Goolsby et  al. 2020), particularly eurytomid 
wasps in the Tetramesa Walker (Hymenoptera: Eury-
tomidae) genus (Witt and McConnachie 2004; Sutton 
et al. 2021a,b).

At the time of the review of grass biological con-
trol by Sutton et  al. (2021a), 23 invasive grass spe-
cies were currently, or had already been, investigated 
as targets for biological control using herbivorous 
arthropods and fungal pathogens. The global weed 
biological control catalogue listed 14 releases of 
seven biological control agent species onto five inva-
sive grass species between 1997 and 2019 (Winston 
et  al. 2021; Supplementary Table  S1). To date, T. 
romana Walker is the only Tetramesa species that has 
been used as a biological control agent for an alien 
invasive grass, namely Arundo donax L. (giant reed 
or carrizo cane) in the USA (Goolsby and Moran 
2009; Moran and Goolsby 2009). Tetramesa romana 
is considered successful in the USA, particularly in 
the Rio Grande, Texas, where A. donax biomass was 
estimated to be reduced by 32% in 2016, equating 
to 4.4 million $US a year in water savings (Goolsby 
et  al. 2016; Moran et  al. 2017). Following the suc-
cess of this programme, there has been an increasing 
interest in the use of Tetramesa as potential biological 
control agents for other alien invasive grasses (Lot-
falizadeh et al. 2020; Sutton et al. 2021b).

The Tetramesa genus currently comprises over 
200 described species (Al-Barrak 2006; Lotfalizadeh 
et al. 2020; Natural History Museum 2021). They are 
highly host-specific, and typically specialise on only 
one species or genus, or on closely related genera, in 
the Poaceae (Phillips 1936; Claridge 1961). The lar-
vae are endophagous feeders, and are either stem bor-
ers or gallers (Claridge 1961). Almost all of the sam-
pling effort in collecting and describing Tetramesa 

species has taken place in the Northern Hemisphere 
(Al-Barrak 2006) (Supplementary Fig. S1). Only 
four African species have been described, namely 
T. aristidae Risbec from Senegal, T. decaryi Risbec 
and T. tananarivense Risbec from Madagascar, and 
T. macalusoi De Stefani from Somalia (van Noort 
2020). No Tetramesa species have been described 
yet from South Africa (van Noort 2020), despite the 
existence of novel taxa in the region (Witt and McCo-
nnachie 2004; Sutton et al. 2021b).

In addition to T. romana, a number of other 
Tetramesa species are currently being considered as 
potential grass biological control agents. Witt and 
McConnachie (2004) reported the presence of an 
unidentified Tetramesa sp. on Sporobolus africanus 
(Poir.) Robyns and Tournay, S. natalensis (Steud.) 
T. Durand and Schinz, and S. pyramidalis P. Beauv. 
in southern Africa. A second unidentified Tetramesa 
species was found on S. natalensis and S. pyrami-
dalis by Sutton et  al. (2021b) during native range 
surveys, where the wasp was found on only these 
two target weeds and not on any native congeners 
or other close relatives. Sutton et  al. (2021b) found 
that both Tetramesa species significantly decreased 
tiller survival and had a deleterious impact on tiller 
reproduction. There are several other grasses that are 
indigenous to South Africa that are potential targets 
for biological control that may have other Tetramesa 
species associated with them, particularly Eragros-
tis curvula (Schrad.) Nees and Andropogon gayanus 
Kunth (Olckers et al. 2021; Sutton et al. 2021b).

The Centre for Biological Control (CBC) at Rho-
des University,  South Africa, has been conducting 
field surveys for natural enemies on native grasses 
since 2017 across more than 200 sites and 70 grass 
species. The morphological uniformity of the adult 
and larval stages of the Tetramesa makes it extremely 
challenging to identify different species (Dawah 
1987; Ghajarieh et al. 2006). Even genus-level iden-
tifications delineating between the Tetramesa and 
Eurytoma have proven difficult (Henneicke et  al. 
1992), and reliable synapomorphies at even the fam-
ily-level are still lacking (Lotfalizadeh et  al. 2007; 
Gates 2008). The lack of a taxonomic backbone for 
Tetramesa in South Africa and suitable morphologi-
cal tools to distinguish between difference species has 
impeded our ability to assess the host specificity of 
field collected specimens and to establish pure labo-
ratory cultures. The aims of the present work were 
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therefore to use genetic techniques to distinguish 
between the Tetramesa species, and from this make 
inferences about their predicted host ranges. Delineat-
ing species in this morphologically cryptic genus will 
advance efforts to identify potential biological control 
agents for the African grasses that have become inva-
sive elsewhere.

Materials and methods

Sample collection

Wasp samples for DNA analysis were collected from 
six South African provinces and 19 grass host plants 
(Supplementary Fig. S2, Fig. S3, Table S2, Table S3). 
Surveys were performed through either stem dissec-
tions of collected grasses or emergence chambers in 
the laboratory to ensure that the host-plant record 
was a true interaction and not due to chance. Voucher 
specimens were identified to the lowest taxonomic 
level by experts at the South African National Insect 
Collection in Pretoria (ARC-PPRI).

Host grasses were selected for sampling based 
on their invasive status and prioritisation in biologi-
cal control programmes in Australia and the USA. 
The main targets were Andropogon gayanus, Era-
grostis curvula, Megathyrsus maximus (= Panicum 
maximum) (Jacq.) B.K.  Simon and S.W.L.  Jacobs, 
Sporobolus natalensis, and S. pyramidalis, all of 
which are serious alien invasive pests in Australia and 
the USA. Hyparrhenia hirta (L.) Stapf was included 
because this grass is also a problem species in Aus-
tralia and might be considered for a future biological 
control programme (Sutton et al. 2019).

Sample preservation and DNA extraction

All insect specimens were stored in 95% ethanol at 
−  20  °C. Reference specimens were photographed 
under a ZEISS Stemi 508 stereo microscope using 
ZEN imaging software [ZEN Digital Imaging for 
Light Microscopy (RRID:SCR 013672)], and Com-
bineZP software for z-stacking. A full database of 
photographs is housed on the associated GitHub 
project repository (https:// github. com/ clark evans 
teend eren/ PhD_ files/ tree/ main/ Micro scope% 20Ima 
ges). Three legs from each specimen were removed 
under a dissecting microscope so that the remaining 

whole specimens could be used for direct compari-
sons after sequencing. Genomic DNA extractions 
were performed using a PureLink™ Genomic DNA 
Mini Kit (ThermoFisher Scientific, catalogue number 
K182002) according to the manufacturer’s protocols. 
Supplementary File S1 provides details of the poly-
merase chain reaction (PCR) protocols, nucleotide 
sequencing and alignments, phylogenetic analyses, 
and Generalised Mixed Yule Coalescent (GMYC) 
species delimitation analysis.

Results

Both the COI (log-likelihood of the ML consensus 
tree = − 10200.798, BI run 1 = − 10641.18, BI run 
2 = − 10661.60) and 28S (log-likelihood of the ML 
consensus tree = − 3840.301, BI run 1 = − 4097.81, 
BI run 2 = − 4115.02) phylogenies (see clade name 
abbreviations in Supplementary Table S4) showed a 
distinct separation between pronotal spot (PNS) and 
non-pronotal spot (NPNS) eurytomids, but the NPNS 
groups were unresolved (Figs.  1, 2, Supplementary 
Fig. S5, Fig. S6, Fig. S7).  

28S data

Overall inter-and intra-specific p-distances (excluding 
the outgroup) ranged from 3 to 9.7% and 0 to 2.7%, 
respectively. Sequence divergences within the south-
ern African PNS groups ranged from 0.6 to 1.9% 
(Supplementary Table  S5 and Fig. S8). The only 
three well-defined clades within the PNS group were 
the wasps collected from Eragrostis rigidior (PNS.
ERIG.1; clade 1, posterior probability (pp) = 0.71), 
Sporobolus spp. (PNS.SPOR.1; clade 2, pp = 0.84, 
bootstrap support (bt) = 91), and Arundo donax (PNS.
ADON.1, clade 3, pp = 1, bt = 100) (Fig.  1, Sup-
plementary Fig. S5). The nuclear marker showed 
that both the Eurytominae subfamily and the pro-
posed Tetramesa formed well-supported monophyl-
etic groups (Fig.  1, Supplementary Fig. S5, pp = 1). 
These results suggest that a sequence divergence of 
∼ 3 to 3.5% and above, likely does not belong to the 
Tetramesa genus (Supplementary Table S5), and that 
major groups within the PNS clade can be deline-
ated at a threshold of below 0.4%. The only NPNS 
wasps that fell within the proposed Tetramesa group 
were those collected from H. hirta (NPNS.HHIR.1) 

https://github.com/clarkevansteenderen/PhD_files/tree/main/Microscope%20Images
https://github.com/clarkevansteenderen/PhD_files/tree/main/Microscope%20Images
https://github.com/clarkevansteenderen/PhD_files/tree/main/Microscope%20Images
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and A. gayanus (NPNS.AGAYA.1) (Fig.  1, Sup-
plementary Fig. S5). The GMYC species delimi-
tation method estimated 36 entities (95%  CI = 20 
– 43) and 23 clusters (95% CI = 15 – 28) (log-likeli-
hood of the null model = 957.25, ML of the GMYC 
model = 963.6845, p < 0.01, singletons = 13). Guided 
by the GMYC results, we estimated the presence of 
six host-specific taxa, namely PNS.ERIG.1, PNS.
SPOR.1, PNS.ADON.1, NPNS.HHIR.1, NPNS.
AGAYA.1, and NPNS.HHIR.2 (Fig.  1, Supplemen-
tary Fig. S5, Table S6).

COI data

Overall inter-group and intra-group p-distances 
(excluding the outgroup) ranged from 1.6 to 26.3% 
and 0 to 3.2% respectively. Chen et  al. (2004) 
reported interspecific distances ranging from 0.2 to 
25.8%. Most of the clades in the COI phylogeny were 
unresolved, rendering taxonomic inferences based on 
this marker very challenging (Fig. 2, Supplementary 
Fig. S6). Sequence divergences within the southern 
African PNS groups ranged from 2.4 to 13.1% (Sup-
plementary Fig. S9). A sequence divergence of 2.8% 
was found between the PNS.ECUR.1 (PNS wasps on 
E. curvula) clade and its sister group PNS.ETRICH.1 
(PNS wasps on E. trichophora) (Fig. 2, Supplemen-
tary Fig. S6), where the latter forms unique galls on 
E. trichophora that have not been observed on other 
grasses (Supplementary Fig. S10).

There were four separate clades associated with E. 
curvula within the PNS group (PNS.ECUR.1 PNS.
ECUR.4), although only PNS.ECUR.1 (pp = 0.68, 
bt = 95) and PNS.ECUR.4 (pp = 1, bt = 100) were 
strongly supported (Fig.  2, Supplementary Fig. S6). 
The sequence divergence between PNS.ECUR.1 
(Eastern Cape) and PNS.ECUR.2 (Free State) was 
4.5% (Fig.  2, Supplementary Fig. S6, Fig. S9). 
The two E. rigidior clades, PNS.ERIG.1 and PNS.
ERIG.2, were collected in the same geographic 
region, and had a sequence divergence of 7.1% (Sup-
plementary Fig. S9).

The wasps collected on Sporobolus pyramidalis 
and S. africanus formed two distinct sister clades, 
with a sequence divergence of 3.9% (Fig.  2, Sup-
plementary Fig. S6; PNS.SPYR.1; pp = 1, bt = 89 
and PNS.SAFR.1; pp = 0.73, bt = 99). Addition-
ally, the S. pyramidalis wasps showed some evi-
dence of geographic substructuring between the 

KwaZulu-Natal (pp = 0.9, bt = 97) and Eastern Cape 
(pp = 0.88, bt = 95) specimens. The GMYC results 
estimated 71 entities (95% CI = 62–77) and 42 clus-
ters (95%  CI  36–43) (log-likelihood of the null 
model = 1026.2, ML of the GMYC model = 1082.666, 
p < 0.001, singletons = 29). Based on the phyloge-
netic and GMYC analyses, we estimated the pres-
ence of thirteen host-specific taxa, namely PNS.
ETRICH.1, PNS.EPLAN.1, PNS.ECUR.3, PNS.
ERIG.2, PNS.ECUR.4, PNS.SPYR.1, PNS.SAFR.1, 
NPNS.ECUR.2, NPNS.HHIR.1, NPNS.HHIR.2, 
NPNS.AGAYA.1, NPNS.HHIR.3, and PNS.ADON.1 
(Fig. 2, Supplementary Fig. S6, Table S6).

Discussion

In general, very little taxonomic work has focused 
on Afro-tropical insects, particularly micro-Hyme-
noptera such as the Tetramesa (van Noort et al. 2015; 
Berry and van Noort 2016; Hopkins et  al. 2019). 
This investigation has provided new insights into the 
Tetramesa assemblages on native African grasses by 
investigating their diversity, phylogenetic relation-
ships, and host specificity. The work presented here 
has identified multiple Tetramesa taxa that hold 
potential as biological control agents of invasive 
grasses, but some groups may be more suitably host-
specific than others, and care must be taken to use an 
integrative taxonomic approach rather than relying 
solely on one line of evidence for identification.

Biological control outlook

The NPNS clades were found largely to be oligopha-
gous feeders, and had a wider host range compared 
to the PNS groups. Biological control efforts should 
therefore prioritise the latter, and those that form part 
of the NPNS H. hirta and Andropogon gayanus clade, 
as well as PNS T. romana. This is based on the host-
use patterns seen particularly in the COI phylogeny, 
where, with a few minor exceptions, each PNS clade 
was associated with a single host grass. The prospects 
for the biological control of the various target weeds 
are discussed below in the context of the phylogenies 
and inferences of host ranges. A promising species for 
M. maximus was found, but preliminary host rearing 
trials have indicated that this wasp can reproduce on 



703Phylogenetic analyses reveal novel Tetramesa taxa

1 3
Vol.: (0123456789)

Phylogenetic analyses reveal novel Tetramesa taxa

Setaria sphacelata (Schumach.) Stapf and C.E. Hubb 
(unpublished data, Guy Sutton).

Eragrostis

The PNS E. curvula wasps (morphospecies 
‘Tetramesa sp. 4’) belonged to the Tetramesa genus, 
but are likely not good candidates for biological con-
trol due to their broader host range on conspecific 
Eragrostis species. These could include non-target 
Australian and North American natives, that are 
either more closely related to the target weed than 
to the congeners from which they were collected, or 
very closely related to the congeners.

The nine PNS clades associated with Eragrostis 
hosts identified in the present COI phylogeny (span-
ning E. curvula, E. biflora, E. rigidior, E. trichophora, 
and E. plana) were delineated into eight GMYC taxa, 
and may represent unique species. Further taxonomic 
confirmation is, however, required to validate this 
observation. The low sequence divergence between 
the wasps on E. curvula clades PNS.ECUR.1 – PNS.
ECUR.3 and E. trichophora PNS. ETRICH.1 (rang-
ing from p-distances of 2.4 – 3.9%) suggests that 
host-specificity testing of these two wasps is impor-
tant, as each taxon may be able to utilise both host 
plants, which could preclude their use as biologi-
cal control agents. No-choice host-specificity testing 
should be completed, as it seems unlikely, although 
not impossible, that the same species of wasp would 
have such different feeding modes on two different 
host plant species, namely galling E. trichophora and 
mining the stems of E. curvula. Tetramesa sp. 26 on 
E. rigidior (PNS.ERIG.1) may not be an appropriate 
biological control agent, as it was also recorded on E. 
gummiflua in the field and therefore has a relatively 
broad host range. The second Tetramesa sp. 26 clade 
(PNS.ERIG.2), however, may be useful as it was spe-
cific to only E. rigidior. Further sampling focusing on 
these species is required.

Further work should focus on a population genet-
ics analysis of both the PNS E. curvula Tetramesa 
wasps and their hosts from a wider geographic range 
to test whether host plant form may be driving genetic 
divergence. E. curvula has been developed as a pas-
ture grass and has had numerous varieties developed. 
Such genetic breeding has led to distinct forms of the 
grass that vary morphologically and chemically (e.g.? 
phosphate and fibre concentrations) (Leigh 1961). 

In the case of different E. curvula haplotypes in the 
native range, it will be vital to confirm matches to 
haplotypes in the invaded range to ascertain points 
of origin and select the most appropriate Tetramesa 
population(s) as control agents. For example, Harms 
et al. (2021) identified a novel haplotype of the alien 
invasive water weed Hydrilla verticillata (L.f.) Royle, 
and found that the source population was from north-
eastern China. This allowed the researchers to con-
duct targeted herbivore guild collections from this 
region.

The NPNS E. curvula wasp that was assigned 
the morphospecies name ‘Tetramesa sp. 5’ does 
not appear to belong to the Tetramesa genus, based 
on the present nuclear 28S results. It is possible 
that the Tetramesa as it currently stands should be 
divided into two genera: one comprising the predomi-
nantly PNS groups, and the other the NPNS clades. 
This would need to be achieved using an integrative 
approach, where genetic methods are used in con-
junction with expert taxonomists. Both Tetramesa 
sp. 4 and Tetramesa sp. 5 are currently being used in 
host-specificity tests on native Australian Eragrostis 
species, as this will be the ultimate deciding factor in 
their utility as biological control agents. Tetramesa 
sp. 4 has already been found in Australia on field-
collected E. curuvla (Sutton et  al. 2023), making it 
vital to assess its distribution and possible non-target 
effects.

Sporobolus pyramidalis

The PNS Sporobolus wasps revealed two potential 
taxa, namely on S. pyramidalis (PNS.SPYR.1) and 
S. africanus (PNS.SAFR.1). The GMYC analysis 
suggested a split of the PNS.SPYR.1 clade into two 
taxa, but this was an artefact of geographic substruc-
turing (these were from Tetramesa collections in the 
KwaZulu-Natal and Eastern Cape provinces). Both 
field-based and no-choice tests have revealed that 
Tetramesa sp. 1 (PNS.SPYR.1) is not able to utilise S. 
africanus (Sutton et al. 2021b), but the host specific-
ity of the S. africanus wasps should be investigated 
further. The Tetramesa in clade PNS.SAFR.1 is a 
novel group that requires host specificity testing mir-
roring the work conducted on Tetramesa sp. 1 by Sut-
ton et al. (2021b).
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Sutton et  al. (2021b) have already found that 
Tetramesa sp. 1 is suitably host specific and damag-
ing to S. pyramidalis and S. natalensis in the field. 
Additionally, this wasp has been recently imported 
into quarantine in Australia for further host specificity 
testing.

Both the PNS and NPNS Sporobolus wasps (named 
morphospecies ‘Tetramesa sp. 1’ and ‘Tetramesa sp. 
2’) have been shown to be host-specific in the field, 
where sp. 1 was found to be the more damaging of the 
two (Sutton et  al. 2021b). The present phylogenetic 
results suggest that the NPNS Tetramesa sp. 2 wasp 
does not belong to the Tetramesa genus. Tetramesa 
sp. 2 was identified morphologically as belonging to 
the Tetramesa genus, but our genetic analyses suggest 
that they are sufficiently different to be considered a 
new or different genus. This highlights the need to 
update the taxonomy of the group.

The present genetic results suggest that the NPNS 
Tetramesa sp. 2 wasp may be able to feed on E. cur-
vula (two wasp samples out of the nine that were col-
lected on S. pyramidalis), but field host range surveys 
by Sutton et  al. (2021b) have found that the wasp 
was specific to only S. pyramidalis and S. natalensis. 
Laboratory-based host specificity tests have also been 
conducted on over 20 non-target species, including 
eight native South African Sporobolus species, with 
no non-target feeding recorded to date (Guy Sutton, 
unpublished data).

This scenario is an example of why it is imperative 
to have correctly identified each prospective agent in 
a biological control programme, and to have a solid 
understanding of their life histories and interspecific 
interactions in order to achieve the greatest level of 
damage. Since Tetramesa sp. 2 may be able to use E. 
curvula as a marginal host in the field, and that the 
wasp is less damaging than Tetramesa sp. 1, it might 
be prudent to only use Tetramesa sp. 1 for biological 
control.

Hyparrhenia hirta and Andropogon gayanus

The NPNS Tetramesa collected on Hyparrhenia 
hirta and Andropogon gayanus that formed a sis-
ter group to the PNS clade were host-specific and 
formed a monophyletic clade in both gene trees. This 
is not surprising, since H. hirta and A. gayanus are 
phylogenetically closely related, both being in the 
tribe Andropogoneae (Skendzic et  al. 2007), and 

structurally similar (i.e., both are tall-statured grasses) 
(Canavan et al. 2019b).

The COI GMYC species delimitation results sug-
gested that this group may comprise three cryptic spe-
cies, and could be considered as potential biological 
control agents because they are unique and host spe-
cific. Hyparrhenia hirta has naturalised in the USA 
and many parts of Europe, but it is particularly prob-
lematic in Australia, where it has become highly inva-
sive (Chejara et al. 2010). It has also been reported as 
a problematic weed in wheat fields in Pakistan (Hus-
sain et  al. 2004). Similarly, A. gayanus has invaded 
the northern regions of Australia’s tropical savannas 
(Rossiter-Rachor et  al. 2009). Invaded regions such 
as these could benefit from the Tetramesa biological 
control agents identified here, particularly in mitigat-
ing intense bushfires and devalued land. Although 
there were only two specimens in this group, it would 
be worth conducting additional surveys on A. gayanus 
in Zimbabwe, as there is likely to be a large degree 
of species diversity on the grass. Additional field sur-
veys on other close relatives within the Andropogon-
eae are also required to assess their potential as bio-
control agents.

Southern African Tetramesa phylogenetics

The nuclear 28S rRNA marker was effective in 
broadly separating what are likely true Tetramesa 
from other described or undescribed genera, where 
a suggested sequence divergence of ∼ 3 to 3.5% can 
be used for genus-level delimitation. Our interspecific 
p-distances were comparable to Chen et  al. (2004), 
who reported interspecific distances of 1.69–13.5% 
for their eurytomid data set. Of the four 28S 
sequences identified as Tetramesa gleaned from Gen-
Bank, two fell within the proposed Tetramesa clade 
(sourced from Chen et  al. (2004) and Munro et  al. 
(2011)) while the other two (Gillespie et  al. (2005), 
and a sequence from unpublished material (https:// 
www. ncbi. nlm. nih. gov/ nucco re/ DQ080 114), fell in a 
NPNS polytomy that was more similar to some Eury-
toma sequences, and with a divergence of as much as 
7.1% from the T. romana group. This high nuclear 
divergence suggests that these NPNS GenBank speci-
mens were either misidentified, or that the Tetramesa 
genus needs to be split using morphological and 
molecular tools. Similarly, all the COI sequences 
deposited on BOLD that were identified as Tetramesa 

https://www.ncbi.nlm.nih.gov/nuccore/DQ080114
https://www.ncbi.nlm.nih.gov/nuccore/DQ080114


705Phylogenetic analyses reveal novel Tetramesa taxa

1 3
Vol.: (0123456789)

Phylogenetic analyses reveal novel Tetramesa taxa

(collected in Canada and Germany) showed sequence 
divergences of nearly 20% compared to T. romana 
and T. bambusae, which is a clear indication that 
these specimens likely belong to a different genus. 
The lack of genetic data across the entire genus is an 
impediment, and more sequence data is need to revise 
the genus.

In agreement with Chen et al. (2004), the nuclear 
28S rRNA marker is preferred as an initial identi-
fication guide, because it yielded well-supported 
basal nodes and broader-scale taxonomic relation-
ships that will be useful for genus-level taxonomic 
revisions. The COI marker should be used as sec-
ond filter to focus on specific target groups identi-
fied in the nuclear gene tree, as it provided greater 
resolution within the PNS group and revealed some 
potential cryptic species and/or genetically distinct 
populations. Numerous polytomies, however, were 
a confounding factor in inferring how these groups 
are evolutionarily related. Additionally, the COI 
phylogeny did not produce the same monophyletic 
Tetramesa group as was seen using the 28S marker, 
and yielded surprisingly high sequence divergence 
values between the Northern Hemisphere T. romana 
and T. bambusae groups (10.8%). It was unexpected 
that the NPNS H. hirta and A. gayanus and the T. 
romana clade in particular did not cluster with the 
PNS group in the COI phylogeny as it did in the 28S 
phylogeny, and that the COI genetic divergences were 
unusually high for these groups.

It is known that the COI marker could yield unex-
pected results when delimiting species that have 
undergone a rapid, recent radiation, as the lack of 
recombination in the mitochondrial genome can 
lead to an overestimation of sequence divergences 
due to the accumulation and retention of mutations 
(Hupalo et al. 2023). Comparatively, due to recombi-
nation, nuclear markers will thus more readily indi-
cate renewed gene flow between previously  isolated 
populations (e.g., due to climatic cycles and habitat 
changes), which can result in conflicting phylogenies 
(Eyer et  al. 2017; Després 2019). Additionally, it is 
likely that these wasps can reproduce facultatively 
via thelytokous parthenogenesis (i.e., a form of asex-
ual reproduction where diploid daughters are pro-
duced from unfertilised eggs) (Moran and Goolsby 
2009). Compared to the default reproductive mode 
of arrhenotoky in the Hymenoptera (i.e., unfertilised 
eggs develop into haploid males and fertilized eggs 

develop into diploid females), thelytoky can lead to 
increased levels of homozygosity over time (Mateo 
Leach et  al. 2009). It is even possible that infection 
by different Wolbachia strains can cause reproduc-
tive isolation between intraspecific populations (e.g., 
in Nasonia wasps (Bordenstein et  al. 2001)). Future 
phylogenetic studies could investigate a wider range 
of nuclear markers—both ribosomal and protein-
coding—and also the relationship between Wolbachia 
and their Tetramesa hosts in order to determine the 
degree to which these endosymbionts might be affect-
ing genetic diversity, and under what conditions the 
wasps change their mode of reproduction.

This study has presented the first phylogenetic 
analysis of southern African Tetramesa, and has 
revealed multiple taxa that are new to science. Com-
bined with field host range data, we have identified 
at least five Tetramesa taxa that show promise as 
biological control agents (these were namely clades 
PNS.SPYR.1, PNS.SAFR.1, NPNS.HHIR.2, NPNS.
HHIR.3, and NPNS.AGAYA.1 in Fig.  2 and Sup-
plementary Fig. S6). These wasps appear to be host-
specific to S. pyramidalis, S. africanus, H. hirta, and 
A. gayanus. Based on field host range data, Tetramesa 
sp. 4  on E. curvula showed evidence of oligophagy 
across congenerics, and is unlikely to be suitably 
host-specific for release in Australia where there is 
a very large diversity of Eragrostis species. Recom-
mendations for future research include: (1) incorpo-
rating multiple other nuclear regions and ddRADseq 
techniques into phylogenetic analyses to refine diver-
gence thresholds for delimiting true Tetramesa from 
other eurytomid genera, as well as to resolve the high 
incidence of polytomies observed, (2) using phyloge-
netic methods in conjunction with morphological and 
ecological data to revise the taxonomy of the group 
(with the possibility of creating subgenera), and (3) 
conducting further host-specificity tests, impact 
assessments, and potential hybridisation trials with 
the different Tetramesa taxa to determine their effi-
cacy as biological control agents.
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