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A B S T R A C T   

Context: Evaluating the genotype (G) by management practice (M) interaction in agronomic experimentation is 
essential to help grain growers optimise the desired trait of interest (e.g. grain yield). However, the approach is 
complicated by interaction effects with environmental factors that differ across sites and seasons. Popular sta-
tistical methods for modelling the genotype by environment (G × E) interaction are limited as they neither 
provide a biological understanding of how environmental factors impact on the G × E interaction, nor assess how 
different management practices influence the G × E interaction. These limitations may be addressed by incor-
porating environmental covariates (ECs) into the modelling process to better explain why differences exist in the 
optimal genotype by management practice combination across environments. 
Objective: A novel statistical methodology is proposed that incorporates ECs to explore genotype by environment 
by management practice (G × E × M) interactions in agronomic multi-environment trial studies. 
Methods: A predictive linear mixed model is proposed that incorporates site and season specific ECs into a 
commonly used G × E interaction framework. The model is extended to include the effect of continuously 
varying agronomic management practices, whilst allowing for non-linear trait responses and complex variance 
structures. The methodology is applied to a multi-environment dataset exploring yield response to established 
plant density in a series of sorghum agronomy trials. 
Results: Results indicated that the grain yield of sorghum genotypes would be optimised in environments that 
have (i) high total plant available water and photo-thermal quotient around flowering, (ii) low pre-flowering 
radiation and evapotranspiration and (iii) achieved flowering at an optimal time. Under this set of optimal G 
× E conditions, a high established plant density further optimised grain yield. 
Conclusions: The proposed methodology successfully incorporated ECs to better understand G × E × M in-
teractions in agronomic field trials, enabling predictions to be made in an untested or future environment and 
linking the statistical analysis to crop-ecophysiology principles. 
Implications: This work will improve the generalisations agronomists can draw from experimental studies, 
enhancing the biological understanding of the analysis results and allowing for the development of more targeted 
and robust recommendations for agronomic practices.   

1. Introduction 

Optimising the management (M) of genotypes (G) in an agricultural 
production system is essential to maximise grain yields and reduce 
production risks. However, consistently achieving high yield is difficult 

due to uncontrollable environmental factors and the differing effect of 
these factors on each genotype (Rotili et al., 2020). It is well established 
that genotypic performance is strongly influenced by the environment 
(E), resulting in the common practice of assessing genotype performance 
in trials across different seasons and in different geographic locations 
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(Cooper and Hammer, 1996). A series of trials conducted over multiple 
years and trial sites is collectively referred to as a multi-environment 
trial (MET) series, where the aim is to assess the genotype by environ-
ment (G × E) interaction. In the coming decades, it is anticipated that 
environmental drivers contributing to G × E interaction will become 
more extreme due to ongoing climate change (Hatfield and Walthall, 
2015), making it even more crucial to better understand the environ-
mental drivers in these G × E studies. 

Existing statistical methods for modelling G × E interactions are 
typically formulated in a linear mixed model (LMM) framework. For 
datasets in which large numbers of genotypes are tested, a multiplicative 
framework in the form of a factor analytic (FA) structure is used to 
model the G × E interaction effects (Piepho, 1998; Smith et al., 2001; 
Cullis et al., 2010). In terms of the E component, the models are limited 
by the observed covariance between sampled environments. Therefore, 
these models neither seamlessly allow for prediction at a ‘new’ untested 
environment, nor provide an understanding of the environmental 
drivers influencing the G × E interaction pattern (Heslot et al., 2014). 
For the G component, the FA models have performed well for large 
numbers of genotypes (Kelly et al., 2007), but may not be appropriate 
for datasets in which a small number of genotypes are tested. This is 
because estimates of complex interactions through the FA form may be 
unreliable (Macdonald, 2018). 

Predictive models for the G × E interaction can be formed explicitly 
through the inclusion of environmental drivers, also commonly referred 
to as environmental covariates (ECs). We have defined an EC as a 
measured environmental parameter that may have an impact on the 
overall environmental conditions, and subsequently the phenotypic trait 
being investigated for the crop. An EC may be associated with the 
weather (e.g. precipitation, radiation, air temperature), the soil (e.g. soil 
type, soil fertility level) or both (e.g. soil temperature). By assessing the 
interaction of ECs with genotypes, the model can account for G × E 
interaction effects in a biologically meaningful manner. This will be 
denoted as a genotype × environmental covariate (G × EC) interaction 
to differentiate from the definition of a G × E interaction. 

A number of methods have been proposed in the statistical literature 
to incorporate ECs when analysing MET data for large numbers of ge-
notypes. Factorial regression (Denis, 1988; Van Eeuwijk, 1996) uses an 
analysis of variance (ANOVA) framework that partitions the sums of 
squares of the G × E interaction effect into a ‘lack of fit’ G × E sums of 
squares term and a G × EC sums of squares term for each EC. The 
advantage of the ANOVA framework is that it can partition the G × E 
(and G × EC) effects from blocking terms that are defined by the ran-
domisation of genotypes to experimental units. This results in improved 
precision and reduced bias of the estimated G × E interaction effects 
whilst ensuring the correct numerator and denominator degrees of 
freedom are used for hypothesis testing. However, these early regression 
models are limited by their inability to account for extraneous spatial 
field trend and heterogeneity of residual variance across trials that have 
been shown to be important for MET data (Gilmour et al., 1997; Smith 
et al., 2001). Furthermore, these regression models are restricted to 
polynomial regression terms for non-linear trait responses to ECs, and 
thus, may not always provide an adequate fit to the data. 

Extensions of factorial regression to a LMM framework have also 
been proposed (Malosetti et al., 2004; Boer et al., 2007). These exten-
sions provide many of the advantages of the LMM including the flexi-
bility to model variance heterogeneity and spatial field trend. However, 
both Malosetti et al. (2004) and Boer et al. (2007) assumed linear re-
sponses to ECs, and this is a limitation (Boer et al., 2007). It would be a 
useful generalisation if the non-linear trait response to ECs could be 
“expressed with respect to a spline basis” in factorial regression (Van 
Eeuwijk et al., 2019). 

In the work presented by Oliveira et al. (2020), the environmental 
loadings from a FA model (fit to capture the G × E interaction effects in a 
LMM framework) were correlated with ECs measured across environ-
ments. This exploratory approach is an extension of the methodology 

that used additive main effects and multiplicative interaction (AMMI) 
models in an ANOVA framework (Perkins, 1972; Van Eeuwijk and 
Elgersma, 1993; Vargas et al., 1999). However, the approach proposed 
by Oliveira et al. (2020) does not incorporate the ECs into the modelling 
process and, for this reason, does not allow for the prediction of geno-
type performance in an untested environment. 

A reaction norm model for genotype selection via the use of envi-
ronmental kinship matrices to capture quantitative trait loci (QTL) by 
EC (QTL × EC) interactions was proposed by Jarquín et al. (2014). This 
approach has been applied in a number of recent studies in both crop 
and animal science (Malosetti et al., 2016; Tiezzi et al., 2017; Krause 
et al., 2019). One limitation acknowledged by Jarquín et al. (2014) is 
that, when using the reaction norm approach, “the ECs may not fully 
describe differences across environments, perhaps because some rele-
vant ECs were not measured or because of model misspecification (e.g. 
non-linear effects of ECs on the trait of interest)”. To account for this, 
‘lack-of-fit’ terms for the E main effect and the QTL × E interaction effect 
are also included in the Jarquín et al. (2014) model, where E represents 
any environment effects that are not accounted for by the EC effects, 
including non-linear EC effects. A further limitation of the approach 
proposed in Jarquín et al. (2014) is that it does not allow for the 
modelling of complex variance structures including heterogeneous re-
sidual variation, spatial field trend and blocking terms, unless a 
two-stage approach is implemented. 

In studies that seek to obtain G × E predictions, a two-stage approach 
occurs when genotype means for each environment are first obtained 
from an analysis of individual trials (first stage), then the predicted 
means from the individual trial analyses are carried over to a LMM 
framework to model G × E (or G × EC) effects across trials in the second 
stage (Möhring and Piepho, 2009). The main weakness of using a 
two-stage approach to obtain G × E predictions as compared to a 
one-stage analysis is that there is a loss of information when estimating 
the non-genetic variance components in a two-stage model (Gogel et al., 
2018). This limitation can be minimised if a weighted two-stage 
approach is employed such that environments with a larger genetic 
variance are given more weight and vice versa (Piepho et al., 2012). In a 
one-stage approach, individual plot data is included in a mixed model 
formulation, and has been shown to be the most accurate model for 
obtaining predictions of G × E effects (Welham et al., 2010). 

Recently, Tolhurst et al. (2022) proposed a one-stage statistical 
model that extends the FA approach of Smith et al. (2001) to simulta-
neously incorporate observed ECs and ‘latent’ ECs into the MET analysis 
of G × E data. The ‘latent’ ECs in Tolhurst et al. (2022) are analogous to 
the ‘lack-of-fit’ term imposed in Denis (1988) and Jarquín et al. (2014). 
The approach proposed by Tolhurst et al. (2022) is appealing, as it 
simultaneously accounts for experimental design terms, spatial field 
trend and heterogeneity of genetic and residual variance, all whilst 
doing so using a one-stage approach. The incorporation of ECs in Tol-
hurst et al. (2022) allows for the potential to make predictions in a new 
untested environment which is not possible in Smith et al. (2001). One 
limitation is that the methodology in Tolhurst et al. (2022) is only 
applicable when the number of ECs is less than (or equal to) the total 
number of environments. Another limitation is that the methodology in 
Tolhurst et al. (2022) assumes a linear relationship between the trait of 
interest and an EC within each factor of the FA model. 

An effective way to capture the non-linear trait response to an EC is 
through the use of smoothing splines (Craven and Wahba, 1978; Sil-
verman, 1985). Parameter estimates from the cubic smoothing spline 
can be represented in the form of a best linear unbiased predictor (BLUP, 
Speed, 1991). This allows the natural cubic smoothing spline to be 
formulated within a LMM framework (Verbyla et al., 1999). Smoothing 
splines can be extended to capture the potential non-linear trait response 
to combinations of two (or more) continuous variables simultaneously 
using tensor products (Wood, 2006; Lee et al., 2013). Recently, the 
tensor cubic smoothing spline was also formulated within a LMM 
framework whilst simultaneously allowing for complex variance 
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structures at the residual level (Verbyla et al., 2018). 
All of the statistical methods that incorporate ECs that have been 

mentioned thus far have been formulated within a plant improvement 
context. When working in agronomic research, the impact of manage-
ment practice (M) on genotypic performance is also a key objective 
(Rodriguez et al., 2018). Hence, statistical models need to accommodate 
unique combinations of E and M, resulting in a three-way interaction 
effect for genotype by environment by management practice (G × E ×
M). Additionally, in agronomic research, trials are mostly comprised of 
small numbers of genotypes, in an attempt to understand genotypic 
adaptation, as well as the interaction effect between genotype and 
management practice (G × M). Hence, the methodology developed for 
the genetic assessment of large numbers of genotypes may not be 
directly transferable to agronomic research. 

A number of studies have focused on the importance of G × E × M 
interactions (Rotili et al., 2020; Rodriguez et al., 2018; Clarke et al., 
2019; Cooper et al., 2020; Kirkegaard and Hunt, 2010; Hammer et al., 
2020), but these have not been extended to the more general and flexible 
framework that includes ECs. Moreover, the studies focusing on G × E ×
M interactions have all used simulation studies via crop growth models, 
and to our knowledge, there has been no attempt to explain the presence 
of G × E × M interaction from experimental work independent of as-
sumptions about the functional relationships between ECs and the trait 
of interest. Research that incorporates ECs outside of any functional 
relationship assumptions have turned to exploratory data analysis, 
which is susceptible to confounding between G, E, and M effects, con-
founding between spatial field trend with G, E or M effects, imprecision, 
and multi-collinearity of ECs. 

This paper presents a novel statistical model that incorporates ECs to 
better explain the G × E × M interaction effect for MET data in an 
agronomic setting with small numbers of genotypes. The proposed 
method is a one-stage approach formulated in a LMM framework and 
uses subset selection to determine the ECs that are contributing most to 
the G × E × M interaction. The proposed methodology can accommo-
date non-linear responses to ECs and their interaction effects. The focus 
is on a single response variable, with a motivating example used to 
demonstrate the model and highlight how predictions can be obtained 
for a continuous explanatory variable related to management practices. 

2. Materials and Methods 

The dataset used to demonstrate the application of the proposed 
statistical methodology consists of a series of six sorghum agronomy 
trials conducted across five highly contrasting sites (Breeza, Moree, 
Surat, Warra, Emerald) of the northern grain growing region of eastern 
Australia in the 2018–19 growing season (Table 1). 

The factorial combination of (i) time of sowing (TOS), (ii) genotype 
(G) and (iii) target plant density (M) was assessed at each trial. The 
number of levels of the factors varied between trials with two or three 
times of sowing, six to nine genotypes, but always with four target plant 
densities (3, 6, 9 and 12 plants/m2). Details of the varying TOS and 
genotype levels are given in Table 1. The proposed statistical method-
ology was applied using the eight genotypes present at five out of the six 
trials. 

A split-split plot design was employed in four of the trials (Breeza 1, 

Breeza 2, Moree and Emerald) with three replicate blocks, such that TOS 
was randomly allocated to main-plots. In two of these trials (Breeza 2 
and Emerald), target plant density levels were randomly assigned to sub- 
plots nested within main-plots and genotypes were randomly allocated 
to individual plots nested within sub-plots. In the other two trials where 
a split-split plot design was used (Breeza 1 and Moree), genotypes were 
randomly allocated to sub-plots nested within main-plots, and target 
plant densities were randomly assigned to individual plots nested within 
sub-plots. 

For the remaining two trials (Surat and Warra), a split-plot design 
was employed, with three replicate blocks, such that TOS was randomly 
allocated to main-plots and the factorial combination of target plant 
density and genotype was randomly allocated to individual plots within 
main-plots. 

All trials were managed so that nutrient limitations were eliminated 
by the use of fertilisers. Pests and diseases were prevented by using 
chemical controls, and all trials were sown at one metre row spacings 
using precision sowing technologies. 

The response variable of interest is grain yield (t/ha) which was 
determined from hand-harvested areas and adjusted to 0% moisture. 
Establishment counts were also taken to ascertain the established 
number of plants in each plot. Since the target plant density is often 
different from the established plant density observed in the field, the 
established plant density covariate is often favoured in the analysis of 
such experiments, as it is a more accurate indicator of the true contri-
bution of plant density to the trait of interest (e.g. grain yield). More-
over, this allows for the trait of interest to be estimated across an 
observed domain of established plant densities. 

2.1. Definition of environment 

In this study, an ‘environment’ is defined as a set of differing growing 
conditions (e.g. climate, soil characteristics) under which genotypes or 
management practices are tested, and these growing conditions can be 
induced by geographic location or TOS. Factors contributing to the 
environment term include the geographic location (i.e. site) and TOS, as 
crops sown at different times would be exposed to contrasting climate 
and soil conditions. Conversely, a management practice is defined as the 
set of variables that are manipulated under the same ‘growing’ 
conditions. 

In this dataset, the combination of trial and TOS resulted in a total of 
17 environments. Management practice manipulations arise from the 
differing plant density targets. The final established plant density in each 
trial was used as a continuous measured covariate, replacing target plant 
density in the analysis. 

An untested environment is defined as an environment where no 
phenotypic information has been collected, and inferences for the un-
tested environment are made using a combination of phenotypic and EC 
data collected at the ‘tested’ environments. An untested environment 
may be a new location, a future or different season or TOS, or a com-
bination of any or all of these factors. 

2.2. Environmental covariates 

Weather data for each of the six trials was obtained from weather 

Table 1 
Summary of the sowing time (TOS), number of genotypes, experimental design and geographic location for each sorghum agronomy trial in the motivating dataset.  

Trial TOS 1 TOS 2 TOS 3 Number of 
Genotypes 

Experimental 
Design 

Latitude Longitude 

Breeza 1 6/09/2018 17/09/2018 23/10/2018  6 Split-split plot − 31.18  150.42 
Breeza 2 3/09/2018 18/09/2018 16/10/2018  8 Split-split plot − 31.18  150.42 
Moree 8/08/2018 12/09/2018 27/09/2018  8 Split-split plot − 28.96  150.06 
Surat 8/08/2018 28/08/2018 24/01/2019  9 Split-plot − 27.16  149.06 
Warra 27/07/2018 19/10/2018 9/11/2018  9 Split-plot − 26.82  150.83 
Emerald 26/07/2018 16/08/2018   8 Split-split plot − 23.54  148.18  
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stations within each trial and consisted of information on rainfall, air 
temperature, air relative humidity, incoming solar radiation, and soil 
temperature. Calculated environmental covariates included potential 
evapotranspiration (ETo), and the photothermal quotient (PTq, Rodri-
guez et al., 2014). For each genotype, phenology data was measured for 
days to (i) emergence, (ii) flowering, and (iii) maturity. By combining 
phenology and weather data, a total of 18 ECs were derived for each 
environment and 17 of these ECs varied for each genotype in each 
environment. A summary of the ECs is provided in Table 2. 

2.3. Baseline statistical model 

A baseline model to capture the G × E × M interaction effects was 
fitted prior to incorporating ECs into the model. The mathematical 
formulation of the baseline model is provided in the appendix, while a 
symbolic representation of the model and its constituent terms is pro-
vided here. Using the notation of Wilkinson and Rogers (1973), the 
baseline model can be represented as: 

fixed = 1+ Genotype+ Management

+ Genotype:Management,

random = Env+ Genotype:Env+

Genotype:Env:Management

+ Design+ Error,

(1)  

where 1 denotes the overall mean, Env is the environment term, 
Design represents the blocking terms pertaining to the experimental 
designs within each trial, and Error denotes the residual variance. A 
separate residual variance is fitted for each environment to improve the 
goodness of model fit. 

For the motivating dataset, the baseline model in symbolic form is as 
follows: 

fixed = 1+ density+ Genotype+ density: Genotype,

random = Trial+ Env+ Trial: Genotype+ Env: Genotype

+ density: Trial: Genotype

+ density: Env: Genotype

+ spl(density) + spl(density): Genotype

+ at(Trial) : (Rep∕MainPlot∕SubPlot) + Error.

(2)  

In (1), Management could be a continuous variable or a factor. In the 
motivating dataset, the M component is represented by established plant 

density, which is denoted as density and fit as a continuous variable. 
Any terms in Wilkinson and Rogers (1973) notation which begin with a 
lower case letter represents a continuous variable, and any term that 
begins with a capital letter denotes a factor. In the motivating example, 
the baseline model captures the trait response to both environment and 
plant density via a random regression approach (Laird and Ware, 1982). 
The non-linear trait response to plant density was captured via the LMM 
representation of the natural cubic smoothing spline (Verbyla et al., 
1999). The term spl(.) is a random spline component that models the 
smooth non-linear trait response to the term within spl() (Verbyla 
et al., 1999). 

For the motivating example, a Trial term is also required in the 
model to ensure that the correct strata for the experimental design terms 
are recognised (Bailey, 2008). This ensures that the model fits a nested 
structure of sowing times within each trial. Note that, in symbolic form, 
Env = Trial:TOS and thus TOS is implicitly included in the model. 
There is no TOS main effect in the model because sowing times between 
trials can differ significantly. For example, the last TOS for the trial in 
Moree was the 27/09/2018 whilst for Surat it was the 24/01/2019 (see 
Table 1). 

In (2), the Design terms are represented by at(Trial):(Rep/ 
MainPlot/SubPlot) which fits separate variance components arising 
from the split-plot or split-split plot designs for each trial. This, in 
combination with the Env and Trial terms, enables the baseline model 
to respect the experimental design implemented at each trial. 

It is important that the statistical model is translation invariant to 
ensure that the parameter estimates from the model are consistent 
regardless of the scale of the response variable (Wood, 2017). In random 
coefficient regression, a covariance parameter between the linear re-
gression’s intercept and slope variance components is required to ensure 
that the model is translation invariant (De Faveri et al., 2015; Forknall 
et al., 2019). To ensure that the baseline model for the motivating 
example was invariant to a change of spline basis (White et al., 1998), 
the spline coefficients were incorporated into the model such that the 
non-linear trait response to plant density differed with respect to ge-
notype only and not environment. 

2.4. Incorporating environmental covariates into the model 

The baseline model (1) can be expanded to incorporate a single EC 
which, using the notation of Wilkinson and Rogers (1973), can be 

Table 2 
Summary statistics of the 18 environmental covariates incorporated into the multi-environment trial analysis.  

Environmental covariate (EC) Acronym Mean Min Max Observational 
unit for EC 

Pre-flowering plant available water* (mm) PrePAW  202  11  382 G × E 
Post-flowering plant available water* (mm) PostPAW  73  0  245 G × E 
Initial soil water (mm) ISW  177  97  280 Environment 
Pre-flowering maximum temperature (∘C) PreMaxT  30.6  26.0  35.7 G × E 
Post-flowering maximum temperature (∘C) PostMaxT  34.8  27.9  39.7 G × E 
Pre-flowering minimum temperature (∘C) PreMinT  14.5  9.3  22.3 G × E 
Post-flowering minimum temperature (∘C) PostMinT  18.8  11.8  22.4 G × E 
Pre-flowering radiation (MJ/day) PreFlwRad  20.5  17.0  24.0 G × E 
Post-flowering radiation (MJ/day) PostFlwRad  23.0  13.9  28.8 G × E 
Pre-flowering cumulative solar radiation (MJ) PreCumRad  1602  948  2196 G × E 
Post-flowering cumulative solar radiation (MJ) PostCumRad  995  586  1685 G × E 
Pre-flowering evapotranspiration (mm) PreFlwEvap  486  291  625 G × E 
Post-flowering evapotranspiration (mm) PostFlwEvap  336  181  582 G × E 
Mean photo-thermal quotient (PTq)** around flowering (MJ/∘C day) ptq  0.89  0.68  1.00 G × E 
Normalised PTq (NPTq) around flowering (MJ.kPa/∘C day) NPTq  0.52  0.28  0.79 G × E 
Mean soil temperature (7 cm depth) during 7 days after sowing (∘C) AvgSoilTmp  18.5  12.6  29.2 G × E 
Water deficit index (mm)*** Deficit  545  171  811 G × E 
Potential seed set (%)**** SeedSet  74.4  19.8  99.4 G × E  

* Is equal to the rainfall + irrigation 
** For the calculation of NPTq, see Rodriguez et al. (2014) 
*** Water deficit index calculated as in Hammer et al. (2014) 
**** Potential seed set was calculated as in Singh et al. (2015) 
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written symbolically as: 

fixed = 1+ ec+ Genotype+ Management

+ Genotype:Management+ ec

+ ec:Genotype+ ec:Management

+ ec:Genotype:Management,

random = Env+ Genotype:Env

+ Genotype:Env:Management+ spl(ec)

+ spl(ec):Genotype+ spl(ec):Management

+ spl(ec):Genotype:Management

+ Design+ Error.

(3)  

The LMM representation of the natural cubic smoothing spline requires 
the EC term in (3) to be modelled using a linear and non-linear 
component. This also includes the corresponding interaction effects 
with G, M and G × M. Since a separate residual variance is fitted to each 
environment, more weight is given to environments with smaller re-
sidual variation (Patterson and Silvey, 1980; Crossa, 1990) when 
assessing the impact of an EC. Note that an EC could be either a 
continuous variable or a factor. If an EC is a factor, then (3) simplifies as 
all the spline terms for that EC would not need to be fitted in the model. 
For the motivating data, all the ECs are continuous. 

The motivating data with the addition of a single EC can be written in 
Wilkinson and Rogers (1973) notation as: 

fixed = 1+density+ec+Genotype

+density:Genotype+density:ec

+ec:Genotype+density:ec:Genotype,

random = Trial+Env+Trial:Genotype

+Env :Genotype+density :Trial:Genotype

+density :Env:Genotype

+spl(density)+spl(density):Genotype

+spl(ec)+spl(ec):Genotype

+spl(density):ec+spl(density):ec:Genotype

+density:spl(ec)+density:spl(ec):Genotype

+spl(density):spl(ec)

+spl(density):spl(ec):Genotype

+at(Trial) : (Rep∕MainPlot∕SubPlot)+Error.

(4)  

The interaction effect between plant density and an EC is captured 
through tensor cubic smoothing splines (Verbyla et al., 2018), allowing 
for a three-dimensional surface to be fitted for the trait response to plant 
density and an EC simultaneously. 

The model in (3) can be expanded to include multiple ECs in the 
model. The interaction effect between pair-wise combinations of ECs 
was not considered here. Thus, the inclusion of multiple ECs into the 
model is in an additive form. The mathematical form of the EC model is 
provided in the appendix. 

2.5. Forward selection procedure 

A forward selection procedure is used for incorporating ECs into the 
model and identifying the most important ECs contributing to the G 
× E × M interaction at each iteration. Firstly, each EC is incorporated 
individually via the full model (3). Then, for each EC, a k-fold cross 
validation scheme is implemented. For the motivating dataset, a leave- 
one-trial-out cross validation scheme was performed such that one 
trial was removed from the MET dataset, and then the full model for the 
EC being considered in the current iteration was refitted. Predictions for 
each individual plot were obtained for the ‘missing’ trial using infor-
mation from the EC that is currently being fitted in the model. This 
process is repeated another five times (one for each trial) until a full set 
of predictions for a ‘quasi-untested environment’ are obtained for each 
plot at all environments, denoted as y*

i for the ith plot. 
The mean squared error of prediction (MSEP) and the root-MSEP 

(RMSEP) are then calculated as: 

MSEP =
1
n
∑n

i=1

(
ybaseline

i − y*
i

)2

RMSEP =
̅̅̅̅̅̅̅̅̅̅̅̅̅
MSEP

√
,

(5)  

where ybaseline
i is the predicted value for the ith plot obtained from the 

baseline model. The calculation of RMSEP via cross validation is an 
effective way to assess predictive accuracy that simultaneously takes 
precision and bias into account (Hastie et al., 2009). It is better to use 
ybaseline

i instead of yi which is more commonplace in cross-validation 
schemes (see for example Equation (4.1) in Montesinos López et al., 
2022) since ybaseline

i has been adjusted for spatial field trend within each 
trial, providing a more accurate baseline to compare with. This process 
is repeated for each EC and the EC that minimises the RMSEP is iden-
tified as being the most important EC from the forward selection 
procedure. 

2.6. Backward selection procedure 

Once an important EC is identified via the forward selection pro-
cedure, backwards selection is performed on the full model in (B.5) to 
remove any non-significant EC terms (main effect and corresponding 
interaction effects) to achieve a parsimonious model. For the motivating 
data, the backwards selection procedure starts with the non-linear three- 
way interaction effects (between an EC, established plant density and 
genotype) and then works backwards to test the non-linear main effects 
following the principle of marginality (Nelder, 1965). For the random 
spline terms, the Akaike information criterion (AIC, Akaike, 1973) is 
derived using the full log-likelihood at the REML parameter estimates 
(Verbyla, 2019) to determine which splines terms should be retained in 
the final model. For fixed effect terms, Wald tests with a conditional 
F-statistic (Kenward and Roger, 1997) were used for significance testing, 
allowing for adjustments in the denominator degrees of freedom 
depending on the observational unit that each EC was measured at 
(Table 2). Following the principle of marginality, only linear terms 
without a corresponding spline term can be tested and thus removed 
from the final model. 

Once a parsimonious model is identified for a single EC, the RMSEP is 
recalculated via k-fold cross validation to ensure that the predictive 
performance of the single EC in an untested environment is better than 
the baseline model (or the current EC model being considered, see  
Fig. 1). If the RMSEP is lower, the ‘current model’ is updated to incor-
porate a single EC. The subset selection procedure is then repeated until 
a subset of important ECs are identified. The stopping criterion for 
incorporating ECs is when the RMSEP is no longer reduced by the in-
clusion of additional ECs. A flow chart summarising the subset selection 
procedure is provided in Fig. 1. The final model is an extension of the 
baseline model that consists of each of the key ECs identified such that 
all of the terms corresponding to each of the key ECs that are non- 
significant are omitted from the final model. 

2.7. Software and implementation 

All model parameters were estimated using residual maximum 
likelihood (REML, Patterson and Thompson, 1971) via the ASReml-R 
package (Butler et al., 2017) in the R software environment (R Core 
Team, 2022). Predictions for the trait response to an EC are empirical 
best linear unbiased estimators (eBLUEs) when the trait response to an 
EC is linear and empirical best linear unbiased predictors (eBLUPs) when 
there is a significant non-linear trait response to an EC. 

For the motivating example, all spline terms were set to have six knot 
points to ensure that the subset selection procedure could be completed 
within a reasonable time frame (<one hour to identify an important EC 
via the subset selection procedure for the motivating data), whilst 
having enough knot points to accurately capture potential non-linear 
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trends. Once the final model was implemented, the number of knot 
points was updated to be the default value in ASReml-R, which is the 
minimum of 50 and the number of unique values for the EC term. All ECs 
in the motivating data were zero-centred prior to commencing the 
subset selection procedure. The R-script to implement the (i) baseline 
and (ii) EC models using the ASReml-R syntax for the motivating 
dataset are provided in a GitHub repository accessible using the 
following link: https://github.com/michaelhm-daf/ModellingGxE 
xMwithECs. 

3. Results 

3.1. Baseline model 

In the baseline model for the motivating data, the spline (i.e. non- 
linear) variance components for (i) established plant density and (ii) 
the non-linear interaction effect between established plant density and 
genotype were positive. There was also a positive variance component 
for the linear three-way interaction between established plant density, 
genotype and environment, providing evidence of a G × E × M inter-
action effect. 

The variance components for the Trial terms were always larger 
than the equivalent variance components for Env. This suggests that 
there was more environmental variation due to environment differences 
across trials as opposed to differences in sowing times within a trial. 

An additional step was taken to include residual variance heteroge-
neity for sowing times within trials, as visual diagnostics indicated that 
some sowing times had more residual variation than others. In most 
cases where residual variance heterogeneity across sowing times within 
a trial occurred, the earliest sowing time had more residual variation, 
which is hypothesised to be due to earlier sowing times having more 
variation in emergence date, resulting in less uniformity in response to 
environmental stressors compared to later, more conventional sowing 
times. 

3.2. Environmental covariate model 

Post-flowering plant available water was the first EC identified when 
implementing the forward selection procedure (Table 3). After post- 
flowering plant available water was incorporated into the model, the 
AIC (Verbyla, 2019) was calculated for numerous random effect models 
to determine the significance of the spline terms for the (i) 
post-flowering plant available water main effect, (ii) interaction effect 
with established plant density, (iii) interaction with genotype, and (iv) 
three-way interaction with established plant density and genotype, by 
working backwards. This resulted in all spline terms being 
non-significant except for the terms spl(density):PostPAW, spl 
(PostPAW):Genotype and density:spl(PostPAW) which were 
retained in the next iteration of the subset selection procedure (Table 4). 

The EC fixed effects were then assessed via Wald tests (Kenward and 
Roger, 1997). The term for the linear three way interaction effect 
density:PostPAW:Genotype was non-significant and was thus 
dropped from the model (Table 5). The term PostPAW:Genotype was 
statistically significant and hence was retained in the model. The term 
density:PostPAW was not statistically significant, however, the 
spline term for the interaction effect between established plant density 
and post-flowering plant available water was significant (Table 4) and 
thus the corresponding linear term was retained in the model. Note that 
all terms aligned with the interaction effect between established plant 
density and post-flowering plant available water later became 
non-significant once additional ECs were included in the model, indi-
cating that the E × M interaction was better captured by other ECs. 

The subset selection procedure was then repeated to identify any 
additional important ECs. A summary of the EC terms in the final model 
with respect to genotype and plant density is provided in Table 6. The 
final model consisted of seven ECs that were identified as explaining a 
significant proportion of the G × E × M variation (Table 6). After 
identifying seven key ECs, the forward selection procedure was unable 
to detect any ECs that further reduced the RMSEP (Fig. 1). 

For each EC, the interaction effect between genotype, plant density 
and the corresponding EC was explored. Predictions from the final 
model for the (a) genotype × post-flowering plant available water and 

Fig. 1. A flow chart summarising the subset selection procedure implemented 
to multi-environment trial data to identify the most important environmental 
covariates contributing to the genotype × environment × management practice 
interaction. 
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(b) established plant density × post-flowering plant available water 
interaction effects are presented in Figs. 2 and 3 respectively. Pre-
dictions for the (a) G × EC and (b) M × EC interaction effects for the 
remaining ECs included in the final model can be seen in Supplementary 
Figs. A.1-A.6. 

The predictions from the final model are displayed in Fig. 4 for a 
subset of two genotypes and two trials (Moree and Surat) at the earliest 
and latest sowing times. 

Table 4 
Summary of the spline models fitted for the environmental covariate post-flowering plant avaliable water.  

Model Full log- 
likelihood 

p q b AIC 

Full environmental covariate (EC) model − 617.87 32 37 9 1373.74 
− spl(density):spl(PostPAW):Genotype − 617.87 32 37 8 1373.74 
− spl(density):spl(PostPAW) − 617.89 32 36 8 1371.80 
− spl(density):PostPAW:Genotype − 617.88 32 36 7 1371.77 
− density:spl(PostPAW):Genotype − 617.88 32 36 6 1371.77 
− spl(density):PostPAW* − 619.50 32 35 6 1373.00 
− spl(PostPAW):Genotype* − 622.74 32 34 7 1377.47 
− density:spl(PostPAW)* − 619.80 32 35 6 1373.60 

The characters p, q and b denote the total number of fixed parameters, variance parameters and boundary variance parameters respectively. The spline terms were 
sequentially tested using a backwards selection procedure starting with the full environmental covariate (EC) model, where the corresponding model term was dropped 
if the Akaike information criterion (AIC) value was higher. The AIC was derived using the full log-likelihood at the residual maximum likelihood parameter estimates 
(Verbyla, 2019). The minus sign ( − ) preceding each model term denotes that the term was removed from the model in the preceding row of the table prior to refitting. 
The * symbol indicates a term that was identified as important as per the AIC criterion and was therefore retained in the succeeding models. The bolded model indicates 
the spline model identified as the best fit. 

Table 5 
Conditional Wald tests for the post-flowering plant available water fixed effect terms after the non-significant spline terms associated with post-flowering plant 
available water were removed from the model. The denominator degrees of freedom were calculated using the methodology proposed in Kenward and Roger (1997).  

Model term Numerator 
degrees of 
freedom 

Denominator 
degrees of 
freedom 

Conditional 
F-statistic 

P-value 

density 1  34.1  33.9  < 0.001 
PostPAW 1  83.7  6.7  0.011 
Genotype 7  33.1  4.3  0.002 
density:Genotype 7  22.8  0.4  0.860 
PostPAW:Genotype 7  48.8  3.6  < 0.001 
density:PostPAW 1  15.8  2.2  0.154 
density:PostPAW:Genotype 7  82.0  0.1  0.997  

Table 3 
Summary of the root mean square error of prediction (RMSEP, as defined in (5)) for each environmental covariate (EC) during the first iteration of the forward selection 
procedure applied to the sorghum multi-environment trial data. Post-flowering plant available water was selected as the first EC since its inclusion in the model 
resulted in the lowest RMSEP.  

Environmental covariate (EC) Acronym Full log- 
likelihood 

RMSEP 
(t/ha) 

Post-flowering plant available water (mm)* PostPAW − 621.74 2.03 
Post-flowering maximum temperature (∘C) PostMaxT − 601.64 2.30 
Water deficit index (mm)*** Deficit − 616.98 2.31 
Post-flowering minimum temperature (∘C) PostMinT − 605.80 2.35 
Pre-flowering radiation (MJ/day) PreFlwRad − 629.23 2.43 
Pre-flowering minimum temperature (∘C) PreMinT − 610.89 2.71 
Pre-flowering evapotranspiration (mm) PreFlwEvap − 636.52 2.71 
Post-flowering evapotranspiration (mm) PostFlwEvap − 644.02 2.71 
Potential seed set (%)**** SeedSet − 637.40 2.71 
Pre-flowering maximum temperature (∘C) PreMaxT − 621.29 2.72 
Pre-flowering cumulative solar radiation (MJ) PostCumRad − 639.82 2.76 
Initial soil water (mm) ISW − 623.00 2.78 
Pre-flowering cumulative solar radiation (MJ) PreCumRad − 617.06 2.90 
Pre-flowering plant available water (mm)* PrePAW − 617.81 2.91 
Mean soil temperature (7 cm depth) during 7 days after sowing (∘C) AvgSoilTmp − 605.87 2.93 
Irrigation (pre-sowing) (mm) Irrig − 646.27 2.97 
Mean photo-thermal quotient (PTq) around flowering (MJ/∘C day) ptq − 603.46 3.03 
Post-flowering radiation (MJ/day) PostFlwRad − 605.85 3.09 
Normalised PTq (NPTq)** around flowering (MJ.kPa/∘C day) NPTq − 629.31 3.21  

* Is equal to the rainfall + irrigation 
** For the calculation of NPTq, see Rodriguez et al. (2014) 
*** Water deficit index calculated as in Hammer et al. (2014) 
**** Potential seed set was calculated as in Singh et al. (2015) 
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4. Discussion 

A new methodology is proposed which is the first to incorporate ECs 
into the analysis of MET data arising from agronomic field trials 
featuring G × E × M interaction effects for small numbers of genotypes 
( < 10). The results from the motivating example in Fig. 3 and Supple-
mentary Figs. A.1-A.6 highlight how this methodology enables simul-
taneous modelling of the yield response to established plant density and 
the identified important ECs respectively. All previous research into the 
development of methodologies to improve predictive performance using 
ECs has focused on plant improvement programs. The proposed meth-
odology allows agronomic researchers to identify key ECs contributing 
to the G × E × M interaction on measured experimental trial data, in-
dependent of any assumptions made via a crop growth model. 

A novel aspect of the proposed methodology is that it facilitates 
modelling the non-linear trait response to an EC. This feature is high-
lighted in Fig. 2 which captures the non-linear yield response to post- 
flowering plant avaliable water. Moreover, the methodology can cap-
ture non-linear interaction effects between M and an EC. An example of 
this is the non-linear interaction effect between established plant density 

and post-flowering maximum temperature (Supplementary Fig. A.6). 
These figures summarise the ECs in a desirable format similar to that 
seen in Fig. 4 of Van Eeuwijk et al. (2019), without requiring any un-
derlying assumptions of the relationship between traits. The most 
recently developed methods that incorporate ECs to explain G × E in-
teractions (see for example Boer et al., 2007; Jarquín et al., 2014; 
Hadasch et al., 2020) all assume a linear or quadratic trait response to an 
EC. The proposed methodology uses the LMM formulation of the 
(tensor) cubic smoothing spline (Verbyla et al., 2018) to capture 
non-linear trait responses to ECs in a flexible and objective manner, 
independent of any underlying biophysical assumptions. 

The incorporation of smoothing splines (Verbyla et al., 1999) also 
enables the EC model terms to be partitioned into linear and non-linear 
components (De Faveri et al., 2022), allowing for significance testing of 
these components to be performed independently (Tables 5 and 4 
respectively). In the motivating example, two of the seven ECs 
(pre-flowering cumulative radiation and pre-flowering plant available 
water) had significant linear effects exclusively whilst the remaining five 
ECs had at least one significant non-linear interaction term with either 
genotype or plant density (Table 6). This ensures that the interpretation 

Table 6 
Model terms for the environmental covariates included in the final model.  

Model term Post-flowering plant 
available water (mm) 

Initial soil 
water (mm) 

Pre-flowering 
cumulative radiation 

(MJ) 

Pre-flowering plant 
available water 

(mm) 

Photo thermal quotient 
around flowering (MJ/∘C 

day) 

Pre-flowering evapo- 
transpiration (mm) 

Post-flowering 
maximum temperature 

(∘C) 

ec ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Genotype:ec ✓    ✓   
density:ec  ✓ ✓ ✓  ✓ ✓ 
spl(ec) ✓    ✓  ✓ 
spl(ec):Genotype ✓    ✓   
density:spl(ec)       ✓ 
spl(density):ec  ✓    ✓  

The term spl() denotes a spline term in the model. The corresponding spline terms were included in the final model if their inclusion minimised the Akaike in-
formation criterion (AIC). Linear terms were included in the final model if the term was statistically significant using a Wald test with an approximate F-statistic. Terms 
that do not appear in the final model for any of the environmental covariates were excluded from the list of model terms. The environmental covariate terms are 
presented in order of inclusion (left to right) as identified by the forward selection procedure. 
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Fig. 2. Yield predictions for the genotype × post-flowering plant available water interaction (empirical best linear unbiased predictors). The final model consisted of 
a non-linear genotype × post-flowering plant available water interaction term. The raw data points are from field plots that targeted a plant density of 6 and 9 plants/ 
m2 and are adjusted for all other environmental covariates and ‘lack of fit’ effects. The shaded regions denote the 95% prediction interval for each genotype. 
Predictions were taken at the average plant density of 6.6 plants/m2 observed across all environments. 
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of results is succinct and practically useful when the trait response to an 
EC or management practice is linear. 

Moreover, the methodology can also partition the G × EC × M 
interaction into a linear and non-linear component, allowing for a 
unique three dimensional surface for each genotype when there is a 
significant G × EC × M interaction effect (see for example Fig. 3). Note 
that there were no significant G × EC × M interaction effects in the 
motivating data for each of the key ECs identified and thus the shape of 
the yield response curve in Fig. 3 is representative of all genotypes. 
When there is a significant G × EC × M interaction effect, the rela-
tionship between the trait of interest, M and an EC for each genotype can 
be summarised graphically. 

Interaction effects for the linear and non-linear EC terms with ge-
notype and management practice can also be obtained, providing ac-
curate information on how each EC interacts with genotype and 
management. For the motivating data, two of the important ECs, post- 
flowering plant available water and photo thermal quotient around 
flowering, were identified as having an interaction effect with genotype 
but not established plant density. Conversely, the remaining five ECs 
were determined to have an interaction effect with established plant 
density but not with genotype (Table 6). When all of the important ECs 
are used to obtain predictions for the overall yield response to estab-
lished plant density, the collective output observed is a G × E × M 
interaction (Fig. 4). By incorporating ECs into the statistical model, the 
methodology can partition complex G × E × M interaction effects into 
the corresponding G × EC and EC × M interaction effects that comprise 

of the G × E × M interaction effect. 
The proposed methodology also allows modelling of complex vari-

ance structures arising from experimental design terms, spatial field 
trend and residual variance heterogeneity across environments. The 
inclusion of these additional terms in the mixed model formulation is 
known to improve predictive accuracy of G × E interaction effects in 
plant improvement studies (Cullis et al., 1998). Thus, the proposed 
methodology provides accuracy improvements in the predictions ob-
tained from G × E × M MET data compared to methodologies that 
incorporate ECs but do not account for complex variance structures (De 
Faveri et al., 2022). Using a methodology that provides the most accu-
rate predictions for G × E × M effects in the baseline model will result in 
a higher likelihood of correctly identifying the key ECs contributing to 
the G × E × M interaction. 

The proposed methodology is implemented using a one-stage 
approach, which ensures that variation across all strata (e.g. between 
and within replicate blocks) are taken into consideration when obtain-
ing predictions for the G × E × M interaction effects. This results in 
further improvements in predictive accuracy (Welham et al., 2010) 
compared to most current statistical methodologies incorporating ECs 
that either (a) do not account for complex variance structures, or (b) 
account for complex variance structures, but do so via a two-stage 
approach (Gogel et al., 2018). Furthermore, the use of a one-stage 
approach ensures that the standard errors of the predictions are not 
underestimated which can occur in two stage approaches that incorpo-
rate ECs. By using a one-stage approach, predictive accuracy is further 
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Fig. 3. Three dimensional surface highlighting how the predictions of grain yield change with respect to established plant density and post-flowering plant available 
water simultaneously. Predictions are averaged across all eight genotypes and the other additional environmental covariates included in the final model. There were 
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improved whilst ensuring that no information regarding variation at 
different strata is lost. 

As well as being statistically rigorous, it is also important that the 
methodology produces results that can be interpreted and presented as 
succinctly as possible. For the motivating example, the yield response to 
an EC can be clearly summarised and displayed graphically, including 
interaction effects between genotype and an EC (Fig. 2 and Supple-
mentary Fig. A.4). Similarly, the yield response to established plant 
density and an EC simultaneously can be presented using a three 
dimensional plot (for example, see Fig. 3 and Supplementary Figs. A.1 
and A.2). Summarising this information, the results indicated that grain 
yield performance of sorghum genotypes would be optimised in envi-
ronments that have (i) high total plant available water and photo- 
thermal quotient around flowering, (ii) low pre-flowering radiation 
and evapotranspiration and (iii) achieved flowering at an optimal time. 
Under this set of optimal G × E conditions, a high established plant 
density further optimised grain yield. The proposed methodology can 
turn complex statistical models into clear, concise and practically useful 
information for researchers, industry, and the broader agricultural 
production system, especially under the challenges of a changing and 
volatile climate. 

One of the most exciting aspects of the proposed methodology is the 
potential to use the key ECs identified to make predictions in a future or 
untested environment. If the environmental data pertaining to the key 
ECs is available in an untested environment, then assessment of the 
model’s ability to predict in an untested environment is possible using 
the proposed methodology. It is also possible to obtain predictions for an 
untested management practice when management is a continuous var-
iable by interpolation. For the motivating dataset, it was possible to 
predict for any value of established plant density within the domain of 
plant densities observed across all environments, which was between 1 
and 14 plants/m2. It is important not to extrapolate beyond this domain 

(e.g. > 14 plants/m2 in the motivating data) without additional exper-
imental data collected for established plant densities > 14 plants/m2. 
This is the first methodology that the authors are aware of that allows for 
predictions of the trait response to management practice in an untested 
environment to be obtained using EC information. 

It is important to note that the confounding of ECs is unavoidable in 
agricultural field trials. Thus, some ECs will inevitably be highly 
correlated with other ECs. The forward selection procedure in the pro-
posed methodology is designed to minimise the impact of multi- 
collinearity, ensuring that two ECs that are highly correlated do not 
both appear in the final model. 

Whilst a significant EC may be identified during the forward selec-
tion procedure as a good fit to the data, that EC may not necessarily be 
describing a causal relationship with the trait of interest. By incorpo-
rating a larger number of environments into the MET analysis, it is ex-
pected that the key ECs identified will be more likely to be causal. This is 
analogous to incorporating a greater number of genotypes (that show 
sufficient genetic diversity) in a genome wide association study (Meu-
wissen et al., 2001) which typically require hundreds of genotypes in 
order to make valid inferences about the population. Identifying causal 
ECs may not be as much of a concern if the objective is to obtain accurate 
predictions in an untested or future environment. To improve confi-
dence that the key ECs identified are causal, it is important to include as 
many environments in the MET analysis as possible spanning the range 
of possible environmental conditions within the target population of 
environments (TPE). 

When compared to a machine learning approach, one advantage of 
the proposed methodology is that it provides meaningful information on 
how the predictions were obtained from a tested or untested environ-
ment. For example, in the motivating dataset, the information about the 
interaction effects between an EC with genotype or plant density (Figs. 2 
and 3 and Supplementary Figs. A.1–A.6) were combined to obtain the 
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Fig. 4. Predictions of yield response to established plant density for a subset of two genotypes and four environments. The four environments selected come from the 
combination of two trials with high and low yield at the earliest and latest sowing times. The regression lines denote the predictions obtained for a tested genotype in 
a tested environment. The shaded regions denote the corresponding 95% prediction intervals. Black dot points in the figure represent raw yield data adjusted for 
experimental design and extraneous field trend effects identified in the baseline model. 
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predictions of the yield response to plant density for each environment 
(Fig. 4). A benefit of this in practice is that it allows researchers to 
directly evaluate whether the yield response to an EC compares to 
existing eco-physiological frameworks. If a model includes an EC such 
that the trait response to that EC does not appear to be biologically 
feasible, then there is the option to re-prioritise that EC in practice and 
continue with the subset selection procedure described in Fig. 4. 

It is also important that the sample of environments in the MET 
analysis are representative of the range of possible environmental con-
ditions within the TPE. The motivating example contained 17 unique 
environments which is small when attempting to make inference about 
the TPE. Including additional environments for the motivating example 
that span the diverse range of environmental conditions possible within 
the TPE would further improve confidence that the identified ECs are 
causal, improving predictive performance in a future or untested 
environment. 

It is difficult to conduct a large number of field trials for a MET 
analysis. This is because conducting a large number of field trials is 
expensive and time consuming. Thus, it is of the utmost importance to 
develop statistical methods that can generalise inference to untested 
environments whilst minimising the number of tested environments 
required to identify important ECs. One way this is achieved is by 
developing a rigorous statistical methodology that maximises the ac-
curacy and precision of the predictions obtained from the model. 
Another important way to achieve this is to ensure that there is no 
confounding between E (and thus ECs) with G or M. This is accom-
plished by ensuring that the same genotypes and the same management 
practices are applied at all trials included in the MET analysis with ECs 
incorporated. In order to adopt the methodology proposed in this paper, 
it is vital that the field trials conducted remove as much confounding 
between E and M as possible to ensure that differences in M are not 
incorrectly accounted for by the ECs included in the final model. This is 
rarely taken into consideration in field crop studies that incorporate ECs 
and is one of the reasons why prediction in a future or untested envi-
ronment is so difficult. Therefore, when the aim is to identify key ECs 
contributing to the G × E × M interaction, it is vital to ensure that 
management practice remains consistent across environments. 

One limitation of the proposed methodology is that it does not 
consider the possibility of interaction effects between pair-wise combi-
nations of ECs. This is because with a small number of environments 
(17) in the motivating example, exploring interaction effects between 
two (or more) ECs resulted in severe over-fitting. With a large number of 
environments constituting the dataset, it may be possible to explore 
interaction effects between pair-wise combinations of ECs. The model in 
(3) could also be generalised to include multiple management practices 
such as row spacing and nitrogen levels as long as the experiments are 
designed with the appropriate factor levels of M. The proposed meth-
odology may be able to capture interaction effects between pair-wise 
combinations of ECs with more environments included in the analysis, 
as well as multiple management practices if they are present in all 
environments. 

It is also important to obtain as much phenology data as possible 
when incorporating ECs into the MET analysis. This would allow for ECs 
such as rainfall, temperature, and radiation to be partitioned into key 
phenology periods, allowing for a better understanding of when ECs 
such as rainfall and temperature have the largest impact on the trait of 
interest. By matching phenology with daily weather information, most 
of the ECs in the motivating example had unique values for each ge-
notype, allowing for improved partitioning of trait differences into their 
respective G, E and M components. If phenology data is available at the 
field plot stratum, then the ECs can be further partitioned to distinguish 
EC effects from noise as well as E and M effects. Most current method-
ologies are unable to accommodate for ECs that are measured at 
different strata, as the bulk of proposed methods in the literature only 
allow for one unique EC value for each environment. Not only does the 
data in the motivating example have different flowering days for each 

genotype (see for example Fig. 2), but the proposed methodology also 
accounts for the different strata in the Wald test by approximating the 
denominator degrees of freedom (Kenward and Roger, 1997). Therefore, 
it is important that a methodology that incorporates ECs can accom-
modate ECs measured at different scales in the experiment. 

A key difference between our model and most G × E models in plant 
improvement studies is the decision to fit genotype as fixed and envi-
ronment (as well as the G × E interaction term) as random. In a plant 
improvement program, it is more common to see environment fitted as 
fixed and genotype as random (Smith et al., 2005) which ties in with 
quantitative genetics theory (Falconer and Mackay, 1996). However, 
Smith et al. (2005) also states that the decision to fit genotype as fixed or 
random is situation dependent. When incorporating ECs into the sta-
tistical model, it is assumed that the environments in the analysis are a 
subset of the TPE (Piepho, 1998). Moreover, once ECs are incorporated 
into the model, all environment terms take on the role of ‘lack of fit’ 
terms in the LMM. Therefore, when incorporating ECs into the model, it 
makes sense to fit genotype as fixed and environment as random. 

With some modifications, it should be possible to apply the meth-
odology proposed in this paper to plant improvement studies. This is 
currently an area of ongoing research. Once developed, it will be 
important to compare the proposed methodology with other method-
ologies that incorporate ECs in the plant improvement literature to 
assess and determine the best methodology for obtaining predictions in a 
future or untested environment. 

5. Conclusion 

A new methodology is proposed to incorporate ECs into a MET 
analysis which is applicable to G × E × M data and provides an accurate 
estimate of the contribution of each EC to the trait of interest. The 
methodology accounts for complex sources of variation such as experi-
mental design terms, spatial field trend and residual variance hetero-
geneity for each environment. Moreover, the proposed methodology is 
completed via a one-stage approach and allows ECs to be measured at 
different strata. This study is the first step towards developing one-stage 
statistical models that identify key environmental drivers of G × E × M 
interactions, enhancing the biological understanding of the experi-
mental results and allowing for the development of more targeted and 
robust recommendations for agronomic practices. 
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Supplementary figures associated with this article can be found in the online version at doi:10.1016/j.fcr.2023.109133. 

Appendix B. Mathematical form of the models 

B.1. Mathematical form of the baseline model 

It is assumed that there are a total of v genotypes, t environments, and that the data is ordered as environments nested within trial, and then 
genotypes within environments. Under these assumptions, the general form of the baseline LMM for the ith genotype in the jth environment for the 
motivating example data can be written as 

y = Xβ + Zgug + Zmum + Zouo + ϵ, (B.1)  

where y is an n × 1 vector of measurements for each plot (n =
∑t

j=1nj), β = [β′0 β′1]′ is a 2v × 1 vector of fixed effects such that the sub-vectors β0 and β1 

are v × 1 vectors of regression intercept and slope coefficients for v genotypes. The design matrix X = [X0 X1], is of dimension n × 2v such that the 
n × v indicator matrix X0 = [X′01 X′02 … X′0t ]′ can be further partitioned into sub-matrices X0j for each environment (dimension nj × v) with elements 
equal to one if genotype i was sown in each plot and zero otherwise. If all genotypes are present in all environments then 

X0j = ⊕v
i=11nji ,

where 1nji is a nji × 1 vector of ones. If genotype i was not sown in environment j, then the column vector 1nji is replaced with a column vector of zero 
length. 

Similarly, the matrix X1 = [X′11 X′12 … X′1t ]′ of dimension n × v can also be partitioned into sub-matrices X1j of dimension nj × v for each envi-
ronment such that 

X1j = ⊕v
i=1xji,

where xji = [xji1 xji2 … xjinji
]′ is the plant density observed for each plot in environment j containing genotype i. Under this definition, X1 is equivalent to 

X0 except that each vector of ones (1nji ) is replaced with xji. 
To ensure that X is of full column rank, X01 and X11 are replaced with 1 and x respectively, where x is the plant density observed on each plot. As a 

result, the coefficients β01 
and β11 

are the intercept and slope for the first variety respectively and the regression coefficients for the remaining varieties 
are differences in the intercept and slope from the first variety. Thus, in (2), the term β0 corresponds to 1 + Genotype and β0 to density 
+ density:Genotype. 

The column vector ug, with length 2tv, of random G × E interaction effects can be partitioned into (i) a random trial main effect uh (dimension d ×
1) corresponding to Trial in (2), (ii) an environment main effect ue (dimension t × 1) corresponding to Env in (2), (iii) a genotype by trial interaction 
effect uhg (dimension dv × 1) corresponding to Trial:Genotype + density:Trial:Genotype in (2), and (iv) a G × E interaction effect ueg 
(dimension 2tv × 1) corresponding to Env:Genotype + density:Env:Genotype in (2), such that 

ug = Zhuh + Zeue + Zhguhg + Zegueg,

ug = Z0hg (Id ⊗ 1v)uh +

⎛

⎝

⎡

⎣
1

0

⎤

⎦⊗ It ⊗ 1v

⎞

⎠ue +
[

Z0hg Z1hg

]
uhg +

[
Z0eg Z1eg

]
ueg,

where 

[
1
0

]

is an indicator vector ensuring that the environment main effects are adjusted for the regression intercepts only and not the regression 

slopes, Z0hg =

([
1
0

]

⊗ (⊕d
p=11fp ) ⊗ Iv

)

,d denotes the total number of trials, fp is the number of sowing times in trial p and t =
∑d

p=1fp. 

The vector ueg can be further partitioned so that ueg = [u′0eg u′1eg ]′, where u0eg and u1eg are tv × 1 vectors of random regression intercept and slope 
coefficients respectively, u0eg = [b011 b012 … b01i b021 … b0ji ]′, and u1eg = [b111 b112 … b11i b121 … b1ji ]′. A similar partitioning can be done for the term uhg. 

The matrix Zg =
[

Zh Ze Zhg Zeg
]

is a n × 2tv full column rank matrix such that Zeg = [Z0eg Z1eg ] where Z0eg and Z1eg are of dimension n × tv and 
Z0eg =⊕t

j=1⊕
v
i=11nji . Similar to X1, the matrices Z1hg and Z1eg are equivalent to Z0hg and Z0eg respectively, except that the vector of ones are replaced with 

the established plant density xji. When genotype i is missing from environment j, the vectors 1nji and xji within Zg are replaced with a zero column 
vector. 

The column vector um = [u′m0 u′mg ]′ of length (r − 2)(1 + v) contains the regression coefficients from the natural cubic smoothing spline for the non- 
linear trait response to plant density. The design matrix corresponding to um is Zm = [Zm0 Zmg ] of dimension n × (r − 2)(1 + v). Specifically, um0 is a 
(r − 2) × 1 vector of random coefficients that corresponds to spl(density) in (2) and captures the overall non-linear trait response to plant density 
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where r is the total number of knot points used in fitting the cubic smoothing spline (Verbyla et al., 1999). The (r − 2)v × 1 vector umg corresponding to 
spl(density):Genotype in (2), allows for non-linear deviations from the overall non-linear trait response to plant density for each genotype. 

The vector uo contains the peripheral random effects such as experimental design and extraneous spatial field trend terms (Gilmour et al., 1997) 
with corresponding design matrix Zo. In (1), uo is represented by the term design and is represented by at(Trial):(Rep/MainPlot/SubPlot) 
in (2). The vector ϵ is a n × 1 vector of residuals for each plot within an environment and is represented by the Error term in (2). Heterogeneity of 
residual variation across environments was incorporated within the residual variance structure such that ϵ ∼ N(0,R) where R = ⊕t

j=1σ2
ϵj

Inj . 
The random effects and residuals are assumed to be normally distributed with zero mean and variance-covariance matrix 

var

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ug

um

uo

ϵ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎣

Gg
0 Gm
0 0 Go
0 0 0 R

⎤

⎥
⎥
⎥
⎥
⎦
,

where var(y) = ZgGgZ′+ ZmGmZ′+ ZoGoZ′+ R. The variance of the (non-spline) G × E random effects Gg can be partitioned into: 

var(ug) = σ2
h

(
Z0hg [Id ⊗ 1v1′]Z′

)
+ σ2

e

([
1 0
0 0

]

⊗ It ⊗ 1v1′
)

+
(

Gh ⊗
(
⊕d

p=11fp 1′
)
⊗ Iv

)
+ (Gb ⊗ It ⊗ Iv),

where Gh =

⎡

⎣
σ2

h0

σh0 ,h1 σ2
h1

⎤

⎦ and Gb =

⎡

⎣
σ2

b0

σb0 ,b1 σ2
b1

⎤

⎦ denote the variance-covariance matrix for the random regression genotype × trial and G × E 

interaction effects respectively. The variance components σ2
h and σ2

e are the variance components for the random Trial and Env effects such that 

uh ∼ N
(
0, σ2

hId
)
, uhgpi =

[
h0pi

h1pi

]

∼ N(0,Gh),

ue ∼ N
(
0, σ2

eIt
)
, uegji =

[
b0ji

b1ji

]

∼ N(0,Gb).

The variance of ug becomes such that Gh and Gb denote the variance-covariance matrix for the random regression genotype × trial and G × E 
interaction effects respectively, and 

uh ∼ N
(
0, σ2

hId
)
, uhgpi =

[
h0pi

h1pi

]

∼ N(0,Gh) .

The definition of the spline basis in Verbyla et al. (1999) ensures that the spline random effects are independent, as given by 

um0 ∼ N
(

0, σ2
m0

I(r− 2)

)
, umg ∼ N

(
0, σ2

mg
I(r− 2)v

)
. (B.2)  

B.2. Incorporating environmental covariates into the model 

The model that extends the baseline model (B.1) to incorporate a single EC can be expressed as: 

y = Xβ + Xcl βcl
+ Zgug + Zmum + Zcl ucl + gl + Zouo + ϵ, (B.3)  

where X, β, Zg, ug, Zm, um, Zo, uo and ϵ are as defined in (B.1), and βcl 
is a column vector of length v allowing for a separate linear trait response to the lth 

EC for each genotype pertaining to ec + ec:Genotype in (4). The design matrix Xcl of dimension n × v is equivalent to X1 except that xji is replaced 

with clji =
[
clji1 clji2 … cljinji

]
′ where clji . denotes the value of the lth EC within a particular plot featuring genotype i in environment j. 

The term ucl = [u′cl0
u′clg

]′ is a vector of dimension (ql − 2)(1 + v) such that ql denotes the number of knot points for the lth EC. The column vector 
ucl0 

of length (ql − 2), corresponding to spl(ec) in (4) represents the overall non-linear trait response to the lth EC while uclg 
of length (ql − 2)v × 1 

which aligns with spl(ec):Genotype in (4) allows for a separate non-linear trait response to the lth EC for each genotype. Similar to (B.2), the EC 
spline terms are assumed to be independent such that 

ucl0
∼ N

(
0, σ2

cl0
I(ql − 2)

)
, uclg

∼ N
(

0, σ2
clg

I(ql − 2)v

)
.

The spline design matrix corresponding to ucl is Zcl = [Z′cl0
Z′clg

]′, where Zcl0 
is of dimension n × (ql − 2) and Zclg 

of dimension n × (ql − 2)v. 
The form of gl, which contains all of the terms pertaining to the interaction effect between plant density and the lth EC is 

gl = (x⊗rcl)β12l
+ (X1⊗rcl)ζ12l

+ (Zm0⊗rcl)us2l +
(
Zmg⊗rcl

)
νs2l +

(
x⊗rZcl0

)
u1sl +

(
x⊗rZclg

)
ν1sl +

(
Zm0⊗rZc0

)
ussl +

(
Zmclg

)
νssl , (B.4)  
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where ⊗ r denotes the ‘row-wise’ Kronecker product (as defined in Lee and Durbán, 2011; Wood et al., 2013) and x and cl are column vectors of length 
n containing the values of established plant density and the lth EC for each individual plot respectively. For the tensor spline terms in (B.4), the 
subscripts 1 and 2l for β, ζ, u and ν correspond to X1 and Xcl respectively (i.e. the linear component). The subscript s for us. and νs. refers to Zm0 and Zmeg 

respectively, while the subscript s for u.sl and ν.sl refers to Zcl0 
and Zclg 

respectively. The constant β12l 
captures the linear interaction effect between M 

and the lth EC, while the vector ζ12l 
(of length v) denotes a separate linear surface for each genotype between the trait of interest, M and the corre-

sponding EC. The terms β12l 
and ζ12l 

correspond with density:ec and density:ec:Genotype in (4) respectively. 
The vectors us2l (dimension (r − 2) × 1),u1sl (dimension (ql − 2) × 1) and ussl (dimension (r − 2)(ql − 2) × 1) jointly capture the non-linear interac-

tion effect between M and ECl whilst νs2l (dimension (r − 2)v × 1), ν1sl (dimension (ql − 2)v × 1) and νssl (dimension (r − 2)(ql − 2)v × 1) jointly repre-
sent the three-way non-linear interaction effect between genotype, M and ECl. The spline design matrix Zmclg 

is of dimension n × (r − 2)(ql − 2)v such 
that 

Zmclg
= ⊕v

i=1

(
Zmgi

⊗rZclgi

)
,

where Zmgi 
and Zclgi 

are subsetted versions of Zclg 
(dimension nv × (r − 2)) and Zclgi 

(dimension nv × (ql − 2)) respectively where if Zmg and Zclg 
were 

reordered in terms of genotypes and then environment nested within genotypes then Zmg = ⊕v
i=1Zmgi 

and Zclg
=⊕v

i=1Zclgi
. The variance for each of these 

terms, in accordance with Verbyla et al. (2018) are 

u1sl∼N
(

0, σ2
1sl

I(ql − 2)

)
, ν1sl ∼ N

(
0, σ2

1sl
I(ql − 2)v

)
,

us2l∼N
(

0, σ2
s2l

I(r− 2)

)
, νs2l ∼ N

(
0, σ2

s2l
I(r− 2)v

)
,

ussl∼N
(

0, σ2
ssl

I(r− 2)(ql − 2)

)
, νssl ∼ N

(
0, σ2

ssl
I(r− 2)(ql − 2)v

)
.

The terms u1sl , ν1sl , us2l , νs2l ,ussl , νssl align with density:spl(ec), density:spl(ec):Genotype, spl(density):ec, spl(density):ec: 
Genotype, spl(density):spl(ec), and spl(density):spl(ec):Genotype in (4) respectively. 

The inclusion of multiple (say w) ECs into the model in an additive form is given by 

y = Xβ + Zgug + Zmum +
∑w

l=1

(
Xcl βcl

+ Zcl ucl + gl
)
+ Zouo + ϵ. (B.5)  
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