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The size and complexity of datasets resulting from comparative research experiments
in the agricultural domain is constantly increasing. Often the number of variables mea-
sured in an experiment exceeds the number of experimental units composing the experi-
ment. When there is a necessity to model the covariance relationships that exist between
variables in these experiments, estimation difficulties can arise due to the resulting covari-
ance structure being of reduced rank. A statistical method, based in a linear mixed
model framework, is presented for the analysis of designed experiments where datasets
are characterised by a greater number of variables than experimental units, and for
which the modelling of complex covariance structures between variables is desired.
Aided by a clustering algorithm, themethod enables the estimation of covariance through
the introduction of covariance clusters as random effects into the modelling framework,
providing an extension of the traditional variance components model for building covari-
ance structures. The method was applied to a multi-phase mass spectrometry-based pro-
teomics experiment, with the aim of exploring changes in the proteome of barley grain
over time during the malting process. The modelling approach provides a new linear
mixedmodel-basedmethod for the estimation of covariance structures between variables
measured from designed experiments, when there are a small number of experimental
units, or observations, informing covariance parameter estimates.
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1. INTRODUCTION

Comparative experiments continue to provide the foundation of agricultural research and
thus underpin the improvement and optimisation of the productivity of agricultural systems.
Over time, large-scale increases in productivity have become harder to achieve (Fischer
and Connor 2018), resulting in greater pressure being placed on the humble comparative
experiment to yield more comprehensive and detailed information on the biological pro-
cesses underpinning the system. Often, the answer to this pressure is to ‘measure more’;
more variables, more frequently or in more detail. An outcome of measuring more is that
comparative experiments give rise to datasets of a greater size and detail than ever before.
However, while sizes of datasets are growing, the size of experiments typically remains the
same, leading to a situation where, in many experiments, the number of variables measured
is greater than the number of experimental units.

With growing size and detail, the complexity of the datasets also often increases. This
complexity can arise from relationships between measured traits or characteristics (Dreccer
et al. 2020), structure implicit in or imposedon the experimentalmaterial bydesign, sampling
or measurement protocols (Brien and Bailey 2006; De Faveri et al. 2017) or other physical
or biological factors inherent to the treatments or material in the experiment (Oakey et al.
2006; Osama et al. 2021).

Comparative experiments conducted in the laboratory often facilitate a ‘measure more’
approach, enabling a detailed investigation of biological samples obtained from the field
or other sources. When these samples arise from observational studies or designed experi-
ments, a multi-phase experiment, conducted according to a multi-phase design, is possible
(Brien et al. 2011). The simplest multi-phase experiment consists of two phases (McIntyre
1955), where units composing the first phase produce outcomes, such as material and/or
response variable values, before material from the first phase is randomised to units in the
second phase (Brien and Bailey 2006; Brien et al. 2011). A multi-phase design is then
the implementation of an experimental design solution for a multi-phase experiment. Such
designs have been applied to great effect in the agricultural domain, enabling the partitioning
and investigation of extraneous variation across different phases of experimentation (Smith
et al. 2006; Panozzo et al. 2007; Kelly and Forknall 2020).

The linear mixed model (LMM) provides a powerful and flexible framework for the
analysis of data arising from comparative experiments, and continues to be relevant and
applicable even as the size and complexity of the datasets arising from these experiments
increase. In part, this is due to the ability to estimate variance structures of complex form,
both between treatments and between residual errors (De Faveri et al. 2015; Verbyla et al.
2021).

In practice, the estimation of complex variance structures relies on sufficient indepen-
dent pieces of information to reliably estimate the covariances and variances required. In
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situations where the number of variables exceeds the number of observations, the resulting
variance structures can be of reduced rank, causing computational difficulties (Thompson
et al. 2003). Structures that accommodate this reduced rank nature exist, for example, the fac-
tor analytic variance structure proposed by Smith et al. (2001b) and formulated for reduced
rank estimation by Thompson et al. (2003). However, evidence suggests a degradation in
the performance of this structure when the number of observations informing a variance
parameter estimate is small (Macdonald 2018; Macdonald et al. 2019). In these situations,
the modelling of covariance is often restricted to simplistic structures, such as that resulting
from a variance components model (Patterson et al. 1977).

The LMM framework has also proven useful for the modelling of smooth trends in data
arising from designed experiments. In cases where such trends display nonlinear forms,
the LMM representation of the cubic smoothing spline has been formulated (Verbyla et al.
1999). This approach has been shown to be effective in modelling smoothly varying trends
arising from designed agricultural experiments (Verbyla et al. 1999) and can be coupled
with the estimation of complex covariance structures between residual errors (De Faveri
et al. 2015, 2022).

There are multiple software solutions for the implementation of the LMM framework,
both using standalone software or via statistical computing environments such as R (R Core
Team 2019; Rogers and Taylor 2019). One of the more powerful and flexible options is the
commercial asreml R package (Butler et al. 2017). This package implements variance
component estimation via residual maximum likelihood (REML) (Patterson and Thompson
1971), using the average information algorithm (Gilmour et al. 1995), and supports the
implementation of a wide range of complex variance–covariance structures, along with the
LMM representation of the cubic smoothing spline.

While LMM software is well developed, currently, there is a distinct lack of software that
supports the efficient implementation of highly complex variance–covariance structures.
Despite the asreml package enabling the use of such structures, the time taken to fit
models that include these structures, to even moderately sized datasets, is often prohibitive.
Modelling run times are further exacerbated when the aim is to fit the models using a fully
efficient single-stage analysis (Welham et al. 2010). An option to reduce computational
issues and accelerate model fitting is to fit the LMM using a two-stage analysis (Smith et al.
2001a; Piepho et al. 2012).

A field of research in which laboratory-based comparative experiments are conducted,
that produce large volumes of data from a limited number of samples, is mass spectrom-
etry (MS)-based proteomics. Proteomics is the broad-scale investigation of the proteome
of biological material, where the proteome is the set of proteins composing a biological
sample (Yu et al. 2010). Standard modern proteomics workflows involve several sample
processing steps to extract and digest the proteins composing a sample for measurement
using MS (Osama et al. 2021). The data produced by these workflows have as their most
fundamental building blocks the fragment ions linked to specific protein identities, along
with their relative abundance (Gross 2011). Using knowledge of how ions comprise a pep-
tide and how peptides comprise a protein enables the reconstruction of the abundance of
each protein identified in a sample (Zhang et al. 2010).
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In the context of field crops research, the application of MS-based proteomics is growing
rapidly (Agrawal et al. 2013), with comparative experiments to test for differences in the
proteome of plant tissues, as a result of treatments or plant developmental stages, becoming
commonplace (Osama et al. 2021). Such experiments often result in the quantification of
upwards of hundreds of proteins from the processing of an individual sample (Gross 2011),
with the datasets generally characterised by complex relationships (correlations) between
proteins (Agrawal et al. 2013; Robotti et al. 2015).

Mass spectrometry-based experiments can suffer from a lack of sound experimental
design, with multiple authors reporting a need to improve the design of such studies (Hu
et al. 2005; Oberg and Vitek 2009). Furthermore, the two-phase nature of MS studies is
well suited for the implementation of multi-phase design solutions. Such solutions would
facilitate the partitioning of variation associatedwith the collection of the biologicalmaterial,
from ‘technical’ variation that could arise during the subsequent processing of the material
using MS techniques. However, we have found no reported occurrences in the literature
of such a design solution being implemented in the conduct of an agriculturally motivated
MS-based proteomics study.

Statistical methods for the exploration of proteomics datasets are dominated by pattern or
cluster analysis and classification-based techniques (Robotti et al. 2015; Chen et al. 2020).
Analysismethods to test for differences in proteome composition between treatments inMS-
based proteomics experiments also vary and range from simple t-tests (Chen et al. 2020),
to analysis of variance (Oberg et al. 2008), multivariate statistical techniques (Robotti et al.
2015) andmachine learning approaches (Chen et al. 2020). Examples also exist of the LMM
framework being used for the analysis ofMS-based proteomics data (Oberg et al. 2008; Choi
et al. 2014). However, these LMM frameworks are often simplistic (Osama et al. 2021), with
likely advancements possible through estimation of complex covariance between proteins
to characterise the nature of the relationships that exist within the proteome (Robotti et al.
2015).

Given the size and complexity of datasets now arising from the most simple of compara-
tive experiments, exemplified by MS-based proteomics studies, the aim of this paper was to
provide a parsimonious LMM framework for the analysis of designed experiments where
datasets are characterised by a greater number of variables than experimental units, and for
which the modelling of complex covariance structures between variables is desired. The
proposed method is demonstrated through application to an MS-based proteomics experi-
ment, the objective of which is to investigate changes in the proteome of barley grain during
the malting process.We label our proposed method covariance clustering as, through exten-
sion of the traditional variance components model (Patterson et al. 1977), it allows for the
modelling of covariance between variables by first clustering variables based on estimated
effects and then introducing these covariance clusters into an LMM framework through an
additional random term.

In order to address our aim, the paper proceeds as follows. To begin, the multi-phaseMS-
based proteomics experiment that forms the motivating example is introduced. Following
this, the four-step procedure to implement the covariance clustering approach is given. The
results from each step of the covariance clustering approach, as applied to the motivating
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experiment, are then presented. The paper concludes with a discussion of the proposed
covariance clustering method.

2. MOTIVATING EXAMPLE

A recent multi-phase MS-based proteomics experiment, with components previously
reported byYousif andEvans (2020) andOsamaet al. (2021), provides amotivating example.
In this experiment, MS was used to quantify the proteome composition of barley grain and
malt samples, where samples were collected at different times during a commercial malting
process. The aims of the experiment were to identify proteins that demonstrated a change
in abundance over time in the malting process and characterise the relationship between
abundance and time for these proteins.

In what we believe to be a first report in the literature, the multi-phase MS-based pro-
teomics experiment was conducted according to a multi-phase design. This multi-phase
design enables an investigation of variation arising in both phases of the experiment, being
the (i) malt sample collection phase and (ii) MS processing phase. Both phases are explored
in more detail, following a brief overview of the particulars of the malting processes relevant
to the motivating example.

2.1. PARTICULARS OF THE MOTIVATING EXAMPLE

The malting process is typically conducted over approximately six days and involves the
controlled and limited germination, then drying, of grain. The process initiates the expres-
sion and activation of enzymes that break down the complex carbohydrates and proteins
containedwithin the grain endosperm for yeast utilisation in fermentation (Yousif and Evans
2020; Osama et al. 2021). The malting process is achieved through three stages; steeping,
germination and kilning (Schwarz and Li 2010). Barley is the most commonly malted grain,
as barley malt is a key ingredient in traditional beer brewing (Schwarz and Li 2010).

The barley samples considered in this study are a subset of those acquired from an
Australian commercial malting plant, labelled as Plant Two in Yousif and Evans (2020).

2.2. PHASE I: MALT SAMPLE COLLECTION

The collection of barley grain and malt samples constitutes the first phase of the motivat-
ing experiment. We consider the processing of two replicate batches of grain in the malting
plant. For each replicate batch, grain was sampled a total of 12 times (t = 12), with the time
at which each sample was collected consistent between the replicate batches (Table 1). Note
that without the ability to randomise sampling times within replicate batches, this phase is
observational in nature and not itself an experiment. Additionally, note that the sampling
times presented in Table 1 do not correspond with those presented in Table 1 of Yousif
and Evans (2020) due to an error in the measurement of kilning time previously reported.
At each sampling time, samples were frozen and freeze-dried to less than 10% moisture
if wet (Yousif and Evans 2020), before being stored for later processing using MS-based
proteomics techniques.
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Table 1. Times at which barley grain and malt samples were collected during Phase I of the motivating mass
spectrometry-based proteomics experiment

Sampling time ( j) 1 2 3 4 5 6 7 8 9 10 11 12

Time (h) 0.0 16.5 27.5 40.5 51.5 64.5 75.5 88.5 99.5 112.5 133.5 151.5

2.3. PHASE II: MASS SPECTROMETRY PROCESSING

The individual grain and malt samples collected in the first phase of the experiment were
subsequently processed usingMS in the second phase of the experiment. Prior to processing,
two subsamples were taken from each of the 24 grain samples. Together, this provides a
total of 48 subsamples and four independent samples (z = 4) of each sampling time.

Each subsample was prepared and processed according to the workflow outlined in
Osama et al. (2021). To briefly summarise, the preparation of individual subsamples involved
first grinding them into a homogeneous powder, before a series of steps were undertaken
to chemically extract the proteins composing each subsample (Osama et al. 2021). The
processing of the extracted proteins from each subsample was achieved using a Sequential
Window Acquisition of all THeoretical ions Mass Spectrometry (SWATH-MS) proteomic
analysis technique (Osama et al. 2021), which facilitated the ionisation and measurement
of the proteins composing the subsamples.

Due to the nature of the MS process, subsamples needed to be run through the mass
spectrometer sequentially, and a design was applied to the order in which the subsamples
were processed. Two replicate blocks were defined, with one subsample from each grain
sample processed within each replicate block, and each replicate block was composed
of 24 subsamples. Within each replicate block, subsamples were assigned to one of four
processing groups according to an incomplete block design (processing groups correspond to
incomplete blocks), with the order in which subsamples were processed randomised within
each processing group. The blocking of subsamples into processing groups was performed
to enable adjustment for potential extraneous variability or trend arising in the sequentialMS
processing of subsamples. The initial incomplete block design randomisation was optimised
using the odw R package (Butler 2022), which searches for an optimal design given the
specification of an associated LMM. Following this optimised design, all subsamples were
processed using MS.

The proteins composing each subsamplewere identified and quantified using themethods
described in Osama et al. (2021). This involved identifying the proteins by matching the
measured protein signatures with those existing in a published proteomics database, before
the abundance of the proteins was determined using proprietary software (Kerr et al. 2019;
Osama et al. 2021).

Following this process, a consistent set of 617 proteins (p = 617) were identified from
each subsample and the abundance of each protein i (i = 1, . . . , 617) quantified. This
resulted in the motivating dataset consisting of a total of n = t z p = 29,616 protein abun-
dance observations. The proteins ranged in raw abundance, from 69 units per subsample
to 4,687,460 units per subsample, with a median of 17,499, where the unit of measure-
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ment is related to MS intensity and the abundance of constituent ions composing a protein.
The dataset arising from the motivating mass spectrometry-based proteomics experiment
is available through the ProteomeXchange Consortium via the Proteomics Identifications
Database (PRIDE) partner repository (Perez-Riverol et al. 2021), using the dataset identifier
PXD019384 (https://www.ebi.ac.uk/pride/).

3. STATISTICAL METHODS

Methods for the implementation of covariance clustering are presented in the context
of their application to the motivating example. The covariance clustering method is imple-
mented using four steps; (1) fitting a baseline model, (2) forming a series of covariance
clusters, (3) fitting a series of covariance cluster models, one for each of the plausible
covariance clusters identified, and (4) locating the ‘optimal’ number of covariance clusters
and fitting an ‘optimal’ covariance cluster model. Figure1 presents these steps in the two
alternate ways in which they are applied in the analysis of the motivating experiment; the
first models residual covariance through formingwhat we label residual covariance clusters,
and the second identifies similarly shaped response curves through forming what we label
spline covariance clusters. In this case, a two-stage LMM framework is used to analyse the
raw protein abundance data, with a different covariance clustering procedure implemented
in each of the respective stages of the analysis (Fig. 1).

3.1. STAGE 1

The first stage of the analysis involves the modelling of the raw protein abundance data
for all p proteins. Protein abundance is log transformed (log(x/1000 + 1)) including an
offset of 1 as values of x/1000 are close to zero, and because diagnostics obtained from
a preliminary analysis showed the LMM adhered better to the assumptions of normality
and homogeneity of residual variance using this transformation. Note that the selection of
this offset needs careful consideration in practice (Welham et al. 2014). Following transfor-
mation, the minimum, median and maximum of the log transformed data are, respectively,
0.067, 2.92, and 8.45. Notably, it is assumed the abundance observations are ordered as
subsamples, within sampling times, within proteins.
Step 1.1: Fit baseline linear mixed model: The general form of the baseline LMM fit to
the protein abundance data is written as

y = Xτ + Zdud + e, (3.1)

where y is an n × 1 vector of (transformed) protein abundance observations and τ is a
p t × 1 vector containing fixed effects for each protein × sampling time combination, with
associated design matrix X. The vector ud contains random effects corresponding to the
multi-phase experimental design structure, with associated design matrix Zd, and e is an
n × 1 vector of residual error effects.

https://www.ebi.ac.uk/pride/
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Figure 1. The four steps involved in the covariance clustering procedure (x .1 to x .4) are implemented in each of
two stages (x = 1, 2) of a linear mixed model (LMM) framework, to analyse the motivating mass spectrometry-
based proteomics experiment. In Stage 1, what we have labelled residual covariance clusters (RCCs) are formed to
model residual covariance between proteins. In Stage 2, what we have labelled spline covariance clusters (SCCs)
are formed to identify similarly shaped response curves describing the relationship between protein abundance
and time in the malting process.

The random effects and residual error effects from (3.1) are assumed to follow a normal
distribution with zero mean vector and variance–covariance matrix

var

([
ud

e

])
=

[
Gd 0
0 R

]
.

Of note is the form of R, an n × n matrix, which is defined using a three-way separable
structure,

R = Rp ⊗ Rt ⊗ Iz, (3.2)

where ⊗ is the Kronecker product, Rp = ⊕p
i=1σ

2
epi

is a p × p diagonal matrix, enabling

the estimation of heterogeneous residual variance for each protein i , Rt = ⊕t
j=1σ

2
et j

is a
t × t diagonal matrix, enabling the estimation of heterogeneous residual variance for each
sampling time j , and Iz is a z × z identity matrix. In practice, to ensure identifiability, σ 2

et j
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is replaced in the form of Rt with γet j , where γet j is a scaling parameter and a single γet j is
constrained to equal 1.

The form of R presented in (3.2) enables the estimation of heterogeneous residual vari-
ance for each protein, while allowing for the differential scaling of these variances across
sampling times. However, such a form assumes independence between proteins at the resid-
ual level, with any covariance built through the variance of the experimental design terms
included in Gd. This is a potentially restrictive and limiting assumption, given the complex
relationships that are known to be present in the proteome (Robotti et al. 2015). As such,
(3.1) can be extended to enable the modelling of additional and more complex covariance
between proteins at the residual level.
Step 1.2: Form residual covariance clusters: Residual covariance clusters are formed by
clustering proteins based on their estimated residuals (ẽ) from (3.1). These residuals are
obtained from (3.1) as empirical best linear unbiased predictors (e-BLUPs), before being
studentised (Gilmour et al. 2015, p. 17).

A k-means clustering algorithm (Hartigan andWong 1979) is used to generate a range of
plausible residual covariance clusters. This involves the grouping of proteins into increasing
numbers of residual clusters (υr = 2, . . . , qr), with the total number of potential cluster
groupings labelled as ηr. The k-means algorithm is repeated multiple times, each with a
different starting seed for the randomisation process defining the initial cluster allocation.
If the total number of seeds considered is labelled φr, then this results in the formation of
kr = φr × ηr plausible residual covariance cluster groupings (lr = 1, . . . , kr), based on all
seed × number of cluster combinations.
Step 1.3: Fit residual covariance cluster linear mixed model: To incorporate a plausible
residual covariance cluster, (3.1) is extended to include an additional random termcontaining
effects corresponding to an individual seed × number of cluster combination, hlr . This
model, referred to as the residual covariance cluster LMM, is repeatedly fit whereby the
random cluster term is updated to consider each plausible residual covariance cluster. The
general form of the model is

y = Xτ + Zdud + Zcrucr + e, (3.3)

where is an (υr t z×1) vector of random effects corresponding to the hthlr residual covariance
cluster× sampling time combination, with design matrix Zcr . All other terms are as defined
for the model in (3.1).

The random effects and residual error effects from (3.3) are assumed to follow a normal
distribution with zero mean vector and variance–covariance matrix

var

⎛
⎜⎝

⎡
⎢⎣ ud

ucr

e

⎤
⎥⎦

⎞
⎟⎠ =

⎡
⎢⎣ Gd 0 0

0 Gcr 0
0 0 R

⎤
⎥⎦ ,

where R is as defined for the model in (3.2) and Gcr is defined using the three-way separable
form

Gcr = Gg ⊗ Gt ⊗ Iz, (3.4)
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whereGg = ⊕υr
m=1σ

2
crm

is aυr×υr diagonalmatrix, enabling the estimation of heterogeneous
variance for each residual covariance cluster m, and Gt = ⊕t

j=1γcrt j
is a t × t diagonal

matrix, containing scaling parameters for the residual covariance cluster variances across
sampling times.

The inclusion of the residual covariance cluster effects, with the associated variance
model in (3.4), acts to induce greater covariance between proteins within a covariance
cluster, along with providing greater heterogeneity of variance between clusters.
Step 1.4: Locate ‘optimal’ number of residual covariance clusters and fit ‘optimal’
residual covariance cluster linear mixed model: Upon fitting (3.3) for each seed× number
of cluster combination, the AIC based on the full log-likelihood (Verbyla 2019) is obtained
for each model. For brevity, all further mentions of the AIC refers to that based on the full
log-likelihood. The ‘optimal’ number of residual covariance clusters, labelled υ∗

r , is that
whichminimises the AIC, on average across seeds, and thus provides themost parsimonious
residual covariance structure.

Upon determining υ∗
r , the AIC of the models fit for each seed is compared within υ∗

r , to
locate the seed which results in a clustering of proteins that further minimised the AIC. This
‘optimal’ seed is labelled ω∗

r . The grouping of proteins into υ∗
r clusters, arising from seed

ω∗
r , are reintroduced into (3.3) and the model fit to obtain the ‘optimal’ residual covariance

cluster LMM, (3.3∗).
Upon fitting (3.3∗), predictions of abundance for each protein at each sampling time

(τ̂ ) are obtained from the model as empirical best linear unbiased estimators (e-BLUEs).
Also obtained from (3.3∗) is w, a p t × 1 vector of weights, corresponding to the diagonal
elements of the inverse of the fixed effect variance–covariance matrix (Smith et al. 2001a).
The e-BLUEs and associated weights are carried forward to the second stage of analysis.

3.2. STAGE 2

The second stage of the analysis process involves the estimation of response curves to
describe the response of proteins to time in the malting process (Fig. 1). In order to allow
for nonlinearity in the response of protein abundance, the LMM representation of the cubic
smoothing spline can be exploited (Verbyla et al. 1999). Note that the abundance e-BLUEs
obtained from (3.3∗) are assumed to be ordered according to sampling times, within proteins.
Step 2.1: Fit baseline response curve linear mixed model: The general form of the model
is

τ̂ = Xsoβo + Zsouso + Zfuf + Xspβp + Zspusp + es, (3.5)

where τ̂ is a p t ×1 vector containing the abundance e-BLUEs for each protein × sampling
time combination obtained from (3.3∗). The terms Xsoβo, Zsouso and Zfuf correspond to
the fitting of an overall (main effect) spline to model the nonlinear response of abundance to
sampling time, where βo = [β0 β1]�, a 2× 1 vector, contains fixed regression coefficients,
uso , a (t −2)×1 vector, contains random cubic smoothing spline coefficients and uf , a t ×1
vector, enables the estimation of random non-smooth effects that may arise due to replicated
sampling at each sampling time (Verbyla et al. 1999). The design matrices accompanying
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these vectors are Xso = 1p ⊗ Xst , Zso = 1p ⊗ Zst and Zf , respectively, where Xst = [1t x],
Zst is a t × (t − 2) spline design matrix as defined in Verbyla et al. (2018), 1p and 1t are
vectors of ones of length p and t , respectively, and x is a t × 1 vector containing the t
sampling times. The terms Xspβp and Zspusp allow for the estimation of nonlinear protein

specific spline responses. The vectors βp = vec

([
β�
p0

β�
p1

])
, a 2p × 1 vector, and usp , a

p(t −2)×1 vector, contain protein specific fixed regression and random spline coefficients,
respectively, with associated design matrices Xsp = Ip ⊗ Xst and Zsp = Ip ⊗ Zst , where
Ip is a p × p identity matrix. The vector es, of length p t × 1, contains the residual error
effects.

The random effects and residual error effects from (3.5) are assumed to follow a normal
distribution with zero mean vector and variance–covariance given by

var

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

uso

uf

usp

es

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

Go 0 0 0
0 Gf 0 0
0 0 Gp 0
0 0 0 Rs

⎤
⎥⎥⎥⎦ ,

where Go = σ 2
o It−2, Gf = σ 2

f It , Gp = σ 2
p Ip(t−2), and σ 2

o and σ 2
p are inversely related

to the smoothing parameters associated with the overall, and protein specific, nonlinear
responses to time in the malting process, respectively. The matrix Rs has diagonal elements
given by the weights vector w.
Step 2.2: Form spline covariance clusters: Spline covariance clusters are formed by clus-
tering proteins based on their estimated protein specific cubic smoothing splines coefficients
(ũsp ), obtained from (3.5) as e-BLUPs. Using these effects, the procedure documented in
Step 1.2 is performed to establish a range of plausible spline covariance clusters, where
υs = 2, . . . , qs are the number of spline clusters formed, ηs and φs are the total number of
spline cluster groupings and random starting seeds considered, respectively, and ks = φs×ηs

is the total number of plausible spline covariance clusters (ls = 1, . . . , ks).
Step 2.3: Fit spline covariance cluster linear mixed model: To incorporate a plausible
spline covariance cluster, (3.5) is extended to include an additional random term, allowing
for the estimation of cluster specific nonlinear responses to time in the malting process,
where the clusters correspond to a particular seed × number of cluster combination (hls).
This model, labelled as the spline covariance cluster LMM, is repeatedly fit whereby the
cluster random term is updated to consider each plausible spline covariance cluster. The
general form of the model, assuming the data are ordered as sampling times, then proteins,
then covariance clusters, is

τ̂ = Xsoβo + Zsouso + Zfuf + Xspβp + Zspusp + Zcsucs + es, (3.6)

where ucs is a υs(t − 2)× 1 vector of random cubic smoothing spline coefficients for the υs

spline covariance clusters fitted, with spline design matrix Zcs = ⊕υs
m=11pm ⊗ Zst , where

pm is the number of proteins in spline covariance cluster m. All other terms are as defined
for the model in (3.5).
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The random effects and residual error effects from (3.6) are assumed to follow a normal
distribution with zero mean vector and variance–covariance matrix

var

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

uso

uf

usp

ucs

es

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎣

Go 0 0 0 0
0 Gf 0 0 0
0 0 Gp 0 0
0 0 0 Gcs 0
0 0 0 0 Rs

⎤
⎥⎥⎥⎥⎥⎦ ,

where the forms ofGo,Gf ,Gp andRs are as defined for themodel in (3.5),Gcs = σ 2
csIυs(t−2)

is a υs(t − 2) × υs(t − 2) diagonal matrix and σ 2
cs is inversely related to the smoothing

parameter of the spline covariance cluster specific nonlinear responses to time in the malting
process.
Step 2.4: Locate ‘optimal’ number of spline covariance clusters and fit ‘optimal’ spline
covariance cluster linear mixed model: The procedure outlined in Step 1.4 is repeated to
determine the ‘optimal’ number of spline covariance clusters, where υ∗

s is the number of
covariance clusters which minimised the AIC, on average across seeds, and ω∗

s is the seed
which further minimises the AIC within υ∗

s . The protein groupings resulting from ω∗
s with

υ∗
s clusters are then reintroduced into (3.6) and the model fit to obtain the ‘optimal’ spline

covariance cluster LMM, (3.6*), being the model which results in the estimation of the most
parsimonious set of ‘typical’ response profiles.

Following the implementation of (3.6*), e-BLUPs of protein abundance using the ‘typ-
ical’ protein response profiles are obtained as X∗

so β̂o + Z∗
so ũso + X∗

sp β̂p + Z∗
cs ũcs , where

X∗
so , Z∗

so , X∗
sp and Z∗

cs are design matrices formed using the malting times for which protein
abundance predictions are sought, with forms described in Verbyla et al. (2021). Addition-
ally, the nonlinear relationships between abundance and time in the malting process at the
spline covariance cluster, or ‘typical’ response profile, level can be explored by estimating
the e-BLUPs Z∗

cs ũcs .

3.3. SOFTWARE

All models are fit using the asreml package (Butler et al. 2017) in the R statistical
computing environment (R Core Team 2019). The AIC based on the full log-likelihood is
derived using the icREML function (Verbyla 2019). The k-means clustering approaches are
implemented using the kmeans package (RCore Team 2019). Functions used to implement
the covariance clustering approach are available from https://github.com/ClaytonForknall/
CovarianceClustering

4. APPLICATION OF METHOD

The motivating MS-based proteomics experiment is used to illustrate the application of
the covariance clustering method (Fig. 1). Throughout this section, a consistent subset of
25 proteins are presented. These proteins were selected to span the range of differential
response types to time in the malting process. The extent of these differential responses

https://github.com/ClaytonForknall/CovarianceClustering
https://github.com/ClaytonForknall/CovarianceClustering
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Figure 2. Raw abundance of a subset of 25 proteins quantified using mass spectrometry proteomics techniques
from barley grain and malt samples. Samples were taken at different times during the malting process, as part of
the motivating mass spectrometry-based proteomics experiment. Proteins are labelled using their unique identifier
(HORVU code), followed by their common name.

is shown in Fig. 2, which presents the raw measured abundance for the selected subset
of proteins, quantified in subsamples collected at each sampling time during the malting
process (Table 1).
Step 1.1: Fit baseline linear mixed model: The fitting of the baseline LMM revealed
significant heterogeneity of residual variance, both between proteins and sampling times.
Residual variances for proteins (σ 2

epi
) ranged from 0.005 to 1.45, while the sampling time

scaling parameters (γet j ) ranged from 0.88 to 1.17 relative to sampling time j = 2 which
was constrained (γet2 = 1).

The baseline LMM also revealed non-negligible variation arising in both phases of the
motivating experiment. Table 2 presents the variance component estimates of the terms
included in the baseline LMM to account for the multi-phase experimental design struc-
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Table 2. Variance component estimates corresponding to the terms included in the baseline linear mixed
model (Step 1.1) to account for the multi-phase experimental design structure of the motivating mass
spectrometry-based proteomics experiment

Term Variance component

MaltRep 0.001
MaltTime:MaltRep 0.012
LabRep 0.002
LabRep:LabBlock 0.034
MaltTime:MaltRep:Subsample 0.041
Protein:MaltRep 0.001
Protein:MaltTime:MaltRep 1.168 × 10−8

Protein:LabRep 0.002
Protein:LabRep:LabBlock 0.001

ture (ũd). Terms describing the first phase of the experiment include MaltRep, labelling
the replicate batches of malt processed in the malting plant, and MaltTime:MaltRep,
indexing each unique grain sample collected during the malt sample collection phase. Terms
describing the second phase of the experiment include LabRep, LabRep:LabBlock and
MaltTime:MaltRep:Subsample, which describe the structured approach taken for
the processing of the barley grain subsamples. All terms are fit separately and in combination
with Protein, the latter terms included to capture potential variation between proteins in
combination with these structural terms.

The two largest sources of extraneous variation arose during the MS process-
ing phase and corresponded to variation between individual laboratory subsamples
(MaltTime:MaltRep:Subsample), and variation between the processing groups of
subsamples within a LabRep (LabRep:LabBlock), respectively (Table 2). Variation
between proteins and the structural terms were of a smaller magnitude, with one of the four
terms involving Protein estimated at the boundary of the variance parameter space (∼ 0),
being Protein:MaltTime:MaltRep.
Step 1.2: Form residual covariance clusters: Proteins were grouped into ηr = 28 different
cluster groupings, with the number of clusters considered ranging from 2 to 533 (2 ≤ υr ≤
533) according to a geometric growth model, with a growth rate of 0.2. The grouping of
proteins into clusters was repeated φr = 10 times, each time with a different starting seed.
This resulted in kr = 280 plausible residual covariance cluster groupings, based on all seed
× number of cluster combinations.
Steps 1.3 & 1.4: Fit residual covariance cluster linear mixed model; Locate ‘optimal’
number of residual covariance clusters and fit ‘optimal’ residual covariance cluster
linear mixed model: Fig. 3a presents the AIC for all kr = 280 plausible residual covariance
cluster models fit, along with the AIC from the baseline LMM. This shows that the AIC
decreases sharply with the inclusion of more residual covariance clusters in the model, and
is minimised with the inclusion of υ∗

r = 147 residual covariance clusters (vertical dashed
line, Fig. 3a).Within υ∗

r = 147, the seed which further minimised the AICwasω∗
r = 16630.

Increasing the number of residual covariance clusters beyond 147 results in poorer model
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Figure 3. Sample paths of AIC resulting from the fitting of the a residual and b spline covariance cluster linear
mixed models, respectively, for each seed × number of cluster combination (Steps 1.3 and 2.3, respectively).
Coloured points and lines correspond to the result from each of the ten seeds considered, for each covariance
cluster model. The AIC corresponds to the Akaike Information Criterion, derived from the full log-likelihood
(Verbyla 2019). The dashed lines correspond to the number of covariance clusters that minimised the AIC, on
average across the seeds considered, for each of the covariance cluster models (147 and 48, respectively). The red
stars correspond to the AIC obtained from the a baseline linear mixed model and b baseline response curve linear
mixed model, respectively (Color figure online).

fit, demonstrated by the AIC increasing. This trend is apparent across all ten seeds, although
there is some variability in individual model fits. When compared with the baseline LMM
(red star, Fig. 3a), it is seen that the inclusion of any number of residual covariance clusters
results in a substantial reduction in AIC.

Using υ∗
r = 147 and ω∗

r = 16630, the ‘optimal’ residual covariance cluster LMM was
fitted. This model revealed heterogeneity of variance between residual covariance clusters,
with cluster variances (σ 2

crm
) ranging from 0.005 to 0.21, while the accompanying sampling

time scaling parameters (γcrt j
) ranged from 0.82 to 1.39 (relative to sampling time j = 2;

γcrt2
= 1). The inclusion of residual covariance clusters reduced the magnitude and range
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Table 3. Variance component estimates corresponding to the terms included in the baseline response curve linear
mixed model (Step 2.1). The use of spl() represents a term involving a cubic smoothing spline, as per
the notation introduced in Verbyla et al. (1999)

Term Variance component

spl(malttime) 1.069 × 10−7

MaltTime 0.011
Protein:spl(malttime) 0.004
Protein:MaltTime 0.006

of residual protein variances, compared to the baseline LMM, with these variances ranging
between 4.08 × 10−8 (estimated at the boundary of the parameter space) and 1.31, with
the accompanying sampling time scaling parameters ranging from 0.88 to 1.07 (relative to
sampling time j = 2; γet2 = 1).
Step 2.1: Fit baseline response curve linear mixed model: The baseline response curve
LMM confirmed that there is non-negligible variation in the nonlinear responses of proteins
to time in the malting process (Table 3), with the estimated variance component correspond-
ing to the Protein:spl(malttime) term (σ̃ 2

p ) being nonzero.
Step 2.2: Form spline covariance clusters: Proteins were grouped into ηs = 28 different
cluster groupings, with the number of clusters considered spanning 2 ≤ υs ≤ 533 according
to a geometric growth model (growth rate of 0.2). The same ten starting seeds (φs = 10)
used in Step 1.2 were used to explore the impact of starting conditions of the clustering
procedure. This resulted in ks = 280 plausible spline covariance cluster groupings, based
on all seed × number of cluster combinations.
Steps 2.3 & 2.4: Fit spline covariance cluster linear mixed model; Locate ‘optimal’
number of spline covariance clusters and fit ‘optimal’ spline covariance cluster linear
mixed model: The AIC decreases rapidly with the inclusion of spline covariance clusters
and is minimised when υ∗

s = 48 clusters are included in the model (vertical dashed line,
Fig. 3b). Within υ∗

s = 48, the seed which resulted in the minimum AIC was ω∗
s = 9157. As

the number of clusters increases beyond υ∗
s = 48, the AIC increases, indicating a reduction

in quality of model fit, and approaches that of the baseline model (red star, Fig. 3b) as the
number of clusters increase towards the number of proteins (p = 617). This same trend is
apparent across all ten seeds.

Using υ∗
s = 48 and ω∗

s = 9157, the ‘optimal’ spline covariance cluster LMMwas fitted.
Table 4 presents the variance component estimates from the model and shows that, with the
inclusion of spline covariance clusters, theProtein:spl(malttime) term is estimated
at the boundary of the parameter space, while the Cluster:spl(malttime) term is
the dominate source of variation.

The shape and magnitude of the ‘typical’ nonlinear response profiles (Z∗
cs ũcs ) vary sub-

stantially, with some showing only small deviations from zero (spline covariance cluster
16), while others show larger departures (e.g. spline covariance clusters 45 and 11) (Fig. 4).

The impact of the ‘typical’ response profiles is clear when investigating the estimated
response curves (X∗

so β̂o + Z∗
so ũso + X∗

sp β̂p + Z∗
cs ũcs ) from the ‘optimal’ spline covariance
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Table 4. Variance component estimates corresponding to the terms included in the ‘optimal’ spline covariance
cluster linear mixed model (Step 2.4). The use of spl() represents a term involving a cubic smoothing
spline, as per the notation introduced in Verbyla et al. (1999)

Term Variance component

spl(malttime) 1.069 × 10−7

MaltTime 0.012
Cluster:spl(malttime) 0.036
Protein:spl(malttime) 6.762 × 10−9

Protein:MaltTime 0.001

Figure 4. Estimated ‘typical’ response profiles, estimated using the spline covariance cluster (SCC) specific
effects from the ‘optimal’ spline covariance cluster linear mixed model (Step 2.4). Labels in the top right-hand
corner of each facet present the number of proteins belonging to each spline covariance cluster (pm ). Spline
covariance clusters are ordered from largest number of proteins to smallest. Note the magnitude of the abundance
axis varies from row to row in the figure.
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Figure 5. Estimated response curves from the ‘optimal’ spline covariance cluster linear mixed model (Step 2.4),
describing the relationship between abundance and time in the malting process, for a subset of 25 proteins. Proteins
are labelled using their unique identifier (HORVU code), followed by their common name. Estimates obtained
from the response curves are empirical best linear unbiased predictors. Solid black dots correspond to the empirical
best linear unbiased estimators of protein abundance obtained from the ‘optimal’ residual covariance cluster linear
mixed model (Step 1.4). Cluster labels in the top right-hand corner of each facet present the spline covariance
cluster (SCC) to which each protein belongs.

cluster LMM (Fig. 5). For example, although the two proteins composing spline covariance
cluster 45 vary inmean abundance, the shape of the respective response curves of the proteins
is the same and is determined by the response profile they share by being in the same spline
covariance cluster. Another example of this arises for the three proteins presented from spline
covariance cluster 16, where, although the proteins demonstrate different responses to time
in the malting process (constant, increasing and decreasing responses), all the proteins share
a common nonlinear response profile.
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5. DISCUSSION AND CONCLUSIONS

We have developed and deployed a method, labelled covariance clustering, that enables
the analysis of designed experiments characterised by greater numbers of variables than
experimental units, in an LMM framework. The method features a twist on the tradi-
tional variance component model (Patterson et al. 1977), building parsimonious covariance
between variables by first clustering variables based on estimated effects, and then introduc-
ing these covariance clusters into the LMM through an additional random term. In this way,
complex covariance between variables can be estimated parsimoniously. Additionally, the
act of covariance clustering provides a model-based dimension reduction technique. This
occurs when, through the inclusion of a suitable number of covariance clusters in the LMM,
the variation originally arising between variables is fully accounted for by the variation aris-
ing between covariance clusters. In this way, variation between a large number of variables
can potentially be reduced to a smaller set of covariance cluster effects.

Both outcomes of the covariance clusteringmethod, being the estimation of parsimonious
covariance between variables and model-based dimension reduction, have been demon-
strated through application of themethod to amulti-phaseMS-based proteomics experiment.
Typical of proteomics experiments, it was characterised by the measurement of a greater
number of variables than experimental units; 617 proteins (variables) measured on a total
of 48 subsamples (experimental units). Covariance clustering was implemented both at the
residual level, to capture residual covariance between proteins, and at the treatment level,
to cluster proteins displaying similar nonlinear responses to time in the malting process, in
doing so demonstrating that the response of 617 proteins can be effectively reduced to 48
differential nonlinear forms.

We also present what we believe to be the first report of a multi-phase design for the con-
duct of an agriculturally motivated multi-phase MS-based proteomics experiment. Through
the use of a multi-phase design, non-negligible variation was found to arise in both the malt
sample collection phase and MS processing phase of the motivating experiment (Table 2).
The twomost dominant sources of variation were found to arise in theMS processing phase,
and corresponded to variation between the processing of individual subsamples and batches
of subsamples in the laboratory, respectively (Table 2). The potential for extraneous vari-
ation associated with processing order or batches in laboratory studies has been reported
more generally (Cullis et al. 2003; Smith et al. 2006; Oakey et al. 2013) and also in the
particular case of MS-based proteomics studies (Hu et al. 2005). In the case of the motivat-
ing experiment, the use of a multi-phase design prevented the introduction of potential bias
in the experimental results, that would arise if samples had been processed in a systematic
order. The findings of this experiment confirm the importance of sound experimental design
in MS-based proteomics studies and demonstrate that multi-phase design is a robust design
solution that is well suited for implementation in such studies into the future.

In the methods presented, a variance-component-model-like solution is used to induce
covariance between variables. The traditional variance component model (Patterson et al.
1977) builds a simplistic covariance structure, which has been found to be inferior when
compared to more complex covariance models in certain applications (Kelly et al. 2007).
However, the reliable estimation of the variance–covariance parameters involved in these
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more complex models is questionable when the number of variables to be modelled exceeds
the number of observations informing the parameter estimates. In these situations, the result-
ing covariance structures are often of reduced rank and thus computationally challenging
to estimate. Although the factor analytic variance structure formulated by Thompson et al.
(2003), based on that originally proposed by Smith et al. (2001b), can accommodate the
estimation of reduced rank variance structures between variables for moderate to large num-
bers of observations (≥ 50) (Kelly et al. 2007), evidence suggests that the performance of
such structures, especially in terms of estimating covariance parameters, is reduced when
the number of observations informing a parameter estimate is small (10–15) (Macdonald
2018; Macdonald et al. 2019). In an attempt to avoid the estimation issues associated with
these more complex covariance models and have greater flexibility and heterogeneity in
the resulting covariance structure than that possible using a traditional variance component
model, a ‘middle-ground’ in complexity and parsimony was reached by implementing the
covariance clustering approach.

The definition of covariance clusters in the methods was achieved by grouping estimated
effects using a k-means clustering algorithm (Hartigan andWong 1979). The k-means algo-
rithm was favoured as it resulted in the formation of clusters of more equal size, for smaller
numbers of clusters (data not shown). This contrasts with hierarchical clustering methods,
which, for small numbers of clusters, often result in one large cluster and multiple clusters
consisting of one or two variables (Nazarathy and Klok 2021). When implemented as a
covariance structure, the k-means approach results in structures with greater heterogeneity
of variance and covariance between a greater number of variables, whereas the hierarchical
approach induces homogeneous variance and covariance between a large number of vari-
ables, and heterogeneity between a few (data not shown). In the context of the motivating
example, it was found that the covariance structure resulting from the k-means cluster-
ing approach was better suited for modelling the complex relationships that exist between
proteins in the proteome (Agrawal et al. 2013; Robotti et al. 2015) (data not shown).

In addition to providing a means of estimating a parsimonious covariance structure, the
covariance clusteringmethod can serve as a dimension reduction technique. This is achieved
through a partitioning of variance between the covariance cluster and variable terms included
in the LMM. Due to the nested nature of the terms and, with the definition and inclusion of
sufficient covariance clusters in themodel, it would not be unexpected for a situation to occur
where the variance arising between variables (estimated to be nonzero in the baselinemodel)
is fully accounted for by variation between covariance clusters (in the covariance cluster
LMM). When applied to the motivating experiment, this was evidenced through the inclu-
sion of an optimal number of spline covariance clusters in the corresponding LMM,whereby
the variation that was previously attributable to the Protein:spl(malttime) term in
the baseline response curve LMM (Table 3), was subsequently estimated at the boundary of
the parameter space once the covariance clusters were introduced (Table 4). This indicated
that the smooth, nonlinear variation between the 617 proteins was effectively accounted
for, and could be reduced to, 48 nonlinear response profiles, estimated through the spline
covariance cluster effects (Fig. 4). The clustering and identification of ‘typical’ response
profiles could have been achieved using a range of techniques, such as a post hoc clustering
of spline coefficients, general response curve clustering methods (Gladish et al. 2021), or
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methods established under the Ramsay and Silverman (1997) paradigm of functional data
analysis (James and Sugar 2003; Coffey and Hinde 2011; Coffey et al. 2014). However,
the choice of the ‘optimal’ number of clusters to be formed using these approaches can
rely on subjectively comparing multiple selection criteria (Gladish et al. 2021), or subjec-
tively selecting parameters, in an attempt to avoid computational instabilities (Coffey et al.
2014). Using the LMM representation of the cubic smoothing spline for computationally
stable variance parameter estimates, and through the partitioning of variance intrinsic in the
covariance clusteringmethod, a model-based and objective choice of the number of clusters,
and thus dimension reduction, can be achieved.

The methods outlined in this paper were implemented using a two-stage LMM, in under
approximately ten hours. Software limitations involving the commercialR packageasreml
(Butler et al. 2017) dictated that a single-stage analysiswas infeasible due to prohibitive com-
putation times, with the method estimated to take more than 16 days based on initial testing.
Although the asreml package is unique in its support for fitting many complex variance
structures in an LMM framework, the computation times can be prohibitive and impractical
when implementing multiple of these structures to even moderately sized datasets, such as
that arising from the motivating experiment. Computational limitations can be reduced by
using a two-stage approach (Piepho et al. 2012), and, as such, this was favoured, despite the
potential loss of information incurred by using thismethod as opposed to a single-stage anal-
ysis (Gogel et al. 2018). A weighted two-stage approach was used, as this has been shown
to be superior to unweighted two-stage approaches, both in terms of loss of information and
accuracy of effects (Welham et al. 2010; Piepho et al. 2012).

Application of the covariance clustering method to theMS-based proteomics experiment
revealed the importance of approximating, through covariance modelling, the complex rela-
tionships that can exist between proteins in the proteome (Robotti et al. 2015). Significant
improvement in AIC, and thus model fit, was achieved by including any number of covari-
ance clusters (υr ≥ 2) in the residual covariance cluster LMM, when compared to the
baseline LMM (Fig. 3a). Modelling complex covariance between proteins is not currently
performed as part of routine LMM analysis methods for proteomics data (Oberg et al. 2008;
Choi et al. 2014), nor was it modelled in a previous analysis of the data arising from themoti-
vating experiment (Osama et al. 2021). Theoretically, ignoring such relationships will result
in less accurate and potentially biased protein abundance predictions than if appropriate
covariance between proteins was modelled (De Faveri et al. 2017).

Furthermore, through application of the covariance clustering method, new insights into
how the barley grain and malt proteome changes over time in the malting process were
discovered. The extent of variation between the 48 ‘typical’ response profiles, each with
complexly varying forms (Fig. 4), suggests there is novel and exploitable variability within
the proteome that could be further explored to better understand and potentially optimise
the changes that occur during the malting process. Additionally, preliminary investigations
suggest some alignment between the outcomes of the clustering procedure and the biolog-
ical function of proteins. An example of this is the proteins HORVU1Hr1G059870.4 and
HORVU1Hr1G059900.1, which both cluster together (the only two proteins belonging to
spline covariance cluster 45; Figs. 4 and 5), demonstrate similar responses to time in the
malting process and are identified as being ‘late embryogenesis proteins’ whose abundance
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has been previously reported to decrease in the early stages of the malting process (Osama
et al. 2021), consistent with their response in this study (Fig. 5). Further investigation of
the proteins composing each spline covariance cluster, and the potential alignment of their
biological functions in the barley grain and malt proteome, is the topic of ongoing research.

There aremultiple possible extensions of themethods proposed in this paper. For instance,
the complexity of the covariance structures resulting from covariance clustering could be
increased. Currently, as the number of clusters increases, the resulting variance structure
is characterised by greater pockets of heterogeneous variance and covariance; however, a
greater number of variables are assumed to be related through simple covariance. Alternate
implementations of the clustering approachwhich result in covariance structureswith greater
heterogeneity, while limiting the extent of simple covariance between variables, are an
area open for future investigation. Additionally, further investigation is warranted into the
persistence of cluster membership across different initial seeds of the k-means algorithm.
Currently, the ‘optimal’ membership of variables to clusters is informed by only one seed
× number of cluster combination. As such, there is scope to explore the consistency of
variables occurring together in the same cluster, across all seeds considered, for a given
number of clusters. Such an investigation could influence the reporting of the covariance
cluster effects (Fig. 4), or lead to alternate specifications of the ‘optimal’ covariance cluster
models to respect these persistent variable groupings.

The covariance clustering method we have proposed provides an LMM-based solution
for the analysis of designed experiments that yield datasets characterised by a greater num-
ber of variables than experimental units, and for which estimation of complex covariance
structures between variables is desired. The act of covariance clustering models hetero-
geneity of variance–covariance between any random effects in an LMM framework, be it to
capture relationships between treatments or experimental units. The method is applicable in
situations where alternate complex covariance structures may be computationally difficult
to estimate due to being of reduced rank. It is envisaged that covariance clustering could
provide an alternative to the use of factor analytic variance structures, when the number of
observations informing a variance–covariance parameter are small.
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