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Can we benchmark annual ground cover maintenance? 
Terrence S. BeutelA,* and F. Patrick GrazA  

ABSTRACT 

The capacity for rangeland stakeholders, including land managers, financiers and regulators, to 
regularly assess impacts of management practices on grazed landscapes has potential benefits. 
This paper describes the development of ground cover maintenance (GCM) spatial layers for a 
large study area in the catchment of the Great Barrier Reef in Queensland, Australia. GCM layers 
are an experimental product designed to benchmark the direction and strength of annual change 
in remotely sensed total ground cover (ΔTGC). This was achieved by predicting ΔTGC per pixel 
in a multivariate model, then using the quantile of the observed ΔTGC within its modelled 
prediction interval to benchmark observed ΔTGC. Under this approach, pixels with higher 
quantiles are those with a more positive annual observed ΔTGC after rainfall and other 
predictors in the multivariate model are taken into account. We then mapped these quantiles 
annually (2011–2021) across the study area and the annual spatial distribution of these quantiles is 
what we call the GCM layers. We identified two important issues to be addressed in future 
iterations of this work, namely, the potentially confounding impact of fire on GCM layers and 
their interpretation, and a need for more predictive skill in the underlying random forest model. 
Because management variables were not part of the underlying multivariate model but manage-
ment practices can affect ΔTGC, we were interested in whether patterns in the mapped GCM 
values correlated with any known management practices or management-practice effects in the 
study area. We tested this idea on three datasets. In one, we compared GCM values from 12 well 
managed and 12 poorly managed grazing sites, finding no significant differences between the two 
groups. Another analysis looked at the relationship between grazing land condition and cumula-
tive GCM values at two sets of sites (n = 110 and n = 189). Land condition and cumulative GCM 
values correlated significantly, although in only one of these data sets. Overall, we conclude that 
the developed GCM layers require further refinement to fit their desired purpose, but have 
potential to produce a number of benefits if current limitations can be addressed.  

Keywords: grazing management, grazing pressure, landscape ecology, rangeland management, 
remote sensing. 

Introduction 

Ground cover is an important feature of rangeland landscapes. It includes green (e.g. grasses, 
cryptogams) and non-green (e.g. leaf litter, logs, dung) components (DES 2014), provides 
ecoservices including primary production, carbon capture and soil protection, and varies in 
terms of both its composition and extent. In this work, we use the term ‘total ground cover’ 
(TGC) to define the horizontal coverage of these combined components of ground cover. 

TGC varies naturally across rangelands due to factors including soil, topography and 
vegetation, but temporal changes are largely driven by two factors, namely, rainfall and 
management (often including fire). Temporal changes in species composition also play a 
role, but typically these changes follow some change in management and/or climate/ 
rainfall (Bestelmeyer et al. 2003). In northern Australia, TGC typically correlates posi-
tively with rainfall across a range of time scales, and rainfall accounts for the majority of 
temporal variance in TGC at any location (Bastin et al. 2012). Management practices 
affect TGC, although often less dramatically and at a scale that is confounded or masked 
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by the larger fluctuations driven by rainfall. One key man-
agement impact is grazing pressure, with higher grazing 
pressure resulting in reduced TGC as pasture is removed 
and/or erosion areas expand. This relationship is not always 
straightforward; for example, changes in vegetation state 
(e.g. Stafford Smith et al. 2007) may delay or mask subse-
quent management impacts on TGC. 

In Australia, a suite of remotely sensed TGC data and 
tools data are firmly embedded in the work of government 
agencies, natural resource management (NRM) groups and 
land managers to evaluate landscape health and pasture 
productivity, understand management impacts on the land-
scape and compare the value of public investments in range-
land health (e.g. Carroll et al. 2013; Zhang and Carter 2018;  
Beutel et al. 2019; Stone et al. 2019). It is worth noting that 
TGC data are used as a surrogate for such a wide range of 
outcomes in part because TGC correlates with these out-
comes, but also because there are no more suitable surrogate 
data available at present. The foundational data behind 
these tools is the TGC time series (DES 2014), a seasonal 
(3 monthly, 1990–present), nationwide time series of 
Landsat-derived images of 30 m resolution that record per-
centage of TGC per pixel. 

Benchmarking of any sort requires the availability of ref-
erence cases to which the subject is compared. A recurring 
theme in benchmarking satellite-derived cover indices, 
including TGC, is to derive the benchmark from parts of the 
surrounding area. A commonly used example of this approach 
is the regional comparison (RC; Zhang and Carter 2018;  
Beutel et al. 2019). RC benchmarks TGC at a site against 
TGC in parts of the surrounding region with similar soil, 
vegetation and topography. This process separates the effects 
of management and rainfall on TGC, and so highlights the 
timing and extent of management impacts. This approach is 
echoed in both the Compere (Donohue et al. 2022) and 
Dynamic Reference Cover Method (Bastin et al. 2012) and 
lends itself to outputs in either a graphed time-series format 
or mapped benchmark values, depending on the tools or 
study. Benchmarking against surrounding areas is a logical 
approach. However, it does require the choice of an appropri-
ate buffer size; if the benchmark is too large, the reference and 
subject areas may differ too much climatically, and if too 
small, the reference area may be drawn from a small number 
of regionally atypical management units, which skews the 
benchmarking results. This type of benchmark also requires 
accurate stratification, so that the subject area is compared 
with a biologically similar reference area, and the availability 
of such data varies between jurisdictions in Australia (Beutel 
et al. 2019). An alternative benchmarking process would be 
modelling the reference area response via machine learning, 
and there is a range of machine learning tools suitable for 
such predictive tasks (Lesmeister 2017). This approach could 
draw on a large number of predictors (of possibly multiple 
scales) to develop a potentially more nuanced understanding 
of reference area response, would not require selection of a 

buffer area, or rely on a single or at least limited number of 
stratification layers. Statistical approaches to land degrada-
tion are common (e.g. Evans and Geerken 2004; Verbesselt 
et al. 2010; Burrell et al. 2017); however, these have largely 
focussed on assessment of a trend in an index value such as 
NDVI or its residuals once rainfall is taken into account. We 
are not aware of any published attempts to model either TGC 
or change in TGC as the basis for benchmarking observed 
values, but believe the method warrants consideration. 

Benchmarking annual change in TGC has a number of 
potential benefits. First, the process of benchmarking (in this 
context evaluating something by comparison with a standard;  
Bruno 2014) the observed annual change in TGC to the range 
of potential change has potential for land managers and inves-
tors to robustly compare TGC maintenance across different 
sites. For example, is TGC better maintained on a site where it 
increases over 1 year from 60% to 70% or on a similar adjoin-
ing site where it increases from 95% to 98% over the same 
period? And is TGC at the former site equally well maintained 
in two separate years if that result occurs in a year of drought, 
then again some years later following above average rainfall? 
These kind of insights might allow rangeland stakeholders to 
objectively compare change (at least in terms of TGC) on sites 
with differing starting levels of ground cover, in different 
ecological contexts or at different times, and so better inform 
management and investment. A second advantage of annual 
benchmarking is potentially providing more immediate 
(annual) robust feedback to rangeland stakeholders about 
change in ground cover and its relationship to management. 
This is relevant to identifying early change and preventing 
entrenchment of longer-term problems. Annual benchmarks 
could also potentially be summed or stacked to give a longer- 
term picture of change. Benchmarking can, of course, occur 
over multiple time spans and other time spans have relevance 
to other possible goals, but those are not addressed in 
this work. 

This work generated ground cover management (GCM) 
layers for three NRM regions in Queensland for the years 
2011–2021. These layers benchmark annual ΔTGC and were 
built through a modelling approach. The modelling process 
predicted ΔTGC at a pixel scale by using a large number of 
contextual spatial layers, then used the quantiles of the 
model’s prediction interval to benchmark observed ΔTGC 
per pixel. The values of a GCM layer are thus mapped 
quantiles and range between 0 and 100. Mathematically 
they indicate the proportion of the prediction interval for 
ΔTGC that falls below the observed ΔTGC in any pixel; 
however, in a more general sense they indicate how well 
ground cover has been maintained compared to modelled 
expectations. In this paper, we outline the development of 
these layers and discuss a number of observations and vali-
dation exercises designed to better describe the resulting 
layers and to provide initial insights into their capacity to 
benchmark TGC management, and to map land condition 
across the landscape. 
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Methods 

Our methods are outlined below in two separate sections. The 
first details the development of the GCM layers, and the 
second outlines a number of validation exercises conducted 
to evaluate their potential utility as indices of management 
impact. 

GCM development 

GCM layers were generated for the combined Fitzroy Basin 
Association (Fitzroy), NQ Dry Tropics (Burdekin) and 
Burnett-Mary Regional Group (Burnett Mary) natural 
resource management regions (Fig. 1). These regions cover 
approximately 360 000 km2, including approximately 
280 000 km2 of grazing land (QLUMP 2017). Rainfall in 
this area is summer dominant, with average annual rainfall 
across the region varying from above 1200 mm along sec-
tions of the eastern coast to 500 mm in the southern 
Burdekin and western Fitzroy regions. 

The TGC time series used to build the GCM layers is a 
standard product consisting of seasonal composite images 
(1990–present; DES 2014). Annual ΔTGC in spring each 
year was calculated as: 

TGC = TGC TGC ,t t 1

where t = spring in the year of assessment and t − 1 = 
spring in the year prior to assessment. Spring data were 

used because ground cover varies most across the study 
area in spring (Beutel et al. 2019). 

We modelled ΔTGC by using a starting pool of 35 predictors 
(Table 1) derived from mapped layers of the study area. These 
predictors included StartValue (TGCt−1), a suite of rainfall and 
other climatic factors, and various landscape variables relating 
to vegetation cover and type, topography and soil. Predictors 
were sourced from a range of online and local datasets on the 
basis that they may relate to TGC across the region. Predictors 
were either static (unchanged through time, e.g. annual aver-
age rainfall, soil colour) or variant (changing through time, e.g. 
prior winter rainfall, woody plant cover). 

We generated a random forest model by using the 
randomForest package (Liaw and Wiener 2002) in the R 
software (https://r-project.org) to predict ΔTGC per pixel 
from the data for spring 1991 to spring 2010 inclusive. We 
used this model to provide prediction intervals for the ΔTGC 
quantiles of subsequent years (2011–2021). The underlying 
assumption here is that 1991–2010 is climatically represent-
ative of 2011–2021. Our investigation indicated that total 
rainfall in the latter period was approximately 10% higher 
across the entire region, but we were limited in choice of 
modelling period since the model building period starts at the 
earliest possible date and had to conclude sufficiently early to 
allow creation of what we thought was a suitable number of 
GCM layers. The methodology for this process was as follows:  

1. Generate 125 000 random sample points in the grazing 
land (QLUMP 2017) of the study area, then assign each 
point randomly to a year (1991–2010).  

2. The ΔTGC and all predictor values at each point were 
extracted from their respective spatial layers, ensuring 
that variant layer values corresponded to their assigned 
year (Step 1).  

3. These data were divided randomly into a training (a) and 
independent test (b) data sets at a ratio of 4:1.  

4. We then ran a VSURF variable selection process (Genuer 
et al. 2015) on the training data (Step 3a) to identify a 
subset of predictors with a high predictive power. 
Variables with poor predictive power were discarded 
from the training data. Note that although VSURF gener-
ates random forest models, its purpose was variable 
selection and not to generate a final predictive random 
forest.  

5. Build a final random forest model from the simplified 
training data (Step 4) to predict ΔTGC, tuning the ntree 
and mtry parameters (Probst et al. 2019) before measur-
ing the fit of the model to the independent test data.  

6. We then collated the predictor layers for the study area 
that match those from Step 4 for each year of 2011–2021.  

7. Use the random forest model (Step 5) and the predictor 
layers (Step 6) to generate layers of predicted ΔTGC for 
each year of 2011–2021, then calculate the quantile of each 
observed ΔTGC by using the out-of-bag prediction interval 
method (Zhang et al. 2019) to produce the GCM layers. 
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Fig. 1. Study area comprising the Burdekin (B), Fitzroy (F) and 
Burnett-Mary (B-M) natural resource management region. 
Validation site locations are shown for Datasets 1 (+), 2 (Ο) and 
3 (Χ).  
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Table 1. Variables and their sources used for modelling ΔTGC.     

Variable X/Y Definition and source information   

ΔTGC Y EndValue − StartValue 

StartValue X Ground cover in spring prior to assessment year 

Rain1 X Total November rainfall in assessed yearA 

Rain2 X Total October rainfall in assessed yearA 

Rain3 X Total September rainfall in assessed yearA 

Rain4 X Total winter rainfall (June–August) prior to the assessed seasonA 

Rain5 X Total autumn rainfall (March–May) prior to the assessed seasonA 

Rain6 X Total summer rainfall (December–February) prior to the assessed seasonA 

Rain7 X Total rainfall June–November in year prior to the assessed seasonA 

Rain8 X Total rainfall December–May in year prior to the assessed seasonA 

Rain9 X Total rainfall December–Nov 2 years prior to the assessed seasonA 

Djaa X Woody vegetation cover indexB 

RainAnn X Mean annual rainfall (BoM product: IDCJCM004) 

RainVar X Annual rainfall variability index (BoM product: IDCJCM0009) 

RelHum09 X Mean relative humidity at 9:00 am (BoM product: IDCJCM0014) 

RelHum15 X Mean relative humidity at 3:00 pm (BoM product: IDCJCM0014) 

TempMax X Mean annual max temperature (BoM product: IDCJCM0005) 

TempMean X Mean annual mean temperature (BoM product: IDCJCM0005) 

TempMin X Mean annual minimum temperature (BoM product: IDCJCM0005) 

BareBlue X Blue reflectance of bare earth componentC 

BareGreen X Green reflectance of bare earth componentC 

BareNIR X Near-infrared (NIR) reflectance of bare earth componentC 

BareRed X Red reflectance of bare earth componentC 

BareSWIR1 X Short-wave IR reflectance of bare earth componentC 

BareSWIR2 X Short-wave IR reflectance of bare earth componentC 

TopoInt X Topographic position Index – intermediate topographyD 

TopoLoc X Topographic position Index – local topographyD 

TopoReg X Topographic position Index – regional topographyD 

Weather X Surface weathering intensity indexE 

Slope X Percent slopeF 

Landform2F X X̄ encoded regional ecosystem land zonesG 

Landform2sd X SX encoded regional ecosystem land zonesG 

Glm60F X X̄ encoded GLM land types (simplified)H 

Glm60sd X SX encoded GLM land types (simplified)H 

SubIbraF X X̄ encoded subIBRAI 

SubIbrasd X SX encoded subIBRAI 

ADerived from BoM monthly rainfall rasters (Product code: IDCK200A00). 
B Gill et al. (2017). 
C Roberts et al. (2019). 
D Wilford et al. (2020). 
E Wilford (2011). 
F Grundy et al. (2015). 
G Neldner et al. (2019). 
Hhttps://www.data.qld.gov.au/dataset/grazing-land-management-land-types-series/resource/c951ebf8-c3b8-4247-b324-9d469c0e7d7e. 
Ihttps://www.environment.gov.au/land/nrs/science/ibra.  

T. S. Beutel and F. P. Graz                                                                                                                    The Rangeland Journal 

336 

https://www.data.qld.gov.au/dataset/grazing-land-management-land-types-series/resource/c951ebf8-c3b8-4247-b324-9d469c0e7d7e
https://www.environment.gov.au/land/nrs/science/ibra


The resulting GCM layers were intended to benchmark ΔTGC 
across the study area for each year of 2011–2021. Layers were 
generated only for years outside the model period 
(1991–2010). The mapped GCM values are rounded quantiles 
ranging from 0 to 100, with higher values indicating that the 
actual ΔTGC was higher than the modelled ΔTGC. For exam-
ple, a GCM value of 95 suggests a level of observed ΔTGC in 
the 95th percentile of the prediction interval and indicates a 
high level of TGC maintenance in that year. 

Results include a number of visual and statistical summa-
ries of the GCM time series. They highlight some of the more 
obvious features in these data and are included in part 
because of the novelty of the GCM layers and to assist in 
their potential use and interpretation. 

GCM validation 

Once the GCM layers were completed, they were assessed 
against three datasets to evaluate their potential utility. In 
the first analysis, we assessed GCM values across 24 grazed- 
land parcels (Dataset 1) from 2017 to 2021 (Fig. 1). These 
parcels were identified by local extension and research pro-
fessionals in the Queensland Government, each with at least 
10 years of knowledge of grazing management practices in 
their targeted area and knowledge of longer-term manage-
ment practices on the identified parcels. Experts classified 
parcels as having either consistently good (n = 12) or con-
sistently poor (n = 12) pasture management over at least 
the previous 5 years based on their understanding of con-
temporaneous grazing pressure on each parcel. We com-
pared the mean GCM values between the consistently good 
and consistently poor parcels over this period (2017–1021), 
on the assumption that better pasture managers generally 
maintain TGC better and should thus demonstrate generally 
higher GCM values over time. 

A second analysis examined the correlation between cumu-
lative GCM and grazing land condition class (Chilcott et al. 
2003), which classes grazing land condition on an ordinal four- 
point scale from Good (A) to Very Poor (D). Grazing land 
condition changes more slowly than ground cover and is 
often driven by cumulative management practices such as 
ongoing heavy grazing or regular wet season spelling 
(Chilcott et al. 2003; McIvor 2012). If annual GCM values 
reflect annual management skill, then cumulative GCM values 
might predict grazing land condition. We tested this assump-
tion on two separate datasets (Datasets 2 and 3). Dataset 2 
documents land condition ratings collected in the field at 
110 × 1 ha sites in and around the Bowen catchment in 
2018, and Dataset 3 details land condition ratings on 189 
land parcels in the Burdekin and Fitzroy regions (Fig. 1). The 
land condition of Dataset 3 parcels was determined by consen-
sus at a workshop of regional research and extension staff 
regarding regional land condition in 2018 (Beutel et al. 
2021). For these analyses, we calculated the temporal mean 
GCM value per pixel (2014–2018) across the region 

(we ignored 2019–2021 data because they were collected 
after the 2018 land condition assessments and 2011–2013 
data due to significant missing data (discussed below)). We 
then averaged pixel values from this 5-year mean image within 
each site polygon to extract a 5-year mean GCM for each site. 
Mean GCM was used in preference to a 5-year cumulative sum 
because only the former accounts for missing values in any 
pixel time series. We then tested the correlation between land 
condition ratings and the corresponding 5-year mean GCM in 
each dataset. 

Results 

The results of the GCM layer development are discussed 
below in two main sections focussing on GCM development 
and validation. GCM development describes the GCM ran-
dom forest model and its resulting 2011–2021 layers. GCM 
validation outlines the statistical testing of these layers at 
sites identified in Datasets 1, 2 and 3. 

GCM development 

The random forest model for ΔTGC fitted independent test 
data relatively well (Fig. 2, R2 = 0.52). This model included 
10 predictors selected through the VSURF process, and these 
are shown in the variable importance plot for the model 
(Fig. 3). The most influential predictor in the model was 
StartValue (TGC at the start of the assessment year). This 
makes intuitive sense; TGC at the start of the year is likely to 
generally reflect TGC at the end of the year. In addition, 
sites with higher starting TGC have less scope to increase 
over the year (e.g. a site starting on 100% cannot increase at 
all), sites with low starting TGC have less scope to decline in 
cover, overall making ΔTGC easier to predict. Rainfall 
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Fig. 2. Observed vs predicted ΔTGC values for 25 000 indepen-
dent test cases (R2 = 0.52). The four greyscale gradations indicate the 
quartiles of the observed ΔTGC values and also the relationship 
among observed ΔTGC, predicted ΔTGC and GCM value. The palest 
points have GCM values 1–25 through to darkest (76–100).  
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variables were also important predictors, particularly rain-
fall in the summer (Rain6), winter (Rain4) and autumn 
(Rain5) immediately before the assessment season. Soil col-
our (BareRed) and woody vegetation coverage (Djaa) con-
tributed least to predictive power of the predictors selected 
in the VSURF process. 

Fig. 4 shows the relationship between observed and pre-
dicted ΔTGC and their corresponding GCM quantiles. 
Quantiles are higher where the observed ΔTGC exceeds the 
predicted ΔTGC (circle) and lower where predicted ΔTGC 
exceeds the observed ΔTGC (rectangle) in the given year. 

The impact of fire is often clearly visible in the GCM 
layers. Fire obviously has a dramatic impact on TGC, and 
visual inspections of imagery at known and suspected fire 
sites generally indicated very low GCM values in the year of 
the fire. Less commonly, the same site had very high GCM 
values in the year following the fire because cover increased 
from the very low base (Fig. 5). However, this post-fire 
‘bounce’ was not as common as was the initial drop in 
GCM values immediately after a fire. 

A second feature noted in the GCM imagery was a large 
number of missing pixel values in layers for 2011–2013 
(Fig. 6). Missing data can result from factors including cloud, 
water and woody cover masks, but the extra missing data in 
these years have three main sources. Landsat 5 was decommis-
sioned in mid-2013, reducing available data, and this along 
with a known Landsat 7 fault (Andrefouet et al. 2003) flowed 
through to TGC images and the GCM layers. These problems 
were relieved by the launch of Landsat 8 in February 2013, 
which produced more complete imagery post-2013. Missing 
data in the GCM layers were additionally caused by needing 
both TGCt and TGCt−1 to calculate ΔTGC and, ultimately, the 
GCM quantile (Fig. 7). This means that any missing TGCt value 
produces a corresponding missing GCM value in two consecu-
tive years (t and t + 1). As a result, missing values in the GCM 
layers were still relatively high in spring 2013 when Landsat 8 
had been operational for approximately 6 months. 

A final feature noted in the image time series was the 
tendency for significant areas to fluctuate annually across a 
wide range of GCM values, such that it was possible for a large 
area, for example, to have generally low GCM values in 1 year 
and generally high values in the next and vice versa. Within 
these areas, property- and subproperty-scale variation was 
also visible, but the broader fluctuation suggests either that 
TGC maintenance is temporally correlated among large num-
bers of properties, or that the model did not adequately 
capture variation in ΔTGC among years (Fig. 8). 

GCM validation 

Fig. 9 shows the relationship between mean GCM value and 
pasture management on 12 parcels with ‘good’ and 12 
parcels with ‘poor’ management, as assessed by regional 
experts (Dataset 1). We analysed the repeated measures by 
using residual maximum likelihood (REML) and modelled 

the correlation structure induced by the repeated measures. 
Various models were investigated, and the best (based on 
Schwarz information criterion) was an autoregressive pro-
cess of order 2. This showed no interaction between man-
agement type and year (F4,62 = 0.17, P > 0.05) or effect of 
management type (F1,27 = 2.20, P > 0.05), but a significant 
effect of year (F4,65 = 5.27, P < 0.001). Fisher’s protected 
least significant difference (l.s.d.) tests (P = 0.05) showed 
that mean GCM for 2017, 2018 and 2021 were significantly 
higher than that for 2019, with that for 2020 not being 
different from any year. 

Fig. 10 shows the relationship between grazing land con-
dition ratings and 5-year mean GCM values for Datasets 2 and 
3. In both cases, sites with higher land condition ratings 
tended to have higher GCM values, although the strength of 
this correlation (using Kendall’s TauB) was significant only for 
Dataset 3 (TB = −0.26, P < 0.001). 

Discussion 

Our work developed a set of spatial raster layers designed to 
benchmark ΔTGC across the landscape and provide insight 
into TGC management. Each layer benchmarks a separate 
year of remotely sensed ΔTGC (spring to spring) at a pixel 
scale. The underlying random forest model predicted ΔTGC 
on independent data reasonably well and relied heavily on 
TGCt−1 and rainfall to explain annual ΔTGC. 

The layers showed much higher proportions of missing 
data prior to 2014. As noted, this was largely driven by a 
Landsat 7 error, and exacerbated by the need for StartValue 
and EndValue in any year to calculate the GCM quantile. 
However, this problem is largely historical now and coverage 
since 2014 has been very good (>90%), with most of the gaps 
due to masking of TGC by high levels of woody cover. 

The impact of fire on GCM quantiles has important impli-
cations for how the layers might be used. Fire generally 
causes a sharp GCM decline in the year of the burn. 
Although this pattern makes sense, different burning and 
post-fire management strategies can produce very different 
outcomes (e.g. McIvor 2012; Hunt et al. 2014), and this 
makes it difficult to equate this cause of low GCM with 
poor land management. Fire clearly affects GCM values 
and validation of GCM layers should take this into account 
because mapped GCM values in a burn year may possibly 
mask other management impacts intended to protect the 
landscape in the longer term. Future development and test-
ing may require masking burn sites from analyses or at least 
noting when fire affected an analysis. 

The tendency noted for broader areas to fluctuate signifi-
cantly over time suggests either that temporal variation in 
TGC management is correlated among large numbers of 
grazing properties or that a larger scale driver of GCM was 
not captured by the random forest model. The former seems 
unlikely, but at least two scenarios are plausible for the 
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latter. One possibility is that rainfall impacts on TGC may 
not have been adequately captured in the model; so, while 
rainfall did provide a significant part of the model’s predic-
tive power, it may not have been sufficient to fully describe 
annual fluctuations. We note that in preliminary testing we 
trialled a variety of rainfall indices, including the standar-
dised precipitation index, and selected the configuration of 
rainfall variables in Table 1 on the basis of their better 

predictive power. Another potential explanation derives 
from the fact that the modelling data were collected over 
20 years (1991–2010), and a wider range of environmental 
conditions than would be expected in any single year. This 
could result in predictions for a given year occupying only a 
subset of the prediction space and thus producing only a 
subset (sometimes high or low) of potential GCM values. In 
either case, these broader fluctuations affect interpretation 
of the GCM layers and are likely to have contributed to 
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Fig. 3. Variable importance plot for the random 
forest model predicting ΔTGC. Variables are 
defined in  Table 1.   

–20 0 020 50 100

Fig. 4. Actual ΔTGC (left), predicted ΔTGC (middle) and corre-
sponding GCM values (right) for a subset of the study area in 2014. In 
the circled area, the actual ΔTGC exceeds the predicted ΔTGC and, 
consequently, the GCM quantile for the circled area is high. 
Conversely, the rectangle highlights a location where the actual 
ΔTGC is below the predicted ΔTGC and in this area GCM values 
are relatively low.  
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Fig. 5. GCM layers for a fire site (2014–2017). The burned area 
(black outline) was identified from fire-scar mapping ( Goodwin and 
Collett 2014) and occurred in autumn 2015. Note the typically low 
quantile values in the first year post-burn (2015) and relatively high 
quantile values in the subsequent year (2016) as cover increased from 
a low base. Observable impacts in the 2017 image are more limited.  
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Fig. 6. Percentage of pixels with missing data in GCM images for 
2011–2021. Values are lower post-2013 due to availability of Landsat 8 
imagery and subsequently, lower reliance on Landsat 7 data from 
early 2013.  

TGCt–1 TGCt DTGC and GCM

Fig. 7. Coverage of corresponding TGCt−1, TGCt, ΔTGC and 
GCM images. White space represents missing pixel data. ΔTGC 
and GCM values can be calculated only where both TGCt−1 and 
TGCt are available and so inherit gaps from both the parent layers.  
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limited performance in the validation testing. This issue 
would need further investigation in future iterations of the 
GCM layers, and might, for example, include separately 
modelling for wet and dry parts of the climate cycle or 
trialling alternative rainfall indices. 

The analysis of Dataset 1 examined a set of sites where 
local experts viewed pasture management as either consis-
tently good or consistently poor over the period 2017–2021, 
and we expected to see consistently higher GCM values on 
good parcels over that period. While good sites had higher 
average GCM values, no significant difference was detected 

between the two groups of parcels; so GCM did not discrim-
inate the two management groups. This suggests that in 
their current form, the GCM layers are not a reliable index 
of TGC maintenance skill since the comparison was made 
between two groups of parcels that should have separated 
reasonably well, given their relatively large difference in 
management outcomes. 

The land condition analyses (Datasets 2 and 3) showed 
that cumulative GCM values discriminated land condition 
classes well in one of the two case-study data sets, although, 
in both data sets, better-condition sites tended to have 
higher GCM values than did poor-condition sites. GCMs 
are intended to reflect TGC management, and although 
TGC is a significant component of grazing land condition, 
condition is multidimensional and is not explained by TGC 
alone (e.g. sites with heavy cover of weedy grasses have 
good cover but poor grazing land condition). Given this, it is 
encouraging that cumulative GCMs did correlate with land 
condition as well as they did, and the potential use of these 
values in mapping or modelling land condition spatially 
may be worth further investigation. 

Conclusion 

The capacity to assess management practices annually has a 
number of potential uses for rangeland stakeholders, includ-
ing managers, financiers and regulators. This kind of prod-
uct has potential uses in understanding and informing 
management decisions on individual sites, assessing the 
success of extension interventions and possibly even in map-
ping and modelling grazing land condition across the land-
scape. Consequently, new and/or improved approaches to 

0 20 40 60 80 100

Fig. 8. GCM image subsets for corresponding area of Fitzroy Basin 
for 2020 (left) and 2021 (right). Property- and paddock-scale contrasts 
are visible, but there is also a distinct overall difference between the 
two images, with the 2020 image having generally much lower GCM 
values.  
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Fig. 9. Boxplot of annual average GCM values on parcels with 
consistently good and consistently poor pasture management 
(2017–2021) in the Dataset 1 parcels.  
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Fig. 10. Boxplots of 5-year mean GCM values on 110 ×1 ha land 
condition assessment sites (Dataset 2) in the Bowen catchment (left) 
and 189 larger grazing property parcels (Dataset 3) across the 
Burdekin and Fitzroy NRM areas (right).  
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the goals of this work are warranted. Overall, the validation 
work in this paper suggests that the GCM layers we devel-
oped require further refinement to fit their desired purpose. 
The underlying model of ΔTGC had reasonably good predic-
tive skill, but also substantial room for improvement. We 
also identified a number of factors that complicate the use 
and interpretation of the layers. Of particular note is the 
impact of fires on sequential GCM values and the tendency 
for broader-scale fluctuations in GCM values among years. If 
these issues can be addressed and the predictive power of 
the underlying model improved, then the GCM approach we 
proposed here could provide more reliable results and 
potentially fit its intended purpose more reliably. 
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