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Abstract

Trichodesmium, a filamentous bloom-forming marine cyanobacterium, plays a key role in the

biogeochemistry of oligotrophic ocean regions because of the ability to fix nitrogen. Naturally

occurring in the Great Barrier Reef (GBR), the contribution of Trichodesmium to the nutrient

budget may be of the same order as that entering the system via catchment runoff. However,

the cyclicity of Trichodesmium in the GBR is poorly understood and sparsely documented

because of the lack of sufficient observations. This study provides the first systematic analysis

of Trichodesmium spatial and temporal occurrences in the GBR over the decade-long MERIS

ocean color mission (2002–2012). Trichodesmium surface expressions were detected using

the Maximum Chlorophyll Index (MCI) applied to MERIS satellite imagery of the GBR lagoonal

waters. The MCI performed well (76%), albeit tested on a limited set of images (N = 25) coinci-

dent with field measurements. A north (Cape York) to south (Fitzroy) increase in the extent, fre-

quency and timing of the surface expressions characterized the GBR, with surface expressions

extending over several hundreds of kilometers. The two southernmost subregions Mackay and

Fitzroy accounted for the most (70%) bloom events. The bloom timing of Trichodesmium varied

from May in the north to November in the south, with wet season conditions less favorable to Tri-

chodesmium aggregations. MODIS-Aqua Sea Surface Temperature (SST) datasets, wind

speed and field measurements of nutrient concentrations were used in combination with MCI

positive instances to assess the blooms’ driving factors. Low wind speed (<6 m.s-1) and SST >
24˚C were associated with the largest surface aggregations. Generalized additive models

(GAM) indicated an increase in bloom occurrences over the 10-year period with seasonal

bloom patterns regionally distinct. Interannual variability in SST partially (14%) explained bloom

occurrences, and other drivers, such as the subregion and the nutrient budget, likely regulate

Trichodesmium surface aggregations in the GBR.
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Introduction

Cyanobacterium Trichodesmium sp. is a marine diazotroph [1] phytoplankter found in all

tropical and subtropical oceans [2–4]. In recent years, Trichodesmium erythraeum, the species

occurring in Australian waters, has also been reported in the Mediterranean Sea [5] in late

summer-early autumn and in UK coastal waters during winter [6]. Trichodesmium is known

for forming extensive algal blooms that can cover hundreds of kilometers of the ocean surface.

Aggregations have sometimes been so large that the sailors of the HMS Endeavor mistakenly

identified a new shoal when the vessel sailed through the Torres Strait (North of Cape York,

Australia) in August 1770. These persistent surface expressions occur toward the end of the

algal bloom phase [7] and can last several days until the bloom subsides. Composed of senes-

cent cells that are darker than healthy cells due to chlorosis [8], these surface matts increase the

water-leaving radiance signal in the red-near-infrared (NIR) spectral region (680–750 nm),

also called “red edge” [9], allowing their detection from satellite sensors for the past 30 years

[10–12].

Blooms of Trichodesmium colonies likely play key roles in the ecosystem because of their

ability to fix atmospheric nitrogen [13, 14], thereby contributing to new nitrogen inputs in oli-

gotrophic waters [15–18]. Trichodesmium colonies also contribute to the phosphorus budget

by the uptake of phosphorus for growth [19, 20], in addition to providing substrate and shelter

to various organisms ranging from bacteria to crustacean larvae [21]. In the oligotrophic

waters of the Great Barrier Reef (GBR), with chlorophyll-a concentrations that range from

~0.2 to 0.8 μg.L-1 (e.g., S1 Fig; [22]), nitrogen fixation by Trichodesmium blooms may be a

major source of new nitrogen, particularly in the offshore parts of the shelf [19, 23].

However, because of the lack of systematic studies of Trichodesmium bloom events in the

GBR, the understanding of their temporal and spatial dynamics within the system remains

limited [4]. Based on field observations or satellite datasets, only a few studies have described

the climatology of Trichodesmium in this region. The first study (1933) provided the seasonal

abundance of Trichodesmium off the Low Islands (North of Cairns; Fig 1) over one annual

cycle [24]. A major burst (~180 trichomes.L-1) occurred in August and was followed by

another, although lower (~145 trichomes.L-1) but more sustained, peak in November-Decem-

ber. Four decades later, taxonomic counts of Trichodesmium at three stations off Townsville

visited in 1976 and 1977 also reported the highest number of cells in August, December and

March [25] (Fig 1). A 1992 study reported that Trichodesmium surface aggregations occurred

mostly between August and February, but the spatio-temporal distributions of the events were

uncertain [14]. More recent satellite-based studies have reported on Trichodesmium blooms in

the western Pacific [26, 27], the north Pacific subtropical gyre [28] and in the Cairns subregion

[29]. In the latter, the phenology of Trichodesmium events during the ESA-MERIS sensor’s

mission from 2002 to 2012 occurred predominantly in August.

Thus, the complete spatial and seasonal occurrence of Trichodesmium in the GBR as a

whole remains unresolved until this study, because to our knowledge, no previous research on

the climatologic distribution of Trichodesmium has systematically analyzed these events over a

decade-long period. This study builds on our previous research for the Cairns subregion [29]

and extends this analysis to the whole of the GBR spanning 15˚ of latitude (9.5˚ to 24.5˚ S; Fig

1). Using 10 years of MERIS Reduced Resolution (RR) satellite data and the Maximum Chlo-

rophyll Index (MCI) [30], we provide new insights into the spatial distribution and decade-

long temporal dynamics of Trichodesmium blooms in the GBR region. By comparing time-

series of MCI-positive instances along the GBR lagoonal waters, we identify the spatial and sea-

sonal patterns of Trichodesmium surface expressions across the GBR subregions. Comple-

mented by datasets of remotely sensed sea surface temperature (SST), wind speed and in situ
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nutrients, we assess the primary environmental factors associated with Trichodesmium surface

expressions within the GBR.

Materials and methods

No specific permissions were required for these locations and research activities. The Austra-

lian Institute of Marine Science provided the nutrient datasets. No endangered or protected

species were involved in this work.

The study region: Seasonal and hydrological aspects

The GBR has an area of ~350,000 km2, with 10% covered by coral reefs (>3,000 individual

reefs) [31]. This study focuses on the GBR lagoon, the water body located between the shore-

line and the coral reef matrix (Fig 1). The width of the lagoon varies from up to 250 km in the

southern GBR to less than 25 km north of 18˚ S, as the reef matrix is closer to shore there (Fig

1).

The GBR has a monsoonal climate with most rainfall occurring during the wet season

(summer, November to April, >1,500 mm/year), resulting in episodic large river runoffs that

may decrease the lagoonal water salinity (<< 33 ppt) and increase turbidity (Secchi disk

depth< 1 m; [32]) in the near-shore lagoon [31, 33]. These conditions are observed close to

large river catchments, such as the Fitzroy River or the Burdekin River, or in shallow, tidal

embayments, e.g., Broad Sound (Fig 1). Rainfall patterns and intensity are also influenced by

the El Niño and La Niña climate phases, with El Niño summers characterized by higher than

average SSTs, low wind speeds and clear skies, whereas La Niña summers are characterized by

lower than average SSTs, higher wind speeds, and more cloudy conditions [34]. During the

dry season months (May-October, <300 mm/year), southeast trade winds dominate. Wind

strength eases in November-December and changes direction, allowing the intrusion of clearer

water masses from the Coral Sea into the central and southern sections of the GBR.

For this study, the GBR was divided into five subregions (Fig 1), geographically defined as

per the Natural Resource Management (NRM) areas. Typically, NRMs are used as reporting

regions in the GBR report cards and Marine Monitoring Program (MMP). The water bodies

vary in width from north to south. Cape York (CPY; Fig 1) is the subregion closest to the reef

matrix. Most of the land in this subregion is undeveloped, with extensive land areas dedicated

to nature conservation [35]; thus, the water quality is considered relatively pristine [36]. The

Normanby is the major river and flows into Princess Charlotte Bay. Most of the coastal catch-

ments in CPY are subject to heavy tropical rainfall. Although composed of small rivers, the

CPY river catchments have an annual discharge equal to one-fourth of the entire GBR [31].

The Cairns subregion (CRN; Fig 1) is characterized by wet tropical rainforest and cleared land

with agriculture being the major land-use. The primary rivers influencing the CRN are the

Mossman, the Daintree, the Johnstone and the Tully rivers. In the Burdekin subregion (BDK;

Fig 1), agriculture (cattle grazing in particular) is the main (90%) land-use activity [35]. The

BDK is one of the largest (130,000 km2) catchments in the GBR, and its main river, the Burde-

kin, can generate extensive river plumes during the wet season [33, 37]. The Mackay subregion

(MCK; Fig 1) is the farthest from the reef matrix (the GBR lagoon is the widest there) and

hosts most of the sugarcane industry. The Fitzroy subregion (FIT; Fig 1) experiences a semi-

arid to subtropical climate, and the land-use is characterized by cattle grazing [35]. The Fitzroy

Fig 1. Map of the study region including major cities, rivers, the masking of the reef matrix and the geographic

boundaries of the five subregions for this study. Light blue shading indicates the reef lagoon area that was the focus

of this study. Black circles indicate the locations at which validation samples were taken.

https://doi.org/10.1371/journal.pone.0208010.g001
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River is the largest river system and catchment (140,000 km2) discharging into the GBR [38,

39].

Nutrient and metadata dataset from in situ sampling

In situ sampling of physical and chemical variables was conducted in each of the five subre-

gions over the period 2002–2013. Data are summarized in S1 Fig. All water samples were col-

lected with Niskin bottles, salinity and temperature were determined with a CTD SeaBird 911,

and chlorophyll-a concentrations were measured fluorometrically using a Turner Designs 10

AU fluorometer. Further description of the methods used for this analysis can be found in [40,

41].

Satellite image processing

During its mission, the MERIS ocean color sensor onboard the Envisat satellite provided

reduced resolution (RR; 1.2 Km) imagery acquisitions of the GBR every two days on average.

MERIS full resolution (FR; 300 m) imagery was intermittently acquired over Australia.

Because the aim of this study was to use the entire MERIS mission, only RR imagery was used

for this analysis. A total of 4,681 MERIS RR scenes from the third reprocessing, covering parts

of the GBR between April 29, 2002, and April 4, 2012 (at ~10 a.m. local time; UTC+10), were

downloaded from the Optical Data processor of the European Space Agency (ODESA) pro-

vided by ACRI-ST (www.odesa-info.eu/). Subsets bounded to the five geographic subregions

of interest were created, resulting in a total of 7,234 MERIS subscenes (S2 Fig). Land mass,

cloud and sun glint-contaminated pixels were masked using the MERIS Level 1 quality flags.

The MERIS Maximum Chlorophyll Index (MCI) [42] was used for the detection and map-

ping of surface algal bloom expressions. The MCI algorithm is primarily designed for the

detection of algal blooms with very high Chl-a concentrations globally (>30 μg.L-1) [30, 42],

but such Chl-a concentrations are very high in comparison to the concentration ranges found

in the waters of our study area: the GBR lagoonal waters are typically oligotrophic (Chl < 1 μg.

L-1) (e.g., [22, 43], S1 Fig), with higher Chl-a concentrations measured sporadically during the

wet season [40, 44]. Previous studies show that MCI can be used to detect surface blooms of

slick-forming algal species such as Sargassum [45–47] in the Gulf of Mexico and Atlantic

Ocean, in addition to Trichodesmium [10, 29, 48, 49]. Computed from three MERIS bands in

the near-infrared, namely, 681, 709, and 753 nm [50, 51], the MCI was defined as follows:

MCI ¼ L709 � k� L681þ ðL753 � L681Þ �
709 � 681

753 � 681

� �

ð1Þ

where Lλ are level 1 TOA radiances at wavelengths λ using MERIS bands 10 (753 nm), 9 (709

nm) and 8 (681 nm), and k is a cloud factor set at the value of 1.005 and used to correct the

influence of thin clouds.

The MCI algorithm was applied to each Level 1 scene using the VISAT BEAM software

toolbox (now replaced by the Sentinel Application Platform (SNAP)) and the default cloud

correction factor of 1.005 to reduce the effect of thin clouds [52]. Processing the images to

Level 2 included an atmospheric correction step, which might either result in flagging Trichodes-
mium sp. pixels as erroneous or as a saturated product over brighter bloom areas because radiance

values for these pixels would likely be outside the expected range of the MERIS atmospheric cor-

rection [42, 53]. MCI radiances typically vary between -3 and ~15 mW-2.sr-1.nm-1, with positive

values above an MCI background level indicating phytoplankton-laden pixels. The MCI product

does not have refined flags; thus, quality control was insured by computing the MCI for pixels

with Level 1 top of atmosphere (TOA) radiance at 865 nm as<15 mW-2.sr-1.nm-1 [30], which
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further filtered pixels contaminated by land, high sun glint, haze or thick clouds. Disadvantages of

the MCI include its sensitivity to submerged reefs [48, 54], because coral reefs contain zooxanthel-

lae that may trigger a positive MCI response [42]. A mask was applied to separate the GBR lagoon

from the Coral Sea, thereby covering the entire reef matrix and avoiding the inclusion of possible

false positives from the coral reef signals (Fig 1). The total counts of positive MCI values for each

scene, hereafter called MCI positive instances and noted as MCIPI, were defined as:

MCIPI ¼
Pn

i¼0
MCI > ðt � bÞ ð2Þ

where t is the MCI threshold value, b is the background MCI value and n is the number of valid

MCI pixels (i.e., “valid” refers to pixels for which a meaningful value is obtained not flagged for

cloud, glint or any other L1 quality flag).

The value of b is always negative, and as a result, the term (t-b) is always positive. The threshold

t and median ocean background MCI values b of +0.4 mW-2.sr-1.nm-1 and -0.4 mW-2.sr-1.nm-1,

respectively, were selected based on Gower et al. [48, 55]. However, we found that the sun illumi-

nation effects and the sensor-sun geometry were highly variable across regions covering 14˚ of

latitude, and theGower et al. background value of -0.4 mW-2.sr-1.nm-1 was deemed not represen-

tative for our study region. For this study, twas a constant set at 0 mW-2.sr-1.nm-1, and bwas com-

puted for each scene by taking the mean MCI value of non-bloom-contaminated pixels in the area

surrounding the blooms. The component (t-b) varied in accordance with the viewing or sun

angle.

Remotely sensed datasets of sea surface temperatures (SST) were used to support our analy-

sis and assess the relationship between SST and Trichodesmium occurrences in the GBR

lagoon. SST datacubes were composed of the daily NASA-MODIS Aqua skin temperature

datasets for the period spanning the MERIS acquisition dates starting from July 4, 2002 to

April 7, 2012. A box delineating the boundaries of each subregion and the same masks used

for the MCIPI data covering the land, the reef matrix and the Coral Sea were also applied to the

SST. SST daily average values were extracted for each subregion for the lagoon waters only.

Across the entire time-series for all regions, SST varied from 17.5˚C to 29.9˚C, with an overall

median of 23.5˚C.

Algorithm validation

The performance of MCIPI at retrieving Trichodesmium bloom surface expressions was

assessed using field observations collated from four sources: the GBR-wide marine moni-

toring program (MMP), the GBRMPA database, CSIRO field campaigns and those listed

in [56]. These records provided only qualitative observations (i.e., absence, presence) of

Trichodesmium bloom surface expressions. The extent of the surface aggregations was not

available, because these records were not collected explicitly for satellite validation pur-

poses. Only the location (latitude, longitude), datum and the qualitative observation

(absence, presence) were indicated. Records labeled as “present” between April 2002 and

June 2009 were used (N = 432). For the purpose of this validation exercise, the search for

the listed Trichodesmium events was conducted following McKinna et al [56]: indepen-

dently of the sea-truth observation time, MERIS images within ±2 days of the observation

date were used. The location of the field observation was used as the center pixel of a 10 x

10 pixel box (equating to ~100 km2). The maximum MCIPI value within that pixel box was

extracted and used to determine absence or presence of Trichodesmium aggregations.

When several images showed positive results for a single field observation, only the image

the closest in time and date to the observation was considered. A coral reef mask was

applied to each selected scene.
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Wind speed datasets

Daily average wind speed was estimated in each of the five subregions from the eReefs CSIRO

Environmental Modelling Data Node (www.ereefs.org.au/). The GBR 4-km hydrodynamic

model was used to estimate the daily eastward and northward wind components from which

the wind speed and direction were computed. The components were modeled at 10 a.m. local

time to match the overpass time of the MERIS satellite sensor. Only daily wind speed data

from September 1, 2010, onward were available, which limited the dataset to a total of 581 days

(i.e., September 1, 2010-April 4, 2012).

Data analysis and generalized additive model (GAM) selection

To analyze the seasonal patterns of Trichodesmium blooms in the GBR, MCIPI were

extracted from all MERIS scenes for the five subregions (Fig 2). Only daily subscenes with a

minimum of 10 MCIPI were counted as containing bloom events and used for the subse-

quent analysis, and the value of b (Eq 2) was computed on at least 50 valid pixels. Using the

R package “wq” for water quality data analysis [57], daily MCIPI were aggregated into

monthly means to construct a 121-month time-series for the five subregions, and decadal

trend models were computed using semiparametric smoothing techniques. An overall aver-

age of 13 MERIS scenes per month was available for monthly aggregations for a specific sub-

region. MERIS scenes with missing pixels were highly seasonal and occurred mostly during

the wet season, i.e. January-March, due to cloud cover. The southern regions of MCK (2%)

and FIT (4%) were the least affected by missing data, whereas CRN (33%) was the most

affected (S2 Fig).

Two generalized additive models (GAMs) were built to model the influence of predictors

(SST, time of year, interannual variation, and region) on the occurrence of Trichodesmium
blooms, based on our response variable (MCIPI). Wind was not used as a predictor, because

the wind dataset was limited to only two years of the study period. Models were based on daily

data collected between July 4, 2002, and April 4, 2012. Days for which< 20% of a scene was

visible (i.e.,� 80% cloud cover) were excluded from the analysis. The resulting dataset was

zero-inflated (45%) and was analyzed using the two-step hurdle approach: (1) explain pres-

ence/absence, and (2) when present, explain extent [58].

Firstly, to assess the probability of a Trichodesmium bloom occurring, a GAM was fitted

to the binary data (bloom or no bloom, hereafter called Bernoulli) using themgcv package

in R and a binomial link function. A GAM approach was used because several key predictor

variables were considered likely to have non-linear effects: SST, time of year (or seasonality,

represented by Julian Date) and interannual effects (represented by year). To test for

regional differences in seasonality, the factor “region” was included in the model as both a

main effect and as a varying coefficient of Julian Date (similar to an interaction effect).

Secondly, a beta GAM was used to assess the variables influencing the extent of Trichodes-
mium blooms, within the subset of data in which blooms had been observed to occur. The

response variable “bloom extent” was represented as the number of bloom pixels divided by

the number of valid pixels in each image. This approach controlled for differences in the

number of valid pixels in each image (e.g., non-cloud pixels) and for differences in the size

of each region. The resulting variable was a proportion that did not include any zeroes or

ones and was therefore ideally suited to a beta distribution. The response variable was cube

root transformed to increase the spread of data and improve model dispersion, while stay-

ing within the constraints of the beta distribution. The beta GAM was fitted using a theta of

30 and the identity link function. Smoothers were applied to both SST and time of year data

for the Bernoulli and beta GAMs.
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Results

A summary of the physical and chemical variables in the surface waters of each subregion for

the period 2002–2013 is presented in S1 Fig. Distinct differences were found in averaged key

environmental parameters collected in the five subregions, with the largest spatial variations for

temperature, particulate organic carbon (POC), nitrogen (PN), phosphate (PP), dissolved inor-

ganic nitrogen (DIN) and organic phosphate (DOP), total dissolved nitrogen (TDN) and phos-

phate (TDP). Most of the nine variables showed slight north to south gradients across the five

subregions: temperature decreased from CPY to FIT by up to 3.5˚C associated with the change

in latitude (tropical to subtropical), whereas Chl-a showed little change (s.d.~0.2 μg.L-1) across

the subregions. Some of the nutrients (e.g., POC, DIN, and TDP), with the exception of PP,

showed minor increases in concentrations across the subregions on a north to south gradient.

DIN and PN showed a very minor increase from CPY to BDK, and notably, DOP showed a

>80% increase from CPY to FIT. This latitudinal gradient in nitrogen and phosphorus is con-

sistent with recent findings on GBR water quality [40, 59], with greater reported loads of DIN

and PN in the southern GBR.

McKinna et al. used a set of 13 NASA-MODIS high-resolution (250 m) images coincident

with Trichodesmium events observed in the central GBR (16˚-23˚ S) to validate a binary classi-

fication algorithm [56]. The events used for the satellite retrieval assessment in their study

were recorded in January 2005, April and October 2007, July, September, October, and

November 2008 and February and June 2009. The algorithm retrieval was robust (85% suc-

cess), albeit tested on a limited number of scenes (N = 13). Our validation exercise used 25

field observations with matching MERIS images (Table 1). Observations were reported in all

months except March and December, with more than half (52%) recorded between September

and November. A total of 19 these records had positive MCIPI, equivalent to 76% success. A

total of nine MERIS scenes retrieved 13 of the sightings listed inMcKinna et al. [56]. The dis-

tribution of the site locations is shown in Fig 1.

Fig 2. Time series of monthly averaged MCIPI for the five subregions (ordered from north to south). Vertical dashed lines represent

6-month periods for all plots.

https://doi.org/10.1371/journal.pone.0208010.g002

Table 1. MCIPPI validation results. Annual distribution of Trichodesmium field records noted as “present” with

matching MERIS images (N = 25): columns 1–2: number of recorded field observations for each month; col. 3: corre-

sponding frequency of these observations; cols. 4–5: MERIS retrieval statistics showing whether recorded field observa-

tions were retrieved by a MERIS image or not in the matching image pool.

Month N % Retrieved Not retrieved

January 1 4 0 1

February 2 8 2 0

March — — — —

April 3 12 0 3

May 1 4 0 1

June 2 8 2 0

July 2 8 2 0

August 1 4 1 0

September 5 20 5 0

October 5 20 5 0

November 3 12 2 1

December — — — —

Total 25 100 19 6

https://doi.org/10.1371/journal.pone.0208010.t001
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The number of MERIS images varied across subregions, with the lowest number of scenes

for CRN (N = 1,117) and FIT with the most (N = 1,788) (Table 2). A strong seasonality in satel-

lite data availability was apparent, with the number of valid observations sharply decreasing

during the wet season months because of increased cloud cover (S2 Fig) [60]. The magnitude

of this seasonal decline decreased from CPY in the wet tropics to the subtropical region of FIT

in which the wet season cloud cover was less pronounced. The monthly time-series of MCI

background value, b, for each of the five regions is shown in S3 Fig. The difference in sun ele-

vation and satellite observation angle variability across the 14˚ of latitude and the seasons

resulted in a 25% difference in mean MCI background value between the northernmost (CPY;

-0.8 mW-2.sr-1.nm-1) and the southernmost (FIT; -0.6 mW-2.sr-1.nm-1) regions. Highest MCI

background values were observed around June (early dry season) for all regions.

The multi-annual times-series of monthly averaged MCIPI for the five subregions are

shown in Fig 2. The two southernmost subregions MCK and FIT accounted for>60% of all

MCIPI for the GBR (Fig 2). Identical patterns were observed when these time-series were pre-

sented as ratios between daily MCIPI and the corresponding number of satellite observations

for each region (data not presented). A general increase in MCIPI occurred from north to

south, with CPY and CRN with the lowest (N = 272) overall number of monthly maximum

counts (Fig 2) in comparison with the southernmost regions MCK and FIT for which monthly

counts reached up to>2,000. Years with the most MCIPI varied across subregions but all

occurred from 2007 onward with the exception of BDK (Fig 2; Table 3). The decadal seasonal

signals (Fig 3) and their phenology (Fig 2) explicitly demonstrated that the peak of surface

expressions captured in the imagery had a north to south gradient. The difference in algal

bloom sizes also had a north to south increasing gradient in algal bloom area coverage, which

was aligned with the overall increase in nutrients from northern to southern regions (e.g., [33],

S1 Fig). The largest bloom events found in each of the five subregions are shown in Fig 4. In

these instances, surface expressions were estimated to extend over 20,000 km2 with as many as

10,500 MCIPI in a single scene (e.g., MCK). Although blooms mostly occurred in July-August

in CPY and CRN [29] in the north, a progressive shift occurred toward September in MCK

and October-November in FIT (Fig 5). When all months were considered over the 10-year

period, the largest number of bloom events occurred in 2006 (CPY), 2008 (MCK), and 2009

(CRN, FIT) (Table 3). The years 2009–2010 were moderate El Niño years and therefore char-

acterized by limited rainfall. The year 2011 was a wet year characterized by large river dis-

charges in the BDK in particular and associated low MCIPI counts. The Trichodesmium bloom

of October 2008 in MCK is also reported in Fig 8 in McKinna [10], whereas the large bloom

events of August 2011, mostly covering the northern GBR, are well known and featured in

NASA’s Earth Observatory Image Of the Day for this period (e.g., https://earthobservatory.

nasa.gov/IOTD/).

The occurrence and extent of Trichodesmium blooms were analyzed following the two-step

hurdle approach to: (1) explain the occurrence of blooms and (2) where present, assess the var-

iables influencing the extent of Trichodesmium blooms. The Bernoulli GAM modeling the

Table 2. Statistics for the MERIS imagery dataset used in this study. Number of images for each subregion with

MCIPI > 10 for the five regions and percentage these images account for as a function of the total number of images.

CPY CRN BDK MCK FIT

Size x103 km2 30 36 42 54 40

Nimages Total 1426 1117 1284 1619 1788

Nimages MCIPI 489 200 416 740 771

% 34 18 32 46 43

https://doi.org/10.1371/journal.pone.0208010.t002
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probability of a Trichodesmium bloom occurrence was fitted to the Bernoulli model assump-

tions (normality of residuals and homoscedasticity) and displayed an R2 of 14% (N = 3,732).

All of the variables included in the model had significant effects on the probability of a Tricho-
desmium bloom occurring (S1 Table). The effect of SST was strongly significant and non-lin-

ear, with a steep increase in probability of a bloom with increasing temperature up to

approximately 24˚C and a near-plateau in probability of a bloom at temperatures above 24˚C

(not shown). From the GAM analysis, the probability of a bloom occurrence peaked near the

200th day of the year (mid-July) in the northernmost regions and progressively later in the year

at more southerly regions (S1 Table), corroborating the graphical analyses of the monthly pat-

terns in MCIPI (Fig 3).

The beta GAM modeling the extent of Trichodesmium blooms was fitted to the beta model

assumptions [61]. The prediction model was not over-dispersed (<1) and displayed an R2 of

18.5% (N = 2,106) (S2 Table). A non-linear effect of SST was observed, with a statistically non-

significant peak in bloom extents at 23 to 24˚C (p = 0.319). The largest measured influence on

the extent of Trichodesmium blooms was subregion, with a highly significant regional main

effect, in addition to a changing pattern in seasonal effects by region (S2 Table). Year had a

weakly positive effect, with increasing extent of Trichodesmium blooms over the 10 year study

period observed in all regions (Fig 6).

Overall, surface expressions of Trichodesmium blooms occurred more frequently from

approximately July-August at northerly latitudes to November-December at more southerly

latitudes. In CPY, surface expressions occurred for the months of August-September, with a

second peak in November (S4 Fig). These later bloom events were mostly located in or close to

Princess Charlotte Bay (Fig 1). In CRN, surface expressions tended to appear between June

and September (S5 Fig) [29]. In BDK, the surface bloom seasonal activity (S6 Fig) was similar

to that in CRN, although blooms could last until December and tended to occur near the

mouth of the Proserpine River. In contrast to CPY and CRN, the spatial distribution of Tricho-
desmium surface expressions in BDK was widespread across the entire subregion and showed

a higher frequency in pixel counts (S5 Fig). MCK and FIT had the greatest frequency and

extent of surface blooms on the GBR; peaks in these regions occurred from September to

November (S7 Fig): surface expressions in these subregions were widespread both along the

coastline and across the lagoon. FIT had the highest percentage of bloom coverage over the

lagoon for all subregions considered, with bloom spatial extents that covered up to 80% of the

region in October. MCK had the second largest coverage (>60%).

The average daily wind speed corresponding to events with MCIPI larger than 100 varied

between 1.6 and>8 m.s-1 (N = 313) across all regions (Tables 4 and 5). Although no strong

correlation was found between the two parameters, MCIPI increased when wind speeds

dropped below 6 m.s-1. The average wind speed was 1.66 m.s-1 lower during large bloom

Table 3. Monthly and yearly time-series statistics: Maximum MCIPI computed for each subregion when monthly

and yearly aggregations were considered; dates are indicated between brackets. Decadal MCIPI (last column) and asso-

ciated percentage of the total (all regions considered) were based on monthly aggregations over the 10-year period.

Region Monthly Yearly S MCIPI for 2002–2012 period

CPY 145 (August 2011) 703 (2006) 5,600 (9%)

CRN 247 (June 2009) 645 (2009) 2,752 (4%)

BDK 1,111 (Nov 2003) 1,956 (2003) 10,484 (16%)

MCK 2,469 (Oct 2008) 4,886 (2008) 25,913 (40%)

FIT 1,504 (Nov 2009) 4,315 (2009) 20,116 (31%)

Total 64,865 (100%)

https://doi.org/10.1371/journal.pone.0208010.t003
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events (>2,000 MCIPI; 5.27 m.s-1) than that during smaller (<500; 6.93 m.s-1) blooms (Tables

4 and 5). The wind direction recorded for these aggregations, independently of their size, was

largely (>80%) from the east-southeast, which indicated that the floating aggregations were

pushed toward the shore.

Discussion

On a global scale, the onset and termination phases of Trichodesmium blooms depend on

many environmental factors [62, 63], which include the combination of optimal salinity [64]

and light [65, 66] conditions, nutrient (iron and/or phosphorus) availability [67], the lack of

predation (e.g., copepod grazing or viral lysis) [68, 69], water column stability [70] and tem-

perature [71, 72]. In the Indian Ocean (off Zanzibar, 6˚ S), regular Trichodesmium aggrega-

tions are likely influenced by the warming and shallowness of the mixed layer in the summer,

and the blooms are spatially sustained by iron supply carried eastward from the upwelling

region south of Madagascar [73]. In the Red Sea (20˚-25˚ N), Trichodesmium peaked in July

Fig 3. Decadal seasonal amplitudes of MCIPI (black) and valid satellite observations (gray) for the five subregions. The sum of all

the seasonal amplitudes over the course of a year for each subregion is equal to 12. The strength of the seasonal signal explains the

differences in bar sizes.

https://doi.org/10.1371/journal.pone.0208010.g003

Fig 4. MERIS scenes featuring the largest surface expressions (in size and number of MCIPI) occurring in the

lagoonal waters of each subregion between April 2002 and April 2012. The reef matrix and the land are masked in

gray.

https://doi.org/10.1371/journal.pone.0208010.g004
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[74]. From our results, seasonal and spatial patterns of Trichodesmium aggregations were evi-

dent for the GBR. Previous studies identified the possible environmental triggers of these

highly seasonal surface blooms as a combination of low wind speed, nutrient availability

(required for a large bloom to occur and persist [75]) and a marginal role played by SST. Yet, it

has also been shown that Trichodesmium abundance and seawater temperature may not have

clear relationships [63, 76, 77], in contrast to other studies in which temperature plays a key

role [15, 62, 72].

Strong La Niña phases occurred in 2007–2008 and 2010–2011, while they were moderate in

2011–2012 and weak in 2005–06, 2008–2009. A previous study from Westberry and Siegel [2]

used SeaWiFS satellite reflectances to map the spatio-temporal distributions of Trichodesmium
events at a global scale over a six-year period (1998–2003). The GBR was masked out because

their study solely focused on open ocean regions (see Westberry and Siegel [2]). The influence

of SOI on Trichodesmium blooms was also examined, and the authors reported a correlation

of ~25% with La Niña events corresponding to larger and more frequent events. The authors

noted that this correlation was particularly evident at the start of their time-series (1998–2000)

because a strong El Niño–La Niña transition period occurred. A similar transition might be

observed over the period 2009–2011 in our study region, which might partly explain the

Fig 5. Monthly climatology of surface bloom occurrences (%MCIPI) for FIT over the period April 2002-April

2012. See S4–S7 Figs for the four other subregions.

https://doi.org/10.1371/journal.pone.0208010.g005
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increased frequency of bloom events noted above. The 2011 La Niña year was characterized by

a decrease in salinity, increased nutrients and Chl-a and warmed sea temperatures along the

northeastern coast of Australia [78], which might have supported the Trichodesmium blooms

observed in the northern and central GBR regions of CPY, CRN and BDK in those years. In

the GBR, nitrogen (N) fixation by Trichodesmium and N inputs from river runoff are proposed

as major sources of new N to the system [23, 79], but no study to date has measured the

detailed temporal and spatial variability characterizing N fixation activity. From the GAM

results, an increase in bloom frequency of Trichodesmium occurred over the study’s 10-year

period (2002–2012), suggesting that their importance as a source of N has also increased over

the same period.

In other systems, the extent and densities of Trichodesmium aggregates are controlled by

nutrient availability, such as phosphorus [4]. Dissolved organic phosphorus (DOP) is the pri-

mary form of phosphorus in the GBR [80], and previous studies show that Trichodesmium can

grow in enriched DOP environments, such as those found in the southern GBR (S1 Fig.) [81].

The concentrations of both Nitrogen and available Phosphorus are generally very low in the

GBR (S1 Fig), with a median inorganic Nitrogen:Phosphorus ratio of< 2, which is consider-

ably less than the canonical Redfield Nitrogen:Phosphorus ratio (16:1) measured in phyto-

plankton biomass [82]. This result suggests that the GBR is severely nitrogen limited and that

the nitrogen-fixing Trichodesmium has a competitive advantage when compared to that of

non-nitrogen-fixing phytoplankton.

The relative quantity of nutrients exported into the lagoon differs significantly between

catchments [38] and therefore subregions (S1 Fig.), but the north-south difference in nutrient

concentrations was far less pronounced than cross-shelf differences within a subregion [25].

The effect of nutrient fluxes on phytoplankton populations was evident in some of the regions,

such as MCK [83], and whereas comparatively little nutrient export occurs during the dry sea-

son months, other physical forcing, such as wind and tidal mixing, can play a major role in the

cycling of nutrients. The dry tropics catchments export greater quantities of dissolved nitrogen

than do the wet tropics catchments, but in both systems, the concentrations are only sufficient

for a few days of phytoplankton growth [84].

Dust storms are another important source of nutrient enrichment (Nitrogen, Phosphorus

and iron in particular), shifting phytoplankton species composition from pico-cyanobacteria

(Synechococcus, Prochlorococcus) [85, 86] to larger-sized groups such as diatoms and Tricho-
desmium, which may have important implications for other levels of the trophic system. Sev-

eral studies in other parts of the world highlight the controlling factor of dust storms over

periodic Trichodesmium blooms and their correlation to colony abundance, acting as iron

Fig 6. Beta Generalized Additive Model (GAM) outputs modeling the decadal trends in Trichodesmium blooms in each subregion. The

y-axis is the proportion of lagoonal waters affected by bloom events in each subregion over the course of the 10-year period. The units are

bloom pixels per total (cloud-free) pixels. Confidence intervals for each model are shown as gray bands, and the statistical significance of the

trends (p-value) is shown.

https://doi.org/10.1371/journal.pone.0208010.g006

Table 4. Average and maximum wind speed (in m.s-1) with corresponding surface aggregation sizes (same day;

based on daily data).

MCIPI Average wind speed Maximum wind speed Sample size

1–100 8.40 16.43 476

100–500 7.53 13.00 94

500–1,000 6.33 9.00 12

1,000–4,000 7.77 12.00 13

https://doi.org/10.1371/journal.pone.0208010.t004
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fertilization that stimulates blooms [87, 88]. Regular dust storms occur over the Australian east

coast, and the most notable occurred on October 23–24, 2002, [86] and September 22–24,

2009, as large dust storms (500 km-wide dust plumes) that spread over 2,400 km and 3,500 km

(covering the distance Sydney-Cape York), respectively. These storms resulted in phytoplank-

ton blooms, including Trichodesmium, mostly in the southern GBR within a week of these

events. Such occurrences are typical of the GBR, as it is an ocean region in which a rapid bio-

logical response to dust inputs is most likely to be observed [14, 89]. To date, the knowledge

about iron cycling in the GBR remains limited, and therefore, to ascertain its role in triggering

Trichodesmium blooms is currently not possible.

Trichodesmium often forms blooms parallel to the direction of the wind and as drifters, tend to

accumulate in convergence zones (e.g., [56]). Low wind speed is strongly associated with Tricho-
desmium aggregations because of the resulting water column stability [14]. In this study, we found

an inverse relationship between wind speed and the size of the aggregations, leading us to hypoth-

esize that a wind speed<6 m.s-1 is required to observe large (>2,000 MCIPI) aggregations.

The GBR is the only large tide-dominated reef in the world, and the tidal energy exerts a strong

influence on parts of the shelf and across the coral reef matrix [90], in particular near Broad

Sound (MCK; Fig 1) and CPY in which large tidal ranges (up to 9 m) can occur [91]. Shallower

water depths (25–50 m) are found in the northern GBR (from 18˚ S northward), whereas the

southern GBR is typically much deeper and can reach up to 80 m average depth in some areas,

exceeding 100 m near the Capricorn Channel. Thus, in CPY, the increase in water column mixing

could hamper the development of regular Trichodesmium blooms. In other regions, however,

such as CRN and BDK, tidal flows do not significantly contribute to water transport [92]. Because

wind-driven resuspension occurs mostly between May and October [93], a frontal separation may

be created between the lagoon and the coastal zone, thereby trapping terrestrial material and

nutrients in nearshore waters and favoring the appearance of Trichodesmium blooms. During wet

season flood events, large volumes of freshwater runoff entering the GBR reduce light penetration

and decrease salinity levels (along the coast in particular,<<33 ppt; [94, 95]), and despite being a

euryhaline genus, maximum growth for Trichodesmium tends to occur at salinities of 33–37 ppt.

Thus, we hypothesize that the tropical wet season conditions are suboptimal for Trichodesmium
growth in the GBR, in particular near large catchments such as FIT and BDK (Fig 1).

Several interacting environmental factors are likely involved in affecting the probability of

the occurrence and extent of Trichodesmium blooms (e.g., surface mixing by wind or/and

tides, nutrient inputs from river plumes or dust storms, and grazer density, among others)

beyond the spatial, temporal, and thermal effects assessed in this study. However, despite the

complex dynamics of Trichodesmium blooms, the combined effects of spatial, temporal, and

SST factors alone may account for 14% of the probability of a bloom occurring and 18.5% of

the bloom extent when a bloom occurs.

Table 5. Average and maximum wind speed (in m.s-1) two days before MERIS scenes of surface aggregation

(based on daily data).

MCIPI Average wind speed (MERIS-2 days) Maximum wind speed

(MERIS-2 days)

Sample size

1–100 8.38 15.00 476

100–500 7.97 13.00 94

500–1,000 7.75 11.00 12

1,000–4,000 7.93 10.00 13

https://doi.org/10.1371/journal.pone.0208010.t005

Spatio-temporal variability of Trichodesmium blooms in the Great Barrier Reef lagoon from MERIS imagery

PLOS ONE | https://doi.org/10.1371/journal.pone.0208010 December 14, 2018 17 / 26

https://doi.org/10.1371/journal.pone.0208010.t005
https://doi.org/10.1371/journal.pone.0208010


MCIPI limitations

MERIS MCIPI was an appropriate algorithm for the detection and monitoring of surface

expressions in the study region. Compared with this study, the match-up analysis by [56] had

higher detection success at 85% but used a much finer resolution of 250-m pixel size from

MODIS-Aqua and therefore was more likely to detect small and filamentous patches. This

MODIS-based analysis is in contrast to the present study’s validation for which the MERIS RR

1.2-km pixel size was used (MERIS FR imagery was irregularly acquired over Australia and

therefore was not useable as a consistent time-series). The MODIS algorithm by [56] also

relied on an atmospheric correction option only available in an outdated SeaDAS version;

therefore, it was not possible to extend that analysis on the entire MODIS time-series. The lim-

ited information, other than the location and datum, provided by the field observation

dataset also likely affected the quality of the retrieval analysis. The validation exercise in the

present study was used for a general assessment of this algorithm. We recommend that addi-

tional criteria such as the size of the aggregations and a confirmation of the genus (i.e., is it Tri-
chodesmium sp.?) should be considered to complement a future Trichodesmium-specific field

database.

The MCI has been used in several previous studies for the detection, monitoring and analy-

sis of the seasonal dynamics, spatial distribution, and coverage of bloom surface expressions in

a large range of freshwater (e.g., [96, 97]) and marine (e.g., [55]) environments. This index is

versatile and with low penetration depth (<1 m) is fairly insensitive to bottom reflectance

(e.g., [98]), which is a significant advantage in this relatively shallow coastal system in which

Secchi depths can reach the seafloor of the GBR lagoon [32]. The MCI also has limitations.

The index has a limited application for low (Chl-a<10 μg.L-1) phytoplankton biomass condi-

tions, as observed in the GBR [99]. In this study, the MCI was not employed to detect phyto-

plankton blooms based on their Chl-a concentration but on their surface expressions for

which the MCI is suitable. Our previous study in the Cairns subregion combined the use of the

FLH, Chl-a and MCI MERIS products, which showed that MCI and Chl-a were mostly uncor-

related, thereby confirming that MCI was predominantly responding to surface bloom expres-

sions in the GBR [31]. Another recently documented limitation is the sensitivity of the MCI to

inorganic particles (suspended sediment) [100], but we are confident this factor did not affect

our results because the surface bloom observations occurred well outside the runoff (wet) sea-

son, when large sediment plumes may be observed. The use of the MERIS MCIPI alone, how-

ever, is not sufficient to confirm the genus of the phytoplankton bloom. For example, in the

southern GBR (FIT), few instances of the surface expressions identified in this work as Tricho-
desmium sp. surface expressions could in fact be Lyngbya majuscula, a benthic cyanobacte-

rium, orHincksia sordida, a filamentous brown algae, as both are known to form surface

aggregations in Southeast Queensland coastal waters (MCK, FIT) [101, 102]. Hence, as no

other taxa are likely to lead to consistent and significant blooms in the GBR that would trigger

MCIPI, we can confidently interpret the MCIPI patterns as Trichodesmium sp. surface

expressions.

Finally, an inherent bias exists in ocean color satellite observations due to cloud cover that

hampers the collection of observations, in particular during the wet season. This variability

must be acknowledged when analyzing the frequency of observed clear sky, pixel-based

blooms in tropical and subtropical regions. Although this study was primarily based on

monthly composites, i.e., the aggregation of several scenes over the course of each month, the

analysis of time-series composing >1,000 scenes for each subregion should compensate for

this bias.
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Concluding remarks

This study used MERIS MCIPI to assess the spatio-temporal dynamics of Trichodesmium
surface expressions over the entire GBR lagoonal waters during the decade-long MERIS

mission. To date, this study is the only one that evaluated both the spatial and seasonal

distributions of Trichodesmium blooms over the entire GBR and for a decade-long

period.

The results showed a north to south gradient in bloom sizes (increasing from CPY to FIT),

in bloom timings, appearing later in the year, from CPY in July to FIT in October-November

(Table 4), and in bloom frequencies, with the largest and most frequent surface blooms occur-

ring in FIT, the southernmost subregion. A temperature of 24˚C and a wind speed <6 m.s-1

were associated with larger events. Nitrogen fixation by Trichodesmium remains an incom-

pletely constrained component of the GBR nitrogen budget, particularly in the subsurface

[20], and our results suggest an increased importance of Trichodesmium as a source of new

nitrogen to the GBR.

Recent modeling efforts are attempting to predict the distribution and growth of Trichodes-
mium from physiological- and remote sensing-based models incorporated into larger hydro-

dynamic and biogeochemical models of the Great Barrier Reef lagoon through eReefs (https://

ereefs.org.au/ereefs) to inform environmental management of this region [103, 104]. By ana-

lyzing the phenology of Trichodesmium surface bloom aggregations along the GBR over a

decade from satellite imagery, the findings of our work directly benefit this ecosystem model-

ing effort. The recent launch of multispectral Sentinel-2 MSI (launched in June 2015) and Sen-

tinel-3 OLCI (launched in February 2016) satellite sensors that have matching wavebands to

those of the MERIS sensor will allow this research to continue.

Supporting information

S1 Fig. Summary of the biological, chemical and physical properties of surface water sam-

ples for the five subregions. Based on averaged values from the period 2002 to 2013 for tem-

perature, chlorophyll-a (Chl-a), particulate organic carbon (POC), nitrogen (PN), and

phosphate (PP), dissolved inorganic nitrogen (DIN) and organic phosphorus (DOP), and total

dissolved nitrogen (TDN) and phosphorus (TDP).

(TIF)

S2 Fig. Time-series of monthly averaged valid satellite observations for the five subregions

(i.e., not masked by quality flags or other criteria). Subregions are ordered from north to

south, and the y-axis scale is uniform for all plots.

(TIF)

S3 Fig. Time-series of monthly median MCI background value, b, for the five subregions

(subregions are ordered from north to south). Vertical dashed lines represent 6-month peri-

ods for all plots.

(TIF)

S4 Fig. Monthly climatology of surface bloom occurrences (%MCIPI) for CPY over the

period April 2002-April 2012.

(TIF)

S5 Fig. Monthly climatology of surface bloom occurrences (%MCIPI) for CRN over the

period April 2002-April 2012.

(TIF)
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S6 Fig. Monthly climatology of surface bloom occurrences (%MCIPI) for BDK over the

period April 2002-April 2012.

(TIF)

S7 Fig. Monthly climatology of surface bloom occurrences (%MCIPI) for MCK over the

period April 2002-April 2012.

(TIF)

S1 Table. Bernoulli GAM evaluating the effect of SST, region, time of year (Julian date) by

region, and interannual variability (year) on the likelihood of a Trichodesmium bloom

occurring. Significant p-values (α = 0.05) are indicated in bold.

(DOCX)

S2 Table. Beta GAM evaluating the effect of SST, region, time of year (Julian date) by

region, and interannual variability (year) on the extent Trichodesmium blooms when they

occur. Significant p-values (α = 0.05) are indicated in bold.

(DOCX)

S1 Dataset. MCI_GreatBarrierReef_20022012.csv.

(CSV)
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