
Citation: Ren, X.; Zhang, G.; Jin, M.;

Wan, F.; Day, M.D.; Qian, W.; Liu, B.

Metabolomics and Transcriptomics

Reveal the Response Mechanisms of

Mikania micrantha to Puccinia

spegazzinii Infection. Microorganisms

2023, 11, 678. https://doi.org/

10.3390/microorganisms11030678

Academic Editors: Michael J. Bidochka

and Jean Stéphane Venisse

Received: 28 December 2022

Revised: 18 February 2023

Accepted: 2 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Metabolomics and Transcriptomics Reveal the Response
Mechanisms of Mikania micrantha to
Puccinia spegazzinii Infection
Xinghai Ren 1,2,†, Guangzhong Zhang 1,†, Mengjiao Jin 1, Fanghao Wan 1, Michael D. Day 3, Wanqiang Qian 1,*
and Bo Liu 1,*

1 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of
the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen,
Chinese Academy of Agricultural Sciences, Shenzhen 518000, China

2 Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection,
Southwest University, Chongqing 400715, China

3 Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
* Correspondence: qianwanqiang@caas.cn (W.Q.); liubo03@caas.cn (B.L.)
† These authors contributed equally to this work.

Abstract: Mikania micrantha is one of the worst invasive species globally and can cause significant
negative impacts on agricultural and forestry economics, particularly in Asia and the Pacific region.
The rust Puccinia spegazzinii has been used successfully as a biological control agent in several
countries to help manage M. micrantha. However, the response mechanisms of M. micrantha to
P. spegazzinii infection have never been studied. To investigate the response of M. micrantha to
infection by P. spegazzinii, an integrated analysis of metabolomics and transcriptomics was performed.
The levels of 74 metabolites, including organic acids, amino acids, and secondary metabolites in M.
micrantha infected with P. spegazzinii, were significantly different compared to those in plants that
were not infected. After P. spegazzinii infection, the expression of the TCA cycle gene was significantly
induced to participate in energy biosynthesis and produce more ATP. The content of most amino
acids, such as L-isoleucine, L-tryptophan and L-citrulline, increased. In addition, phytoalexins,
such as maackiain, nobiletin, vasicin, arachidonic acid, and JA-Ile, accumulated in M. micrantha.
A total of 4978 differentially expressed genes were identified in M. micrantha infected by P. spegazzinii.
Many key genes of M. micrantha in the PTI (pattern-triggered immunity) and ETI (effector-triggered
immunity) pathways showed significantly higher expression under P. spegazzinii infection. Through
these reactions, M. micrantha is able to resist the infection of P. spegazzinii and maintain its growth.
These results are helpful for us to understand the changes in metabolites and gene expression in
M. micrantha after being infected by P. spegazzinii. Our results can provide a theoretical basis for
weakening the defense response of M. micrantha to P. spegazzinii, and for P. spegazzinii as a long-term
biological control agent of M. micrantha.

Keywords: transcriptome; metabolome; immune response; biological control; Pucciniales

1. Introduction

Mikania micrantha Kunth (Asteraceae), commonly called ‘mile-a-minute’, is a rapidly
growing vine native to tropical America [1,2]. It is considered one of the world’s worst
weeds, invading many countries in Asia and Oceania [1,2] and has been listed in China
as a plant species with national quarantine concerns by the Forestry Administration [3,4].
Mikania micrantha has been reported in seven provinces in southern China, with the main
infestations in Guangdong, Guangxi, and Yunnan provinces [5]. It affects biodiversity
and a wide range of agriculture and forestry enterprises, reducing productivity through
competition [1]. Mikania micrantha is also known as a plant killer because its rapid growth
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enables it to completely smother crops or trees and block sunlight, preventing flowering
and fruiting [1,3].

The rust fungus, Puccinia spegazzinii de Toni (Uredinales: Pucciniaceae), has been
introduced into several countries, including China, to help control M. micrantha [1]. Puc-
cinia spegazzinii is a microcyclic and autoecious rust with a life cycle of 19–21 days [6].
Teliospores and basidiospores of P. spegazzinii have only been recorded in the field [7]. Puc-
cinia spegazzinii is known to attack only M. micrantha and to a much lesser extent, Mikania
cordata (Burm. F.) B. L. Robinson. Its potential as a biological control agent is because it is
particularly damaging to the leaves, stems and petioles of M. micrantha, reducing growth
rates and flowering, and can tolerate a wide range of environmental conditions in which
M. micrantha grows [8–11].

Rust fungi (Pucciniales) are one of the largest groups of plant pathogens and the most
damaging to plants in the world [12,13]. Infected plants can produce a range of defense
responses to a pathogen [14]. The amount of adenosine triphosphate (ATP), which plays an
important role in metabolite biosynthesis, signal transduction, and material transport, can
be increased. These secondary metabolites play vital roles in performing or having passive
physical and chemical barriers against pathogens. For instance, polyamines could change
the mesophyll cell pre-penetration and penetration resistance mechanisms, e.g., as seen in
oats in response to infection by Puccinia coronata f. sp. avenae W.P. Fraser and Ledingham
(Pucciniaceae) [15].

Other responses relate to the phenylpropanoid, flavonoid and isoflavonoid metabolic
pathway genes, which are involved in the production of phytoalexins as seen in Medicago
truncatula Gaertn (Fabaceae) following infection by Phakopsora pachyrhizi Syd. and P. Syd.
(Phakopsoraceae) [16]. In addition, the accumulation of phenolic, rutin, glucosinolate,
flavonoid, fatty acid, and alkaloid phytoalexins in plants could promote the host defense
against pathogens [17–19]. Defense-signalling networks, such as ethylene and the salicylic
acid pathways, are also triggered when pathogens attempt to infect host plants [20], and
several gene families, such as the MCM1, WRKY, MYB, and bZIP families, are involved in
the response of plants to pathogens [21–24].

The metabolic responses in M. micrantha to infection by P. spegazzinii have never been
studied. In this study, we have characterized M. micrantha as a model host pathosystem
for P. spegazzinii to investigate the molecular mechanisms of the host response to infection.
Using transcriptome and metabolome analyses, we show how levels of essential amino
acids, ATP, and phytoalexins in M. micrantha change in response to infection by P. spegazz-
inii. In addition, we aim to show how genes related to biotic stress in M. micrantha are
expressed following P. spegazzinii infection. This work will help understand the potential
for the continuous use of P. spegazzinii in assisting in the management of M. micrantha in
many countries.

2. Materials and Methods
2.1. Rust Inoculation and Sample Collection

Puccinia spegazzinii IMI 393075 was imported into China from Australia in December
2019, and a culture was maintained on potted M. micrantha plants at the Agricultural Ge-
nomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences. Mikania micrantha
plants were grown in a greenhouse with lighting (day: 16 h and night: 8 h) and a daily
temperature range of 20–35 ◦C. For inoculation, plant tissue (leaves, stems, petioles) with
mature P. spegazzinii pustules, indicated by a coppery-brown appearance, was suspended
over healthy potted plants in a sealed plastic chamber maintained at 22 ◦C, 100% humidity,
for 48 h of darkness (for details, see [7,11]). Then, 17 days following inoculation, infected
leaves were collected in three biological replicates for the determination of metabolites. At
this time, the teliospores had matured and become dark brown (Supplementary Figure S1).
After the teliospores mature, basidiospores can sprout from telia embedded in host tissues
for the next infection cycle if the above conditions are met. As a control, three biological
replicates of uninfected leaves from uninfected plants were also collected.
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2.2. Metabolome Profiling

Following freezing by liquid nitrogen, the samples of infected leaves and uninfected
leaves were ground into powder. A subsample of 100 mg powder from each of the three
samples of infected and uninfected leaves was weighed, and the homogenate was resus-
pended with prechilled 500 µL 80% methanol and 0.1% formic acid by vortexing it well. The
samples were incubated on ice for 5 min and were then centrifuged at 15,000× g at 4 ◦C for
10 min. The supernatant was diluted using LC-MS grade water, so the final concentration
was 53% methanol. The samples were subsequently transferred to fresh Eppendorf tubes
and were centrifuged at 15,000× g at 4 ◦C for 20 min. The supernatant was injected into the
liquid chromatography–tandem mass spectrometry (LC-MS/MS) system analysis.

LC-MS/MS analyses were performed using an ExionLC AD system (SCIEX) coupled
with a QTRAP 6500+ mass spectrometer (SCIEX) in Novogene Co., Ltd. (Beijing, China).
The extracts were injected into a column (Xselect HSS T3, 2.5 µm, 2.1 × 150 mm, Wa-
ters) with a 20 min linear gradient at a 0.4 mL/min flow rate for the positive/negative
polarity mode.

In the positive ion mode, samples were injected onto a BEH C8 Column (100 × 2.1 mm,
1.9 µm) using a 30-min linear gradient at a flow rate of 0.35 mL/min for the positive polarity
mode. The eluents were eluent A (0.1% formic acid–water) and eluent B (0.1% formic acid–
acetonitrile). The solvent gradient was set as follows: 5% B, 1 min; 5–100% B, 24.0 min;
100% B, 28.0 min; 100–5% B, 28.1 min; 5% B, 30 min. The QTRAP 6500+ mass spectrometer
was operated in positive polarity mode with a curtain gas of 35 psi, collision gas set to
medium, ion spray voltage of 5500 V, temperature of 500 ◦C, ion source gas of 1:55, and an
ion source gas of 2:55.

In the negative ion mode, samples were injected onto an HSS T3 Column
(100 mm × 2.1 mm) using a 25-min linear gradient at a flow rate of 0.35 mL/min for the
negative polarity mode. The eluents were eluent A (6.5 mM ammonium bicarbonate–water)
and eluent B (6.5 mM ammonium bicarbonate−95% methanol water). The solvent gradient
was set as follows: 2% B, 1 min; 2–100% B, 18.0 min; 100% B, 22.0 min; 100–5% B, 22.1 min;
5% B, 25 min. A QTRAP 6500+ mass spectrometer was operated in positive polarity mode
with a curtain gas of 35 psi, collision gas set to medium, ion spray voltage of −4500 V,
temperature of 500 ◦C, ion source gas of 1:55, and an ion source gas of 2:55.

Based on the Novogene Database (novoDB, in-house database), multiple reaction
monitoring (MRM) was used to detect the metabolites in each sample. The product ion
(Q3) was used for metabolite quantification. The parent ion (Q1), Q3, retention time
(RT), declustering potential (DP), and collision energy (CE) were used for metabolite
identification. The data files generated by HPLC-MS/MS were processed using the SCIEX
OS Version 1.4 to integrate and correct the peaks. The main parameters were set as follows:
minimum peak height, 500; signal/noise ratio, 5; and Gaussian smooth width, 1. The area
of each peak represents the relative content of the corresponding substance.

These metabolites were annotated using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (http://www.genome.jp/kegg/ (accessed on 10 October 2020)), Human
Metabolome Database (HMDB) (http://www.hmdb.ca/ (accessed on 10 October 2020))
and Lipid Maps database (http://www.lipidmaps.org/ (accessed on 10 October 2020)).
Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-
DA) were performed with metaX (a flexible and comprehensive software for processing
metabolomics data) [25]. Partial least squares discrimination analysis (PLS-DA) is a su-
pervised discriminant analysis statistical method. This method uses partial least squares
regression [26] to establish the relationship model between the relative quantitative value
of metabolites and the sample category to realize the prediction of the sample category.
The PLS-DA model of each comparison group was established, and the model evalua-
tion parameters (R2Y, Q2Y) were obtained through 7-fold cross-validation (seven cycles of
cross-validation; when the sample biological repetition number n ≤ 3, it was k cycles of
cross-validation, k = 2n). R2Y and Q2Y parameters were used to evaluate the performance
of the model, both of which vary between 0 and 1, where 1 represents a perfect fit [27,28].

http://www.genome.jp/kegg/
http://www.hmdb.ca/
http://www.lipidmaps.org/
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In order to judge the quality of the model, the model was also sorted and verified to check
whether the model is overfitting. The overfitting of the model reflects the accuracy of the
model construction, and the overfitting of the model indicates that the model can better
describe the sample and can be used as the premise for the model biomarker group search.
Overfitting means that the model is not suitable for describing the sample, nor is it suitable
for later analysis of this data. The specific method [29] is to randomly mix the grouping
marks of each sample before modeling and prediction. Each modeling corresponds to a set
of R2 and Q2 values. Their regression lines can be obtained from the R2 and Q2 values after
200 times of mixing and modeling. If the R2 value is greater than the Q2 value and the
intercept between the Q2 regression line and Y-axis is less than 0, it can indicate that the
model is not overfitting, and the model is more stable and reliable [30].

Metabolites with a p-value < 0.05 (two-tailed Student’s t-test), a VIP > 1, and a fold-
change (FC) ≥ 2 or ≤0.5 were considered to be differentially accumulated metabolites. VIP
refers to the variable projection importance of the first principal component of the PLS-DA
model and represents the contribution of metabolites to the groupings. For clustering
heat maps, the data were normalized using z-scores of the intensity areas of differential
metabolites and were plotted by the heatmap package in the R language. Z-score (standard
score) is a value converted based on the relative quantitative values of metabolites, which
is used to measure the relative quantitative values of metabolites on the same level. The
Z-score was calculated based on the mean and standard deviation of the reference data
set (control group), and the specific formula was expressed as Z = (x − µ) / σ, where x is
a specific fraction, µ is the mean, and σ is the standard deviation.

2.3. Differentially Expressed Gene (DEG) Analysis

Transcriptome data of leaves infected for 17 days (A) and uninfected leaves by
P. spegazzinii were downloaded from NCBI (SRR17139378–SRR17139383) and used to
explore the differentially expressed genes (DEGs).

To obtain localization information for the reads in the reference genome, clean reads
were compared with the reference genome of M. micrantha (GCA_009363875.1) [31] using
HISAT2-2.0.5 [32], and the expression level was calculated using the fragments per kilobase
million (FPKM) method. The differentially expressed genes (DEGs) were analysed using
the DEseq2 package version 3.8.6 in R language [33]. Genes with a |log2 fold change|
> 1 and false discovery rate (FDR) < 0.05 were considered DEGs. The KEGG enrichment
analysis of functional significance terms based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG, http://www.kegg.jp/kegg/pathway/html (accessed on 17 September
2020)) database was conducted using a hyper-geometric test to find significant KEGG terms
in DEGs for comparison with the genome background. GO enrichment analysis of DEGs
was performed using the online OmicShare tool (http://www.omicshare.com/tools/index.
php/ (accessed on 22 September 2022)). Hypergeometric and FDR multiple tests were
utilized to identify significantly enriched pathways. Gene ontology (GO) terms and KEGG
pathways with FDR-corrected Q-values ≤ 0.05 were considered to be significantly enriched.

2.4. Determination of ATP after P. spegazzinii Infection

Following freezing by liquid nitrogen, the samples of infected leaves and uninfected
leaves were ground into powder. A subsample of 100 mg powder from each of the three
biological samples of infected and uninfected leaves was weighed, and 1 mL buffer solution
was added and homogenized in an ice bath using an electric tissue grinder. The mixed
extracts were then vortexed and centrifuged at 8000× g and 4 °C for 10 min. The supernatant
was placed into a new Eppendorf tube, and 500 µL trichloromethane was added before
being mixed thoroughly and centrifuged at 10,000× g and 4 °C for 3 min. The upper
suspension of each sample was kept and incubated on ice for the subsequent detection of
ATP content in infected and uninfected leaves using an ATP content detection kit (Beijing
Solarbio Technology Co., Ltd., Beijing, China).

http://www.kegg.jp/kegg/pathway/html
http://www.omicshare.com/tools/index.php/
http://www.omicshare.com/tools/index.php/
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3. Results
3.1. Metabolite Response of M. micrantha after Infection by P. spegazzinii

A total of 421 metabolites in M. micrantha leaves were detected using quasi-targeted
metabolomic sequencing, and the diverse set of detected molecules could be roughly
grouped into 49 classes, predominantly organic acids and derivatives, amino acids and
their derivatives, nucleotides and their derivatives, lipids, phenylpropanoids, and flavones
(Supplementary Table S1). The PCA showed that the control and treat samples were
separated well by PC1, which could explain 39.9% of the total variation (Figure 1A). Partial
least squares discriminant analysis (PLS-DA) is a multivariate statistical analysis technique
that employs supervised pattern recognition. Its extension of orthogonal projections to
latent structures discriminant analysis (OPLS-DA) is a common statistical approach used
in metabolomics data analysis. In the PLS-DA model, after 200 permutation tests, the R2

intercept of the substitution test in the positive ion mode was 0.97, and the intercept of Q2

was −1.56 (Supplementary Figure S2), suggesting model reliability, given no evidence of
overfitting. The PLS-DA scores plot (R2Y = 1, and Q2Y = 0.7) shows the separation between
healthy and infected leaves (Figure 1B).

The significantly different metabolites are listed in Table 1 according to the criteria
fold change ≥ 2 or ≤0.5, p < 0.05 (t-test) and VIP ≥ 1. Metabolites (61 downregulated and
13 up-regulated) significantly changed upon P. spegazzinii exposure (Table 1). Among these
metabolites, carbohydrates, phenylpropanoids, fatty acids, plant hormones, and the levels
of most organic acids and their derivatives, flavonoids, and some amino acids and their
derivatives decreased (Table 1). The content of some amino acids and flavonoids increased
(Table 1).

Table 1. Significantly altered metabolites in M. micrantha leaves under stress.

Type Downregulation Up-Regulation No_Diff All

All 61 13 349 423
Amino acids and their derivates 4 4 45 53
Nucleotides and their derivates 1 1 36 38

Organic acids and their
derivates 9 1 35 45

Carbohydrates 4 0 26 30
Flavonoids 9 3 13 25

Phenylpropanoids 7 0 3 10
Alkaloids 0 1 12 13
Fatty acids 3 1 12 16

Phytohormones 2 0 6 8
Alkaloids 0 1 12 13

Lipids and lipid-like molecules 2 0 11 13
Terpenoids 1 1 10 12
Vitamins 3 0 9 12
Others 16 0 119 135

The levels of phytoalexin-related metabolites, e.g., maackiain, nobiletin, vasicin, and
arachidonic acid, in M. micrantha leaves infected with P. spegazzinii were 1.73, 2.14, 3.69, and
5.98 times higher, respectively, than those in uninfected leaves (Figure 1C,D; Supplementary
Table S1). In addition, the level of the stress-related compound, JA-Ile, was 6.40 times higher
in infected leaves than in uninfected leaves (Figure 1D; Supplementary Table S1).
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Figure 1. Data analysis of the metabolome in Mikania micrantha. (A) Principal component analysis
(PCA) of metabolome data from healthy and infected leaves of M. micrantha. Axes showed the per-
centage of variance of the first two components (PC1, PC2). The circle represents the treatment group,
and the triangle represents the control. (B) Partial least-squares discriminant analysis (PL−SDA)
plots of untreated (control) and P. spegazzinii treated leaves. (C) Heatmap hierarchical clustering of
differentially expressed metabolites. The content of each metabolite was normalized to complete
hierarchical clustering. Each example was visualized in a single column, and each metabolite is
represented by a single row. Red indicates high abundance, whereas low relative metabolites are
shown in blue. (D) Secondary metabolite content associated with immune response in M. micrantha
under P. spegazzinii stress. The error bars represent the means ± SD.
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Figure 2. Data analysis of the transcriptome in Mikania micrantha. (A) Pearson correlations between
CK (control) and A (treatment) replicates. (B) Volcano map of differential metabolites. Red plots
indicate the up-regulated metabolites; Green plots indicate the down-regulated metabolites; Black
plots indicate no significant difference. (C) Principle component analysis of expressed genes based
on the gene expression profiles. (D) KEGG enrichment pathway of up-regulated genes. (E) GO
classification of up-regulated genes.
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3.2. Differentially Expressed Gene (DEG) Analysis

A summary of RNA-Seq data is shown in Supplementary Table S2. This summary
reveals that the RNA-Seq data sets are high quality and reliable. After removing adapter
reads, ambiguous reads, and low-quality reads, 6.391 Gb clean reads, on average, were pro-
duced. High correlations of FPKM value were observed (R > 0.84) between replicates under
the same conditions (Figure 2A), indicating that the biological replicates were credible in
this study. Principle component analysis (PCA) showed that the gene expression in the
M. micrantha leaves under two different conditions was clearly separated by PC1 and PC2,
which could explain 67.7% of the total variation (Figure 2B). Based on the transcriptome
analysis between the P. spegazzinii-infected group (A) and non-infected (control) group,
a total of 4978 DEGs (15.20% of total genes) were identified, including 2054 significantly up-
regulated genes and 2924 significantly down-regulated genes (Figure 2C; Supplementary
Table S3). These significantly up-regulated genes were significantly enriched in 10 KEGG
pathways, including protein processing in the endoplasmic reticulum, ribosome biogenesis
in eukaryotes, endocytosis, plant–pathogen interactions, etc. (Figure 2D; Supplementary
Table S4). The expression of genes related to 20 pathways, including photosynthesis,
metabolic pathways, the biosynthesis of secondary metabolites, carbon fixation in photo-
synthetic organisms, and the circadian rhythm of plants, were significantly suppressed
(Supplementary Table S4). Further analysis of the up-regulated DEGs showed that these
GO terms in biological processes were mainly involved in RNA modification, GO:0009451;
macromolecule modification, GO:004341; responses to stimuli (temperature stimulus,
GO:0009266; biotic stimuli, GO:0009607; and fungus, GO:0009620); cellular carbohydrate
metabolic processes, GO:0044262; jasmonic acid-mediated signaling pathway, GO:0009864;
and defense response, GO:0006952 (Figure 2E; Supplementary Table S4). Among molec-
ular functions, endonuclease activity, GO:0004519; kinase activity, GO:0016301; phos-
photransferase activity, GO:0016773; and hydrolase activity, GO:0016788 were enriched
in the up-regulated DEGs (Figure 2E; Supplementary Table S4). For the cellular compo-
nent (CC) category, the up-regulated DEGs in response to P. spegazzinii stress showed
a clear enrichment in the mitochondrion, GO:0005739, and plasma membrane, GO:0005886
(Figure 2E; Supplementary Table S4). The expression of genes associated with photosyn-
thesis, GO:0015979; oxidoreductase activity, GO:0016491; and thylakoid, GO:0009579, were
significantly suppressed (Supplementary Table S4). All of the GO data are presented in
Additional File 2.

3.3. Plant–Pathogen Interactions

In the plant–pathogen interaction pathway, we found that 63 DEGs were involved in
the signal transduction process of the anti-pathogen immune response after P. spegazzinii
infection (Figure 3; Supplementary Table S5). Among them, pattern recognition receptor
(PRR) proteins EIX1/2 (EIX receptor1/2), CERK1 (chitin elicitor receptor kinase 1), FLS2
(LRR receptor-like serine/threonine-protein kinase), BAK1 (brassinosteroid insensitive
1-associated receptor kinase 1) and EFR (LRR receptor-like serine/threonine-protein kinase
EFR) in the plant-pathogen interaction pathway were significantly induced with higher
gene expression levels after rust infection. Calcium-dependent protein kinase (CDPK) and
respiratory burst oxidase (RBOH) genes related to ROS production were also significantly
up-regulated, which may increase the ROS level in the infected tissues. In addition, expres-
sion of the calmodulin (CAM) gene that participates in CAM-dependent signaling pathways
was induced to be up-regulated. One mitogen-activated protein kinase 4/5 (MKK4/5)
gene was significantly up-regulated 5.3-fold. Similarly, effector-triggered immunity may
be triggered by disease resistance protein (RPM1, RPS2), heat shock protein (HSP90), and
enhanced disease susceptibility 1 protein (EDS1), which were significantly up-regulated.
Studies have shown that they are involved in hypersensitive response, programmed cell
death, and defense amplification, respectively.
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Figure 3. Gene expression of plant–pathogen interaction pathway in M. micrantha under infection by
P. spegazzinii. The red characters indicate that gene expression was significantly up-regulated after
P. spegazzinii infection. In this figure, we showed how M. micrantha responded to the rust infection
through the multi-layered specific immune system of plants. The primary response involves the
sensing of pathogens through cell surface pattern recognition receptors (PRRs), known as PAMP-
triggered immunity (PTI). Upon recognition of PAMPs/DAMPs, downstream components (e.g.,
RBOHD, CNGCs, MAPKKKs, and WRKY) are subsequently phosphorylated, thereby triggering ROS
surge, Ca2+ influx, MAPK activation, phytohormone production, and transcriptional re-programming.
The second response is called effector-triggered immunity (ETI). Pathogens can directly inject effector
proteins into plant cells through the secretion system, and some plants have specific intracellular
surveillance proteins (R proteins) to monitor the presence of pathogen virulence proteins. This
ETI occurs with localized programmed cell death to stop the growth of pathogens, resulting in
species-specific disease resistance.

WRKY transcript factors play significant roles in the regulation of defense responses
to pathogen attacks. A total of 17 WRKY genes were significantly up-regulated following
infection by P. spegazzinii as determined by the RNA-seq analysis. Seventeen DEGs encoded
WRKY transcription factors belonging to four different categories (Figure 3; Supplemen-
tary Table S5). Among them, five WRKY33 and seven WRKY22 members involved in the
MAPK signaling pathway were significantly up-regulated by 2.05 times to 15.49 times.
In addition, the gene expression of five WRKY52 and two WRKY1 members was signifi-
cantly induced following P. spegazzinii infection, and they may elicit the effector-triggered
immune response.
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3.4. Accumulation of Amino Acid and ATP Content after P. spegazzinii Infection

Metabolome analysis showed that the content of these amino acids, such as L-isoleucine,
L-tryptophan and L-citrulline, were significantly increased after P. spegazzinii infection
(Figure 4A; Supplementary Table S1). In addition, the content of most other amino acids,
such as L-leucine, histidine, and L-phenylalanine, was also elevated (log2FC > 0), even
if they were not significant (Supplementary Figure S1; Supplementary Table S1). Our
study showed that the expression of 35 key genes of amino acid synthesis, including
branched-chain aminotransferase (ILVE), tryptophan synthase alpha chain (trpA) and
acetylornithine deacetylase (AGRE), was significantly up-regulated after P. spegazzinii
infection (Figure 4A,C; Supplementary Table S5).
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Figure 4. Gene expression and metabolite content of amino acid metabolism and TCA cycle pathway
in M. micrantha under P. spegazzinii stress. (A) Pathway of amino acid metabolism; (B) pathway
of the TCA cycle. The gene expression levels were denoted in blue (down-regulated) and red
(up-regulated). Metabolite content is represented in blue (down-regulated) and red (up-regulated).
(C) Expression pattern of key amino pathway genes in M. micrantha; ILVB/G/L: acetolactate synthase
I/II/III large subunit; IMS: 2-isopropylmalate synthase; trpA: tryptophan synthase alpha chain; ILVE:
branched-chain amino acid; ARGJ: glutamate N-acetyltransferase; ARGC: N-acetyl-gamma-glutamyl-
phosphate reductase; ARGAB: amino-acid N-acetyltransferase; ASP5: aspartate aminotransferase,
chloroplastic. Expression pattern of key TCA cycle genes in M. micrantha; SDHA: succinate de-
hydrogenase (ubiquinone) flavoprotein subunit; FU: fumarate hydratase, class II; MDH1: malate
dehydrogenase 1; CS: citrate synthase; ACO: aconitate hydratase; ICD: isocitrate dehydrogenase;
OGDH: 2-oxoglutarate dehydrogenase E1 component. (D) Changes in the contents of ATP by the
P. spegazzinii infection; Significant differences are indicated according to Student’s t test: *, p < 0.05.
The error bars represent the means ± SD.
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Interestingly, KEGG and GO enrichment analysis showed that carbohydrate metabolism
was significantly induced and photosynthesis was significantly inhibited (Supplementary
Table S4), while metabolome analysis showed that most of the carbohydrate content was
reduced (Table 1; Supplementary Table S1). Our study shows that a large number of
significantly up-regulated genes function in mitochondria (Figure 2E). Furthermore, the
expression of almost all TCA cycle-related genes (8 of 11 key genes) was significantly
up-regulated (Figure 4B,C and Supplementary Table S5), also causing the amounts of these
amino acids to be significantly increased, promoting the production of ATP following
infection by P. spegazzinii (Figure 4D).

4. Discussion

There were both positive and negative responses in terms of levels of metabolites
and gene expression when M. micrantha was infected with P. spegazzinii. While most of
the metabolites and gene expressions decreased following infection, there were numerous
metabolites and genes that had increased, suggesting that infection by P. spegazzinii had
stimulated compensatory or defense responses.

Many metabolites detected had significantly higher levels than that seen in uninfected
plants. Among all metabolites, the content of amino acids is the most affected, and the
content of almost all amino acids is increased, which is a pattern often observed in host–
pathogen interactions [34–38]. Amino acids regulate many aspects of plant growth and
development as well as biotic and abiotic stress responses. Studies have shown that
amino acids play a key role in plant–pathogen interactions and act as precursors for the
biosynthesis of defense compounds such as plant antitoxins [39,40]. Amino acid metabolism
can also affect the resistance of plant pathogens. For example, the decomposition of the
Asp-derived amino acid Lys produces pipecolic acid, which can regulate systemic acquired
resistance and mediate the activation of plant defense [39].

The imbalance of amino acids related to the accumulation of homoserine or threonine
enhances the immunity of plants to the pathogen of oomycetes [41,42]. In addition, amino
acids can also provide resistance for plants through undetermined mechanisms [41]. In
the present study, the increased content of most amino acids and four phytoalexin-related
metabolites was observed. In addition, amino acids are involved in protein synthesis and
can promote and regulate plant growth. In our study, about 40% of the genes identified
were up-regulated, and most of these were related to protein processing, suggesting the
plant may be trying to maintain growth while infected (Figure 2). The above results show
that the increased content of most amino acids may play a role in the resistance and growth
maintenance of M. micrantha.

Plant defense against pathogens is a process that requires energy [43,44]. ATP gener-
ated by the TCA cycle meets the energy demand [45,46]. TCA cycle products also provide
a carbon skeleton for the synthesis of amino acids (Figure 4). The amounts of ATP were
significantly increased following infection by P. spegazzinii infection, as seen in other stud-
ies [15] (Figure 4). In addition, the key genes in the TCA cycle presented high expression
following P. spegazzinii infection. The above results show that M. micrantha produces a large
amount of ATP to overcome infection and is beneficial to the synthesis of amino acids.

The stress-related compound JA-Ile, which plays an important role in response to
the biotic or abiotic stressors [47], was significantly increased by more than 6.4 times
following infection by P. spegazzinii, again suggesting some sort of defense or compensatory
mechanism.

In addition, the key genes in the plant–pathogen interaction signaling pathway pre-
sented high expression following P. spegazzinii infection. In nature, plants are often at-
tacked by pathogens. However, because the host plant has an effective immune system,
the pathogen is perceived by two different recognition systems, which initiate so-called
pattern-triggered immunity (PTI) and effect-triggered immunity (ETI), both of which are
accompanied by a series of induced defenses [48,49]. PTI is a basal defense response
activated by the recognition of PAMPs via pattern recognition receptors (PRRs) at the
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cell surface. Here, some PRRs were significantly up-regulated under P. spegazzinii stress
(Figure 3 and Supplementary Table S5). Ca2+, reactive oxygen species (ROS), MAP kinase
cascades, and WRKY transcription factors are considered to be essential components of all
PTI-triggered defense responses [48,50]. The increase in cytoplasmic Ca2+ is considered to
be an important early event in the response signal transduction cascade of plant infection
pathogens, and the cyclic nucleotide-gated channel (CNGC) located in the plasma mem-
brane (PM) contributes to the increase in cytoplasmic Ca2+during pathogen perception [51].
In M. micrantha, four CNGC genes are significantly up-regulated, which indicates that they
may mediate Ca2+ influx (Figure 3 and Supplementary Table S5). CDPKs participate in
the phosphorylation and activation of respiratory burst oxidase (RBOH), leading to ROS
production [52]. The calcium-dependent protein kinase (CDPK), respiratory burst oxidase
(RBOH) genes, and calmodulin (CAM) genes were induced to be up-regulated, which may
have activated ROS production (Figure 3 and Supplementary Table S5). The MAPK cascade
plays a very important role in the signal transduction of plant defenses against pathogen
attacks. Arabidopsis AtWRKY22 and AtWRKY29 proteins are essential components of
MAPK-mediated plant defense responses against pathogens [53]. In Arabidopsis, WRKY33
plays a key role in the stress response, and WRKY33 overexpression enhances resistance
to fungal pathogens [54,55]. In our study, mitogen-activated protein kinase kinase 4/5
(MKK4/5) and WRKY33/22 genes were induced to be up-regulated, which may be related
to the activation of plant immunity (Figure 3 and Supplementary Table S5). In our study,
we also found that RPM1, RPS2, HSP90, and EDS1 were up-regulated dramatically in
M. micrantha after inoculation. Previous studies have shown that the expression of these
genes is associated with the triggering of ETI [56,57]. These results suggested that when M.
micrantha was infected by P. spegazzinii, it activated a defense response, but this does not
necessarily imply resistance.

This study has shown that levels of some genes and metabolites increased following
infection by P. spegazzinii, suggesting that the plant is trying to compensate for or overcome
infection. Some of these positive responses relate to resistance, which then raises the
question of whether M. micrantha could ever become resistant to P. spegazzinii, and therefore,
will the rust’s impact as a biological control agent lessen?

Despite these positive changes in levels of metabolites and gene expression, this study
also showed that P. spegazzinii can have a negative impact on gene expression, metabolites,
and metabolic pathways. Most of the metabolites (>60%) and genes (60%) had lower levels
following infection, suggesting that infection of P. spegazzinii has some negative impact on
M. micrantha.

Puccinia spegazzinii is currently being used as an effective biological control agent and
has been released against M. micrantha in many countries [1,7,11,58,59]. The management
of M. micrantha using P. spegazzinii is seen as a benefit to many landholders, as plants can
reshoot after slashing, and herbicides are harmful to humans and the environment [1,11,60].
In both laboratory and field trials, P. spegazzinii has been shown to reduce growth rates and
flowering of M. micrantha [10]. The results in this study at least partially explain what is
being observed in the field where growth rates of M. micrantha have decreased, offering
hope that P. spegazzinii will continue to be able to suppress populations of M. micrantha in
the field.

In this study, we characterized M. micrantha as a model host pathosystem for P. spegazz-
inii to investigate the molecular mechanisms of host responses to a pathogen. We have
provided the first description genome-wide of the different gene expressions and metabo-
lite levels in the leaves of M. micrantha following P. spegazzinii infection. Interactions and
coevolution between M. micrantha and P. spegazzinii may influence the overall pathogenicity
of rust. Over time, M. micrantha may evolve a mechanism to resist P. spegazzinii, and the
plant could once again become a problem for countries that already have released rust.
Alternatively, the rust may develop ways to overcome the plant’s defense responses or
resistance. Further studies may provide more insight. The results here certainly provide
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a better understanding of the interactions between M. micrantha and P. spegazzinii and the
potential of P. spegazzinii as a long-term biological control agent for M. micrantha.

5. Conclusions

In this study, we revealed the response and interaction mechanism of M. micrantha to
P. spegazzinii based on the analysis of plant metabolites and gene expression. The relative
levels of essential amino acid, ATP, and phytoalexins were synthesized and accumulated in
M. micrantha following P. spegazzinii infection. In addition, many key genes of the MAPK
signalling pathway showed significantly high expression under the P. spegazzinii infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11030678/s1. Figure S1 The difference in amino
acid contents in M. micrantha leaves between those uninfected and infected by P. spegazzinii. Table S1.
List of all metabolites detected in Mikania micrantha leaves under control and treatment. Table S2.
Summary of Mikania micrantha transcriptome mapping under control and treatment. Table S3.
General information about gene differential expression analysis from RNA-seq. Table S4. Statistics of
the significantly enriched KEGG pathway and GO terms of DEGs. Table S5. DEGs annotated in the
plant–pathogen interactions, amino acid synthesis, and TCA cycle pathway.
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