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Abstract 

Coronaviruses were responsible for the global outbreak of severe acute respiratory 

syndrome (SARS) in 2003 and 2004, and the outbreak of Middle East respiratory 

syndrome (MERS) in 2012. Bats have since been identified as the natural hosts for a 

number of novel coronaviruses, including the likely ancestors to SARS and MERS 

coronaviruses. It is essential for Australia’s biosecurity preparedness, and for broader 

understanding of this previously unknown group of viruses, that coronaviruses in bats in 

our region are identified, characterised and their ecology understood. 

In Chapter 1, the relevant literature is reviewed, both in the context of my contribution to 

the Food and Agricultural Organisation of the United Nations publication ‘Investigating the 

Role of Bats in Emerging Zoonoses’, and additionally in updating subsequent research 

and emergence events. 

Chapter 2 presents a novel peer reviewed and published methodology for collecting blood 

samples from small bats. This methodology was essential for the studies that followed. 

Chapter 3 reports on the surveillance of 2,195 bats from Australia and neighbouring 

countries sampled between 1997 and 2009 for evidence of coronavirus infection. The 

study identified coronaviruses belonging to two genera (Alpha- and Betacoronavirus) in 

Australian bats, and serological evidence of infection of coronaviruses in bats from East 

Timor, Indonesia, Malaysia and Papua New Guinea. It also identified an interspecies 

transmission of a variant of the alphacoronavirus Miniopterus bat coronavirus HKU8 from 

Miniopterus spp bats to bats of the genus Rhinolophus, supporting the hypothesis that 

bats from this genus are more likely to foster host shifts and pose a risk for the emergence 

of other bat coronaviruses. The study also elucidated the current diversity of coronaviruses 

in Queensland bats, and the findings are consistent with co-evolution with the occasional 

fostering of host shifts by bats of the genera Hipposideridae and Rhinolophidae. Further, 

they suggest that bat coronaviruses are as old as the most common bat ancestor - 65 

million years. 

Chapter 4 presents a longitudinal study of bats inhabiting an abandoned gold mine, which 

were sampled during spring, summer, autumn and winter between 2006 and 2008. The 

data and models from this study were used to develop a hypothesis of the infection 

dynamics of a novel Alphacoronavirus in Miniopterus spp. The hypothesis utilises a 

classical susceptible-infected-recovering (SIR) model, with individuals either susceptible to 
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infection, infected, or recovering from infection. An extension of the model considers pups 

that receive maternal antibody protection and tracks their progression through states of 

disease using a MSIR model, where a state of maternally derived immunity exists prior to 

becoming susceptible to infection. The findings suggested that bats have an anamnestic 

(immunological) memory which limits secondary coronavirus infections with a stronger and 

more rapid production of antibodies, compared to a primary infection. 

In Chapter 5, a modified mark/recapture study on a maternal population of the Australian 

bat Myotis macropus identified that individual bats were infected with a novel unclassified 

putative Alphacoronavirus for up to 11 weeks. The observed pattern of infection supports 

not only a hypothesis of persistent coronavirus infection in bats, but also suggests that 

acute infection, and intermittent viral is possible. 

The work in this thesis has made a major contribution to understanding the diversity and 

ecology of coronaviruses in bats. The findings have implications not only for Australia, 

where most of the studies were based, but also for the international community. The 

research highlighted the broad distribution of bat coronaviruses, both geographically and 

across bat species, demonstrated the risk of interspecies transmission, and modelled the 

infection dynamics of the viruses within individual bat species. 
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Introduction 

On the 21st February 2003 in the province of Guangdong (People’s Republic of China), a 

person with flu like symptoms travelled to Hong Kong to visit family. Checking into their 

hotel they stayed only one night, on the ninth floor. The following morning the travellers’ 

symptoms had not improved and they were admitted to hospital. Succumbing to disease, 

the traveller died the next day, from what was later diagnosed as severe acute respiratory 

syndrome or SARS. Prior to the travellers’ death, ten other guests of the hotel, who were 

also checked in on the same day and resided on the same floor, were infected by the 

traveller. Epidemiological investigations later identified these ten guests as index patients 

for the subsequent outbreaks of SARS in China, Canada, Ireland, the United States of 

America, Germany, Singapore, Vietnam and Thailand. More incredibly one of the ten 

guests, who was admitted to a local hospital in Hong Kong, was directly linked to the 

infection of 99 health care workers, including 17 medical students, in that hospital (Centers 

for Disease Control and Prevention, 2003). 

When the World Health Organisation declared the global outbreak over on the 5th July 

2003, more than 8,000 cases with over 800 fatalities had been reported in 32 countries 

worldwide. The costs to the global economy was close to $US 40 billion, with the financial 

impact not due to the consequences of the disease itself but the impact of the disease on 

the behaviour of people within those economies. This containment of both microbial and 

economic pandemics is the reason for the importance of the global surveillance and 

monitoring of disease (Lee and McKibbin, 2004). 

In March 2004, I and my colleagues commenced the field work that would later identify the 

natural reservoir host of a SARS-like coronavirus in bats (Li et al., 2005). Upon my return 

to Australia, and given the importance of the global surveillance and monitoring of disease, 

I undertook this candidature in an attempt to identify any Australian bat coronavirus and 

elucidate their ecology. The first chapter of this thesis includes a literature review that was 

subsequently published as part of a FAO Animal Production and Health Manual in 2011 

(Smith et al., 2011b). To maintain its relevance, a brief review discussing coronaviruses in 

general and a selection of manuscripts published since 2011, has been included. At the 

time of my candidature, methodology available for sampling small quantities of blood from 

microbats was limited, and most were inappropriate or resulted in the animals death. Thus, 

the second chapter describes a technique for sampling small quantities of blood from 
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microbats which was published in 2010 (Smith et al., 2010). Chapter 3 describes the 

Australian bat coronaviruses identified by myself, interspecies transmission of those 

coronaviruses, and also how they relate to other bat coronavirus identified worldwide. 

Following the identification of these coronaviruses, I planned two surveillance projects to 

study their ecology. The first, reported in Chapter 4, used a longitudinal survey (on a 

colony of bats infected with an Alphacoronavirus) to identify risk factors for infection and 

hypothesise a model for infection. The second, Chapter 5, utilised a modified 

mark/recapture method to observe natural infection in individuals and a general discussion 

presenting the final hypothesis is presented in Chapter 6. 
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Chapter 1 Literature review 

At the time of publication, the FAO book chapter (included as Chapter 1 of this thesis) 

reported on the emergence and characterisation of bat coronaviruses from 17 studies 

(Smith et al., 2011b). As of July 2013, the number of studies characterising bat 

coronaviruses had increased to 53 (Drexler et al., 2014). Whilst the difference is 

substantial, many of the initial hypotheses discussed in the book chapter remain true, 

supported by these additional studies. The nomenclature for coronaviruses may have 

changed but the phylogeny of the groups remains the same (Gonzalez et al., 2003, 

International Committee on Taxonomy of Viruses, 2009). In this review, I will generally 

discuss coronaviruses and a selection of manuscripts published since 2011 and more 

importantly, the emergence of another bat coronaviruses, Middle East respiratory 

syndrome (MERS-CoV), with fatal zoonotic consequences. 

Coronavirus morphology and replication 

Coronaviruses, of the order Nidovirales, family Coronaviridae, are the largest known non-

segmented, single stranded, positive sense RNA viruses (27.6 to 32 kb), (Lai and 

 

Figure 1. Schematic diagram of coronavirus morphology. 

Lipid membrane (MEM), spike protein (S), small envelope protein (E), large membrane protein (M), 

nucleocapsid protein (N), hemagglutinin-esterase (HE), core shell (CS) and nucleocapsid (NC),  (Spaan 

et al., 2005). 
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Cavanagh, 1997, Spaan et al., 2005). They can cause a range of syndromes including 

respiratory and gastroenteric disease in humans and respiratory, gastroenteric, 

neurological and hepatic disease in animals, often with significant economic 

consequences (Fraenkel-Conrat et al., 1988, Lai and Cavanagh, 1997). Coronaviruses 

have large projections protruding from the envelope that are formed by trimers of the spike 

protein (Figure 1) and when viewed by electron microscopy (Figure 2), form the 

characteristic ‘crown’ that gave rise to the family’s name. Coronaviruses have a diameter 

of 120-160 nm with an internal core shell 65 nm in diameter, protecting the nucleocapsid 

(Spaan et al., 2005).  

The lipid membrane envelope of coronaviruses, derived from the host cell, contains three 

proteins, the spike (S), small envelope (E), and membrane (M). The envelope of most 

 

Figure 2. Electron micrograph of SARS coronavirus. 

Electron micrograph of irradiated SARS coronavirus (H.sap/HKSAR/SARS-CoV/HKU-39849) showing 

the characteristic crown or ‘Corona’ that gave rise to the family’s name. Micrograph: Howard Prior, 

Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry. 
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Group 2 or Betacoronaviruses also contain a hemagglutinin-esterase (HE) protein. The S 

protein (1160-1452 aa, 180-220 kDa) has a highly exposed globular domain responsible 

for receptor binding, hemagglutination, membrane fusion and induction of neutralising 

antibodies. Immunisation with the spike protein alone can produce protection from 

challenge with some coronaviruses. The E protein contains 76-109 aa and has an 

apparent molecular mass of 9-12 kDa. The M protein (221-260 aa, 23-35 kDa) spans the 

envelope three to four times, it can induce interferon and together with the E protein, play 

an essential role in coronavirus virion assembly. The HE protein (65 kDa) found in the 

envelope of most Betacoronaviruses is apparently non-essential but has a receptor 

binding domain, hemagglutination activity and receptor destroying activities. The N protein 

(377 to 455 aa, 50-60 kDa) binds to the viral RNA and forms a helical nucleocapsid 

(Spaan et al., 2005). 

A large number of non-structural proteins are not incorporated into the virion, the largest of 

which are the replicase polyproteins. Approximately two thirds of the coronavirus genome 

(18 to 22 kb) contains two large open reading frames (ORF), designated ORF1a and 1b 

(Figure 3). Translation of ORF1a with a ribosome slip at the overlap of OFR1a and 1b 

yields replicase polyprotein 1a (450 kDa), whilst translation into ORF1b via a frame shift 

yields the replicase polyprotein 1ab. Both replicase polyproteins appear to be co- and post 

translationally processed, by viral proteases papain-like cysteine and 3CL proteinases, 

yielding 15-16 of mature replicase polyproteins, including the RNA-dependant RNA 

polymerase (RdRp) and an unknown number intermediate replicase polyproteins (Poon et 

al., 2005, Spaan et al., 2005). Downstream of ORF1b there are 3-13 additional ORFs that 

 

Figure 3. Representation of the coronavirus genome. 

Representation of the genome of mouse hepatitis virus as a coronavirus genome example (Spaan et al., 

2005). Open reading frames (ORF) are represented by boxes. The proteins encoded by the ORFs are 

indicated; ORF1a encodes replicase polyprotein 1a and, together with ORF1b, replicase polyprotein 1ab. 

The 5’ leader sequence is depicted by a small black box, hemagglutinin-esterase protein (HE), spike 

protein (S),  small envelope protein (E), membrane protein (M), nucleocapsid protein (N), internal ORF (I) 

and poly(A) tail is indicated by An. No designated boxes are non-structural proteins and the arrow 

between ORF1a and 1b represents the ribosomal frame shifting site. 
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encode for structural and non-structural ‘accessory’ proteins, which at least in cell culture 

are largely non-essential (Spaan et al., 2005). 

Coronaviruses infect many mammals (Spaan et al., 2005). Epithelial cells are the main 

sites of infection and induce respiratory or gastrointestinal disorders (Spaan et al., 2005). 

Respiratory, faecal-oral and mechanical transmission are common but biological vectors 

are not known (Spaan et al., 2005). Pigs, cats and domestic fowl may become persistently 

infected and shed virus from the enteric tract (Spaan et al., 2005).  

Using their S protein, coronaviruses will bind to surface molecules, including CEACAM1 

glycoprotein, angiotensin converting enzyme 2 and aminopeptidase N,  and when the HE 

protein is present can also bind to the N-acetyl neuraminic acid which serves as a co-

receptor (Figure 4) (Crenim, 2008). Coronavirus replication proceeds through the 

translation of the full-length positive stranded genomic RNA in the cytoplasm of infected 

cells, the products of which are replicase polyproteins 1a and 1ab (Spaan et al., 2005, 

Crenim, 2008). The replicase polyproteins then transcribe a full-length negative stranded 

RNA molecule from which 7 or more positive stranded nested subgenomic RNA molecules 

are transcribed, however, generally only the 5’-most ORF of the nested subgenomic RNA 

is translated (Figure 5) (Spaan et al., 2005, Crenim, 2008). During transcription 

recombination can occur at a very high frequency and may allow coronaviruses to adapt to 

new hosts and ecological niches (Lau et al., 2005, Spaan et al., 2005, Woo et al., 2006). 

The nucleocapsid is formed by the N protein binding to genomic RNA, and the M and E 

proteins which are expressed on the external surface of the endoplasmic reticulum and 

other Golgi membranes (Spaan et al., 2005, Crenim, 2008). Virion assembly will continue 

with the nucleocapsid budding into the endoplasmic reticulum and being encased by its 

membrane (Spaan et al., 2005, Crenim, 2008). The S and HE proteins, expressed on the 

internal surface of the endoplasmic reticulum, are not essential for virion assembly though 

the S protein is essential for infectivity (Spaan et al., 2005). Assembled virions are 

transported by Golgi vesicles to the cell membrane and are exocytosed into the 

extracellular space (Crenim, 2008). 
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Figure 4. The coronavirus replication cycle. 

The coronavirus replication cycle, full-length positive stranded genomic RNA (red), full-length negative 

stranded RNA (green), positive stranded nested subgenomic RNA (blue) (Crenim, 2008). (1-2) Using 

their S protein, coronaviruses will bind to surface molecules, including CEACAM1 glycoprotein, 

angiotensin converting enzyme 2 and aminopeptidase N and when the HE protein is present can also 

bind to the N-acetyl neuraminic acid which serves as a co-receptor. (3) Coronavirus replication proceeds 

through the translation of the full-length positive stranded genomic RNA in the cytoplasm of infected 

cells, the products of which are replicase polyproteins 1a and 1ab. (4) The replicase polyproteins then 

transcribe a full-length negative stranded RNA molecule from which 7 or more positive stranded nested 

subgenomic RNA molecules are transcribed. (5) The nucleocapsid is formed by the N protein binding to 

genomic RNA, and the M and E proteins which are expressed on the external surface of the endoplasmic 

reticulum and other Golgi membranes. Virion assembly will continue with the nucleocapsid budding into 

the endoplasmic reticulum and being encased by its membrane. (6) Assembled virions are transported 

by Golgi vesicles to the cell membrane and are exocytosed into the extracellular space. 
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Taxonomic classification    

Prior to the global SARS pandemic only 12 species of coronaviruses had been recognised 

by the International Committee on Taxonomy of Viruses (2002). Historically, the genus 

Coronavirus (order Nidovirales, family Coronaviridae) were divided into three informal 

groups (1, 2 and 3) based on their antigenic and genotypic characteristics (Lai and 

Cavanagh, 1997). In 2003, it was proposed that the genera Coronavirus and Torovirus be 

redefined as two subfamilies within Coronaviridae and the three groups redefined as 

genera (Gonzalez et al., 2003). However, it was not until 2009 that this proposal was 

ratified, with three genera Alpha-, Beta- and Gammacoronavirus, being named within the 

subfamily Coronavirinae (International Committee on Taxonomy of Viruses, 2009). A 

fourth genus, Deltacoronavirus, was added in 2011 (Figure 6) (International Committee on 

Taxonomy of Viruses, 2011). 

 

Figure 5. Coronavirus nested subgenomic RNA molecules. 

Seven or more positive stranded nested subgenomic RNA molecules which are transcribed from a full-

length negative stranded RNA molecule, generally only the 5’-most ORF of the nested subgenomic RNA 

is translated (Spaan et al., 2005). The 5’ leader sequence is depicted by a small black box, 

hemagglutinin-esterase protein (HE), spike protein (S),  small envelope protein (E), membrane protein 

(M), nucleocapsid protein (N) and poly(A) tail is indicated by An. No designated boxes are non-structural 

proteins and the arrow between ORF1a and 1b represents the ribosomal frame shifting site. 
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The majority of detections of coronaviruses from bats, or other animals, have been from 

PCR targeting the RdRp (ORF1ab) gene. This PCR produces an amplicon size of only 

440bp and prevents robust phylogenetic analysis. The difficulty in obtaining coronavirus 

isolates (due to the limited availability of appropriate cell lines (Crameri et al., 2009))  from 

bats presents challenges for classifying these large and highly variable RNA viruses. To 

overcome these limitations, the ICTV proposed that comparison of coronaviruses using the 

pairwise amino acid difference of seven non-structual proteins would provide order. 

 

Figure 6. Nucleotide phylogenetic analysis of 21 reference coronaviruses representing each 

species and grouped by genus (complete genome sequence). 

The evolutionary history was inferred by using the Maximum Likelihood method based on the General 

Time Reversible model (as in Chapter 3). The tree with the highest log likelihood (-575665.2715) is 

shown. The percentage of trees in which the associated taxa clustered together is shown next to the 

branches. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to 

a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. A 

discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories 

(+G, parameter = 1.6851)). The rate variation model allowed for some sites to be evolutionarily invariable 

([+I], 0.0000% sites). The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. The analysis involved 21 nucleotide sequences. There were a total of 34,919 

positions in the final dataset. Evolutionary analyses were conducted in MEGA6. 
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Alternatively, pairwise amino acid distances of the RdRP-grouping units (816 nucleotides 

RdRp, nsp12) fragment. 

Avian coronaviruses 

Infectious bronchitis virus causes a highly contagious disease of chickens affecting the 

performance of both broilers and layers 

Bovine coronavirus 

Bovine coronavirus causes both respiratory and enteric disease, including calf diarrhoea, 

winter dysentery in adults and respiratory infections in cattle of all ages. Virus isolated from 

cattle with either enteric or respiratory disease are antigenically similar and studies 

suggest the antibodies to bovine coronavirus provide immunity (Weiss and Navas-Martin, 

2005). 

Feline coronavirus 

Two variants of feline coronavirus (FCoV) are known, an avirulent form feline enteric 

coronavirus (FECV) commonly found in a carrier state in up to 90% of cats and the less 

common virulent form, feline infectious peritonitis virus (FIPV), which develops in 5% of 

cats infected with FECV. FIPV, which differs from FECV by only a single nucleotide 

polymorphism or deletion in the 3c gene, is selected during the persistent infection of 

predominantly intestinal epithelial cells (eneterocytes) and has the ability to replicate in 

macrophages leading to viremia and systemic spread of the virus, causing a severe and 

lethal disease (Hartmann, 2005, Weiss and Navas-Martin, 2005, Pedersen, 2009). 

FECV is distributed worldwide and is endemic in multiple cat environments such as 

catteries, shelters and pet stores, where cats are regularly exposed oronasally to faeces 

(the major route of transmission) in litter trays shared with infected cats. It is relatively rare 

in free-roaming ownerless cats that do not use the same location to deposit their faeces. 

However, infection will spread rapidly amongst these free roaming ownerless cats if they 

are kept close together in a shelter. Most commonly, kittens are infected at 6-8 weeks of 

age once the maternal antibodies have waned and they are exposed to FECV. It has been 

shown that naturally infected cats shed FECV intermittently for periods up to 10 months 

but some become chronic shedders, doing so for years or a lifetime and provide a 
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constant source of infection to other cats. The viral load of FECV in faeces appears to 

decrease once the cat develops FIP (Hartmann, 2005, Weiss and Navas-Martin, 2005). 

Whilst genetically distinguishable, FECV is closely related to transmissible gastroenteritis 

virus of pigs and canine coronavirus, and recombinants between these three viruses are 

known to occur (Pedersen, 2009) 

Human coronaviruses 

Prior to the emergence of SARS in 2003, two other coronaviruses, Human coronavirus 

229E and OC43 (renamed Betacoronavirus 1), were both known to be etiological agents 

for disease in humans, both causing the common cold (Weiss and Navas-Martin, 2005, 

International Committee on Taxonomy of Viruses, 2012). Since then two other 

coronaviruses associated with respiratory disease in humans have also been identified; 

Human coronavirus HKU1 and NL63. Isolated from an elderly patient with pneumonia, 

HKU1 is difficult to propagate in cell culture and little is known of its biology. NL63 is an 

Alphacoronavirus isolated from a 7 month old child in the Netherlands suffering from 

bronchiolitis and conjunctivitis. It has subsequently been identified in other countries 

including Australia. NL63 is generally associated with infections of children but has also 

been detected in immunocompromised adults with respiratory tract infections (Weiss and 

Navas-Martin, 2005). 

Murine coronaviruses 

There are many variants of murine coronavirus (MHV). Commonly used laboratory 

variants provide animal models for encephalitis, hepatitis and demyelinating disease such 

as multiple sclerosis. Other variants cause enteric disease and are easily spread via the 

oral-faecal route (Weiss and Navas-Martin, 2005). 

Porcine coronaviruses 

Transmissible gastroenteritis virus (TGEV) is a major cause of viral enteritis and foetal 

diarrhoea in swine. The disease is most severe in neonates, infecting epithelial cells of the 

small intestine and leading to potential fatal gastroenteritis with significant economic 

losses. In adults, TGEV causes mild disease. An attenuated variant of TGEV, porcine 

respiratory virus (PRCoV), resulted from the deletion of up to 707 nucleotides in the 5’ 
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region of the spike gene. This emergence of PRCoV from TGEV is an example of 

evolution with altered tissue tropism and virulence (Weiss and Navas-Martin, 2005). 

Middle East respiratory syndrome coronavirus 

In June 2013, a 60 year man was admitted to a hospital in Saudi Arabia with a seven day 

history of fever, cough, expectoration and shortness of breath. Findings from chest 

radiography were consistent with a lung infection and 11 days later the man died from 

progressive respiratory and renal failure. Subsequently, a novel coronavirus (Human 

coronavirus Erasmus Medical Centre, HCoV-EMC) isolated from the man’s sputum was 

identified as the causative agent for his death, a constellation of symptoms now known as 

Middle East respiratory syndrome (MERS). Only three months later, a patient in a London 

hospital with reported travel to Saudi Arabia was reported to have been infected with the 

same virus, and cases continue to occur (Figure 7) (Zaki, 2013). 

Characterisation of HCoV-EMC, now known as MERS-CoV, identified that its closest 

relatives were coronaviruses HKU4 and HKU5 isolated from bats in Hong Kong. It was 

hypothesised that the reservoir host for this new coronavirus could also be bats but 

molecular clock analysis had been unable to detect any direct ancestors. Anecdotal 

exposure histories suggested patients had been in contact with dromedary camels or 

goats (Reusken et al., 2013, Zaki, 2013). Serological studies (which are best suited to 

screen animal populations for evidence of previous infection) later confirmed that 

dromedary camels from Omani and the Canary Islands (Spain) had specific antibodies 

against MERS-CoV spike protein (Reusken et al., 2013). Soon after, MERS-CoV was 

identified in dromedary camels from a farm in Qatar linked to two human cases 

(Haagmans et al., 2014). Subsequently, during the surveillance of bats in Saudi Arabia, a 

coronavirus which showed 100% nucleotide similarity to MERS-CoV was identified in a 

Taphozous perforatus. This discovery suggested that in addition to SARS, bats again 

might play a role in the infection of humans with coronaviruses (Ithete et al., 2013, Memish 

et al., 2013). 
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Gathering evidence 

The global identification and characterisation of bat coronaviruses continues, clarifying the 

phylogeny between coronaviruses and highlighting the relevance of bats for their evolution 

(Quan et al., 2010, Reusken et al., 2010, Rihtaric et al., 2010, Watanabe et al., 2010, 

Smith et al., 2011a, Lu and Liu, 2012, Shirato et al., 2012, Tao et al., 2012, Tsuda et al., 

2012, Anthony et al., 2013, Corman et al., 2013, Geldenhuys et al., 2013, Goes et al., 

2013, Ithete et al., 2013, Lelli et al., 2013, Memish et al., 2013, Drexler et al., 2014). 

Additional studies discuss the ecology of the viruses and are discussed below (Lau et al., 

2010, Drexler et al., 2011, Lau et al., 2012). 

Whilst interspecies transmission of coronaviruses is known to occur, they are poorly 

understood. Lau et al. (2012) identified the transmission of a novel bat coronavirus, 

HKU10, between bats from different suborders. Their data suggested an interspecies 

transmission of the coronavirus from Rousettus leschenaultia to Hipposideros pomona, 

circa 1959, with rapid evolution of the spike protein. In Chapter 3 of this thesis, I also 

  

Figure 7. Weekly and cumulative cases of Middle East respiratory syndrome coronavirus (MERS-

CoV). 

(Mackay, 2013). 
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provide evidence that interspecies transmission was observed and supports the 

hypothesis that bats from the genus Rhinolophus may be more likely to foster host shifts 

than other species of bats, posing a risk for the emergence of other bat coronaviruses (Cui 

et al., 2007). 

Knowledge of the ecology of bat-borne viruses is lacking (Drexler et al., 2011). Chapters 5 

and 6 of this thesis attempt to address this lack of knowledge by investigating how 

coronaviruses are transmitted within a population of bats and maintained in individuals. 

Two recent studies also investigate the ecology of coronaviruses in bats (Lau et al., 2010, 

Drexler et al., 2011). Drexler et al. (2011) identified that there was strong and specific 

amplification of coronaviruses during the formation of a maternity colony of Myotis myotis 

and after parturition. It was hypothesised that the availability of susceptible bats during 

colony formation (mixing of infected and susceptible bats) and after parturition (the birth of 

susceptible pups) resulted in a viral epidemic that wanes as bats mount their own adaptive 

immunity. Lau et al. (2010) employed a mark-recapture study to identify the infectious 

period of coronaviruses in Chinese horseshoe bat (Rhinolophus sinicus). From 511 

marked bats and 152 recapture events, they identified the longest shedding period was 

two weeks and viral clearance between two weeks and four months. From this, it was 

suggested that coronaviruses cause acute, self-limiting infection in horseshoe bats (Lau et 

al., 2010). 

In conjunction with the published book chapter, this brief review will serve to introduce the 

identification and ecology of bat coronaviruses. 
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Chapter 3 Identification and inter-species transmission of 

Australian bat coronaviruses: the precursors for emergence and 

indications of host taxonomy tropism suggesting co-evolution 

Introduction 

Coronaviruses were responsible for the global outbreak of severe acute respiratory 

syndrome (SARS) in 2003 and 2004, and the outbreak of Middle East respiratory 

syndrome (MERS) in 2013 (Drosten et al., 2003, Zaki et al., 2012). Bats have since been 

identified as the natural hosts for a number of novel coronaviruses, including the likely 

ancestors to SARS and MERS coronaviruses (Lau et al., 2005, Li et al., 2005, Memish et 

al., 2013). Even before the identification MERS-like coronaviruses in bats, it was 

suspected that they could host a large diversity of novel coronaviruses (Woo et al., 2006). 

The identification and characterisation of coronaviruses found in Australasian bats is 

essential to advance our understanding of this diversity and elaborate on the ecology and 

evolution of bat coronaviruses, and inform biosecurity preparedness. 

Materials and methods 

Sampling 

A total of 2,195 bats from Australia and neighbouring countries were sampled between 

1997 and 2009 for evidence of coronavirus infection (Figure 8). Bats were caught using 

harp traps (Figure 9), then individually housed in clean cloth bags and a polythene cooler 

until sampled (Figure 10). A single faecal pellet (collected directly from a defecating bat or 

from its clean calico bag) was placed into 1 ml of sucrose potassium glutamate albumin 

(SPGA) with added penicillin, streptomycin and fungizone. When no faecal pellet was 

obtained, the anus was swabbed. Insectivorous bats were bled as described by Smith et 

al. (2010) in Chapter 2 but briefly, a 25 g   needle was used to puncture either the brachial 

or the propatagial vein. Venous blood would then bead on the surface of the skin and 

could be collected using a micropipette and sterile tip (Figure 11). Collected blood was 

diluted 1:10 in phosphate buffered saline to limit clotting. All bats were released at their 

point of capture within 6 hours. Twenty bats caught in central Queensland in an unrelated 

study in 1997, which had been euthanased and subsequently stored at -70ºC, were also 

sampled. These bats had a 2 mm2 section of their intestine homogenised in 1 ml of SPGA. 
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Forty eight faecal samples collected from Taiwanese bats and civets were placed into 1 ml 

of AVL from the QIAamp® Viral RNA Mini Kit (QIAGEN) and stored at room temperature 

for 1 week until extracted. Additional serum samples collected from the previous 

surveillance of bats (East Timor, n=36; Indonesia, n=67; Malaysia, n=101 and Papua New 

Guinea, n=65) and subsequently stored at -20°C, were also tested for evidence of 

coronavirus infection. 

Sampling was conducted with approval from the Department of Primary Industries and 

Fisheries, Queensland, Animal Ethics (SA 2006/06/117 and SA 2007/005/194), 

Environmental Protection Agency, Queensland Parks and Wildlife Service 

(WISP03887606 and WISP04906107). 

Coronavirus detection and sequencing 

Template RNA was extracted from 560 l of SPGA using the QIAamp® Viral RNA Mini Kit 

(QIAGEN) following the manufacturer’s instructions (QIAGEN, 2010). Reverse 

transcription followed by cDNA amplification using a polymerase chain reaction (RT-PCR) 

targeting a conserved region of the coronavirus RdRp gene, as described by Poon et al. 

(2005), was performed using the Superscript III One-Step RT-PCR System with Platinum® 

Taq DNA Polymerase (Invitrogen). Amplicons consistent with the expected length of 440 

nucleotides were purified using the QIAquick® PCR Purification Kit (QIAGEN) as per the 

manufacturer’s instructions (QIAGEN, 2008). Purified amplicons were directly sequenced 

using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) as per the 

manufacturer’s instructions (Applied Biosystems, 2002). The extension products were 

purified using the ethanol/EDTA precipitation  method (Applied Biosystems, 2002) and 

analysed at the Griffith University DNA Sequencing Facility (Brisbane, Australia). 

Nucleotide sequence traces were edited using Sequence Scanner v1.0 (Applied 

Biosystems). The final consensus sequences, derived from sense and anti-sense primers, 

were deposited in GenBank under accessions numbers EU834950-EU834956. In an 

attempt to obtain additional sequence for phylogenetic analysis, ten pairs of additional 

primers targeting regions of the RdRp, nucleocapsid and spike genes were applied (Li et 

al., 2005, Poon et al., 2005, Chu et al., 2006). 
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Figure 8. Sample locations for Australasian bat coronavirus surveillance. 

Locations of 2,195 bats from Australia and neighbouring countries sampled between 1997 and 2009 for 

evidence of coronavirus infection. Australasian bats were sampled from south-east Queensland (SEQ, 

n=1162), central Queensland (CQ, n=42), far-north Queensland (FNQ, n=222), the Northern Territory 

(NT, n=333), Western Australia (WA, n=119) and Taiwan (n=48). Additionally, archived bat samples from 

East Timor (n=36), Indonesia (n=67), Malaysia (n=101) and Papua New Guinea (n=65) were also 

sampled. 
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Figure 9. A collapsible bat trap. 

The collapsible bat trap (A), commonly known as a harp trap was developed by Tidemann and Woodside 

(1978) based on the original designs of Constantine (1958) and Tuttle (1974). The trap is a common tool 

used for the capture of insectivorous bats and is best placed in the natural flight path of bats, including; 

roads, trails, streams and roost entrances. The trap is light and portable and can be set up in 5 minutes 

by a single person (Tidemann and Woodside, 1978). The author removing captured bats from the bag of 

a harp trap (B). 
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Coronavirus classification 

Because of the difficulties in isolating bat 

coronaviruses, or the presence of faecal 

substances that often contribute to the 

inhibition of RT-PCR, obtaining a 

sequence from the seven genes in 

ORF1ab (as formally required for 

classification) is infrequent (Drexler et al., 

2010). The 440bp amplicon, derived from 

the universal coronavirus RT-PCR used in 

this and other ecological studies (Poon et 

al., 2005), is often insufficient to obtain 

reliable resolution in phylogenetic analysis 

(Drexler et al., 2010). To obtain a 

surrogate estimation of taxonomy, Drexler 

et al. (2010) overlapped and extended the 

sequencing of this 440bp universal 

amplicon downstream towards the 5’ end 

of coronaviruses, producing a 816bp gene 

fragment which was used to calculate the 

distance for all available coronaviruses. This 816bp gene fragment or RdRp grouping unit 

(RGU) was then used as the basis for defining species separation in mammalian 

coronaviruses; i.e. >4.8% amino acid distance for Alphacoronaviruses and >6.3% amino 

acid distance for Betacoronaviruses (Drexler et al., 2010). However, the field and lab work 

in this study preceded the publication of Drexler et al. (2010), and only 440bp were 

available for virus classification. Acknowledging this limitation, this study will utilise the 

concept of the RGU to calculate distance of coronaviruses, which is adequate for the 

primarily, disease ecology focus of the work. 

 

Figure 10. Polythene cooler used to house and 

transport bats. 

Based on the design by Hall (1979), clean cloth 

bags contain an individual bat and are suspended 

from plastic tubing inside a polythene cooler using 

plastic clothes pegs, a thermometer and 

hygrometer were used to monitor the internal 

environment of the cooler so that it could be 

maintained at a temperature and humidity similar 

to that of the bats roost. The coolers’ lid was left 

slightly ajar to allow adequate ventilation and to 

prevent excess humidity. 
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Molecular phylogenetic analysis 

The evolutionary history was inferred by using the Maximum Likelihood method based on 

the General Time Reversible model (Nei and Kumar, 2000). The tree with the highest log 

likelihood (-16168.6385) is shown. The percentage of trees in which the associated taxa 

clustered together is shown next to the branches. Initial tree(s) for the heuristic search 

were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances 

estimated using the Maximum Composite Likelihood (MCL) approach. A discrete Gamma 

distribution was used to model evolutionary rate differences among sites (5 categories 

(+G, parameter = 0.6965)). The rate variation model allowed for some sites to be 

evolutionarily invariable ([+I], 0.0000% sites). The tree is drawn to scale, with branch 

 

Figure 11. Sampling small quantities of blood from bats. 

Bats were manually restrained between the thumb and palm of the non-preferred hand and their wing 

extend until its fore and upper arm formed a 90° angle (A). The bleed site was prepared with a 70% 

ethanol swab and a 25 g needle was used to puncture either the brachial (B) or the propatagial vein. 

Venous blood would then bead on the surface of the skin (C) and could be sampled using a micropipette 

and sterile tip (D). Colour plate from Smith et al. (2010). 
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lengths measured in the number of substitutions per site. The analysis involved 43 

nucleotide sequences. There were a total of 878 positions in the final dataset. Evolutionary 

analyses were conducted in MEGA6 (Tamura et al., 2013). 

Anti-coronavirus antibody detection 

Anti-coronavirus antibodies were detected using a modified SARS coronavirus crude 

antigen ELISA developed by Yu et al. (2006). Whilst using the same antigen (gamma-

irradiated SARS-CoV, grown in Vero E6 cells), the scarcity of the horseradish peroxidase 

(HRP) conjugated anti-coronavirus chicken antibodies (developed for the competitive 

ELISA) were replaced with HRP-conjugated Protein AG for the detection of bat anti-

coronavirus antibodies bound directly to the antigen. 

Tissue Tropism 

To identify tissues tropism of Australian bat coronaviruses, a subset of 30 bats 

(Miniopterus australis, n=14; M. schreibersii, n=16) from south-east Queensland, had 

throat swabs and blood samples, in addition to the faecal samples or rectal swabs, tested 

for the presence of coronavirus RNA by RT-PCR, as above. 

Results 

Coronavirus identification 

Sequencing of amplicons and subsequent phylogenetic analyses identified four 

coronaviruses in seven species of Australian bats. An Alphacoronavirus was identified in 

M. australis and M. schreibersii sampled between 2006 and 2008, from south-east and far-

north Queensland and the Northern Territory (Figure 12 and Table 1). This coronavirus 

shares >99% RGU similarity with the ICTV reference virus Miniopterus bat coronavirus 

HKU8 and based on classification of coronaviruses for this study should be considered a 

variant of that species. This variant of Miniopterus bat coronavirus HKU8 was also 

identified in a single Rhinolophus megaphyllus from far-north Queensland and a single M. 

australis sampled in 1997 from central Queensland. Miniopterus bat coronavirus HKU8 

has also been identified in Miniopterus spp from Hong Kong and Bulgaria (Poon et al., 

2005). 

A second Alphacoronavirus was identified in both Myotis macropus and Vespadelus 

pumilus from south-east Queensland (Figure 12 and Table 1). This Alphacoronavirus 
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shares only 89% RGU similarity to any other coronavirus and should be considered its 

own species. This putative species is most closely related to another putative species 

identified in Pipistrellus kuhlii from both Italy and Spain (Lelli et al., 2013). 

A Betacoronavirus identified in a single Rhinonicteris aurantia from the Northern Territory 

was most closely related to another Betacoronavirus identified in Hipposideros caffer ruber 

from Ghana. However, this relationship has a RGU similarity <81% and the two 

Betacoronaviruses should be considered individual putative species (Figure 12 and Table 

1).  

A second Betacoronavirus identified in Pteropus alecto should also be considered as a 

new putative species as it has <87% RGU similarity with its closest related coronavirus 

hosted in Rousettus aegyptiacus from Kenya and Cynopterus brachyotis from the 

Philippines (Figure 12 and Table 1). 

Anti-coronavirus antibody detection 

Anti-coronavirus antibodies were detected in all species of bats in which coronavirus RNA 

was detected (where serum or plasma was available for testing), except R. aurantia 

(n=105) (Table 1). Anti-coronavirus antibodies were also detected in an additional 18 

species of bats from Australia, East Timor, Indonesia, Malaysia and Papua New Guinea 

(Table 1) 

Tissue Tropism 

Coronavirus RNA was detected in 11 faecal samples or rectal swabs from the subset of 30 

bats that were sampled to identify tissue tropism. Of these 11 bats, coronaviruses RNA 

was detected in the throat swabs of only two bats. No coronaviruses was detected in any 

other throat swab or in any blood samples from the 30 bats. 
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Figure 12. Nucleotide phylogenetic analysis of coronaviruses identified in Australian bats. 

Coronaviruses identified in this study are in bold. Square brackets are used to identify species and genus 

groups. Coronavirus nomenclature: Host species/country of origin/laboratory identification/year collected 

(GenBank accession). 

 Bat coronavirus HKU9 (NC 009021.1)

 R.aeg/KEN/BtKY06/2006 (HQ728483.1)

 R.aeg/KEN/BtKY77/2007 (GU065421.1)

 C.bra/PHL/Diliman1525G2/2008 (AB539081.1)

Species group

Species group P.ale/AUS/SEQ/xxx/2009 (xxxxxxxx)

 Severe acute respiratory syndrome-related coronavirus (NC 004718.3)

Species group R.aur/AUS/NT/000/2006 (EU834950)

 H.caf/GAB/292/2009 (JX174638.1)

 H.sp/GHA/Boo/348/2008 (FJ710043.1)

 H.sp/GHA/Kwam/24/2008 (FJ710052.1)

Species group

 Human coronavirus HKU1 (NC 006577.2)

 Betacoronavirus 1 (NC 005147.1)

 Murine coronavirus (NC 001846.1)

 Tylonycteris bat coronavirus HKU4 (NC 009019.1)

Species group E.eur/DEU/2012-216/2012 (KC545386.1)

 Bat coronavirus HKU5 (NC 009020.1)

 Middle East respiratory syndrome-related coronaviruses (JX869059.2)

Betacoronavirus

 Avian coronavirus (NC 001451.1)

 Beluga Whale coronavirus SW1 (NC 010646.1)
Gammacoronavirus

 Munia coronavirus HKU13 (NC 011550.1)

 Bulbul coronavirus HKU11 (FJ376620.1)

 Thrush coronavirus HKU12 (NC 011549.1)

Deltacoronavirus

 Alphacoronavirus 1 (NC 002306.3)

 Rhinolophus bat coronavirus HKU2 (NC 009988.1)

 Porcine epidemic diarrhea virus (NC 003436.1)

 Scotophilus bat coronavirus 512 (NC 009657.1)

 Human coronavirus NL63 (NC 005831.2)

 M.mac/AUS/SEQ/034/2008 (EU834951)

 V.pum/AUS/SEQ/xxx/2008 (xxxxxxxx)
Species group

 P.kuh/ESP/Iprima/2007 (HQ184058.1)

 P.kuh/ITA/206679-3/2010 (KF500949.1)
Species group

 Human coronavirus 229E (NC 002645.1)

 Miniopterus bat coronavirus 1 (AY864196)

 M.nat/KEN/BtKY27/2006 (HQ728484.1)
Species group

 M.sp./HKG/HKU7/2006 (DQ666339.1)

 Miniopterus bat coronavirus HKU8 (NC 0101438.1)

 M.sch/BGR/BR98-40/2008 (GU190246.1)

 M.aus/AUS/CQ/180/1996 (EU834956)

 M.sch/AUS/NT/xxx/2008 (xxxxxxxx)

 M.sch/AUS/SEQ/146/2007 (EU834955)

 R.meg/AUS/FNQ/100/2007 (EU834953)

 M.aus/AUS/FNQ/088/2007 (EU834952)

 M.aus/AUS/SEQ/132/2007 (EU834954)

Species group

Alphacoronavirus
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Figure 13. The demon of Bamford mine. 

One hundred meters into the mines adit (horizontal shaft), a hand net is used to capture Rhinolophus 

megaphyllus. Deposits of copper (coloured blue) can be seen on the exposed rock. 
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Table 1. Surveillance for coronaviruses surveillance in bats in Australasia. 

1
Locations within Australia, central Queensland (CQ), far-north Queensland (FNQ), south-east Queensland (SEQ), Northern Territory (NT) and Western Australia 

(WA). 

2
Tested using universal coronavirus RT-PCR used in this and other ecological studies, (Poon et al., 2005). No. detected (No. tested). 

3
Tested using SARS coronavirus crude antigen ELISA developed by Yu et al. (2006). No. detected (No. tested). 

 

 

Suborder Family Genus Species Location
1
 Coronavirus RNA

2
 Coronavirus antibodies

3
 

Pteropodiformes Hipposideridae Hipposideros ater Australia (FNQ) 0 (29) 0 (29) 

    Australia (NT) 0 (27) 1 (4) 

    Australia (WA)  0 (31) 

   terasensis Taiwan 0 (2)  

  Rhinonicteris aurantia Australia (NT) 1 (126) 0 (105) 

 Megadermatidae Macroderma gigas Australia (NT) 0 (57) 1 (63) 

    Australia (WA)  17 (21) 

 Pteropodidae Acerodon celebensis Indonesia  0 (15) 

  Cynopterus spp. Malaysia  11 (15) 

  Dobsonia anderseni Papua New Guinea  1 (18) 

   peronii Indonesia  0 (1) 

   praedatrix Papua New Guinea  0 (21) 

  Eonycteris spp. Malaysia  11 (12) 

  Macroglossus minimus Papua New Guinea  0 (2) 

   spp. Indonesia  0 (3) 
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  Pteropus alecto Australia (SEQ) 4 (33) 9 (34) 

    Indonesia  0 (36) 

    Papua New Guinea  10 (11) 

   capistratus Papua New Guinea  0 (7) 

   conspicillatus Australia (FNQ)  6 (40) 

   griseus East Timor  0 (1) 

   hypomelanus Malaysia  0 (34) 

   neohibernicus Papua New Guinea  4 (6) 

   poliocephalus Australia (SEQ) 0 (27) 12 (73) 

   scapulatus Australia (NT)  3 (40) 

   vampyrus East Timor  4 (35) 

    Malaysia  12 (32) 

  Rousettus amplexicaudatus Indonesia 0 (6)  

   spp. Indonesia  1 (6) 

 Rhinolophidae Rhinolophus megaphyllus Australia (FNQ) 1 (58) 5 (61) 

    Australia (SEQ) 0 (448) 13 (399) 

   monoceros Taiwan 0 (41)  

Vespertilioniformes Emballonuridae Saccolaimus flaviventris Australia (WA)  0 (18) 

  Taphozous spp. Australia (WA)  8 (38) 

    Malaysia  1 (4) 

 Miniopteridae Miniopterus australis Australia (CQ) 1 (20) 15 (30) 

    Australia (FNQ) 14 (30) 16 (30) 

    Australia (SEQ) 38 (154) 80 (124) 
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    Australia (WA)  1 (1) 

   schreibersii Australia (NT) 6 (59) 26 (56) 

    Australia (SEQ) 63 (238) 145 (211) 

 Molossidae Chaerephon jobensis Australia (WA)  2 (4) 

  Mormopterus beccarii Australia (SEQ) 0 (3) 40 (41) 

   norfolkensis Australia (SEQ) 0 (1)  

 Vespertilionidae Chalinolobus spp. Australia (WA)  2 (4) 

  Myotis macropus  Australia (FNQ) 0 (31) 18 (31) 

    Australia (SEQ) 13 (64)  

  Nyctophilus bifax Australia (SEQ) 0 (6)  

   gouldi Australia (SEQ) 0 (7)  

  Scotophilus spp. Malaysia  4 (4) 

  Scotorepens greyii Australia (SEQ) 0 (1)  

   rueppellii Australia (SEQ) 0 (1)  

   spp. Australia (SEQ)  24 (24) 

    Australia (WA)  0 (1) 

  Vespadelus findlaysoni Australia (WA)  0 (1) 

   pumilus Australia (SEQ) 1 (4)  

   troughtoni Australia (FNQ) 0 (31) 5 (31) 

Feliformia Viverridae Paguma larvata Taiwan 0 (5)  
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Discussion 

Identification of coronavirus RNA and anti-coronavirus antibodies in 

Australasian bats 

Whilst acknowledging that the 440bp amplicon derived from the universal coronavirus RT-

PCR is often insufficient to obtain reliable resolution in phylogenetic analysis, this study 

used it to identify four coronaviruses (including three putative novel coronaviruses) in 

seven species of Australian bats, and detected anti-coronavirus antibodies in an additional 

18 species from Australia, East Timor, Indonesia, Malaysia and Papua New Guinea. 

These identifications and detections support the hypothesis of Woo et al. (2006) that bats 

host a large diversity of novel coronaviruses, possibly due to their own diversity. It also 

demonstrates the ability for interspecies transmission or spillover of coronaviruses 

amongst bats, which advances our understanding of the ecology of bat coronaviruses and 

informs biosecurity preparedness. 

Host tropism of bat coronaviruses 

Bat coronaviruses have a narrow host range and are generally bat species or genus 

specific, independent of location (Poon et al., 2004, Chu et al., 2006, Tang et al., 2006, 

Woo et al., 2006, Gloza-Rausch et al., 2008, Pfefferle et al., 2009, Drexler et al., 2014). 

Drexler et al. (2010) hypothesised that these virus-host associations or tropism could be 

used in a prospective manner to predict the geographic distribution of bat coronaviruses. 

Indeed, in support of this contention, Drexler et al. (2010) did identify the 

Alphacoronaviruses Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus 

spp from the People’s Republic of China and Hong Kong Special Administrative Region) in 

M. schreibersii from Bulgaria, over 8,000 km away. The validity of this hypothesis was also 

confirmed by the current study’s identification of Miniopterus bat coronavirus HKU8 in M. 

australis and M. schreibersii from Australia, some 7,000 km from Hong Kong and almost 

15,000 km from Bulgaria. Similarly, in support of this hypothesis and the host tropism of 

bat coronaviruses, is the identification of a novel putative Betacoronavirus (by this study) in 

Rhinonicteris aurantia from the Northern Territory, being most closely related to another 

putative Betacoronavirus identified by Pfefferle et al. (2009) in H. caffer ruber from Ghana, 

both coronaviruses are h osted by bats of the same family, Hipposideridae. Again, the 

putative Betacoronavirus identified in P. alecto from south-east Queensland, was most 
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closely related to the Betacoronavirus Bat coronavirus HKU9, identified in Rousettus spp 

from the People’s Republic of China and Kenya, and from Cynopterus brachyotis from the 

Philippines, all of which belong to the family Pteropodidae. This relationship of related bat 

coronaviruses being hosted by bats of the same family has also been reported for 

coronaviruses that are hosted by Vespertilionidae (Cui et al., 2007) and by Rhinolophidae 

(Lau et al., 2005, Li et al., 2005). With the reclassification of the taxonomy of bats using 

comparative-method and molecular studies (Hutcheon and Kirsch, 2006), the suborder 

Pteropodiformes now comprises, amongst others, bats from the families Hipposideridae, 

Rhinolophidae and Pteropidae. With the identification of Betacoronaviruses predominantly 

from bats of these families, the relationship of related bat coronaviruses being hosted by 

bats of the same species or genus can now be extended to bats of the same family or 

suborder; it also suggests that other Betacoronaviruses may be hosted by other 

Pteropodiformes (Craseonycteridae, Megadermatidae and Rhinomatidae). 

Interspecies transmission of an Australian bat coronavirus: the precursor for 

emergence  

Despite our intensive surveillance (n=506) of the Australian bat R. megaphyllus, from the 

genus that hosts SARS-like coronaviruses in China (Lau et al., 2005, Li et al., 2005), 

coronavirus RNA was only detected in one bat (Figure 12 and Table 1). This coronavirus 

was identified as a variant of the Alphacoronavirus Miniopterus bat coronavirus HKU8 and 

was identical to the variant identified in M. australis at the same roost. This identification is 

strongly suggestive that the moment of interspecies transmission or spill-over of an 

Alphacoronavirus from M. australis to R. megaphyllus was observed. Whilst environmental 

contamination of the samples cannot be excluded, interspecies transmission, or spill-over, 

and host shifting (defined as interspecies transmission followed by establishment and 

long-term persistence in the new host species) has been suggested as an explanation for 

the relatedness of bat coronaviruses identified in different species of bats, and as a driver 

for their evolution through adaption within the new host species (Poon et al., 2005, Wang 

et al., 2006, Cui et al., 2007, Vijaykrishna et al., 2007, Chu et al., 2008, Gloza-Rausch et 

al., 2008, Pfefferle et al., 2009). Emergence of zoonotic viruses from a wildlife reservoir 

host requires four events; (1) interspecies contact, (2) interspecies transmission of the 

virus (or spill-over), (3) establishment and long-term persistence in the new host (or host 

shift), and (4) virus adaptation within the new host (Wang et al., 2006, Cui et al., 2007). 

This study identified two of the four events that are required for the successful emergence 
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of an Australian bat coronavirus; (1) there was opportunity for interspecies contact 

between M. australis and R. megaphyllus at the same location (Figure 14), and, (2) inter-

species transmission of an Alphacoronavirus from M. australis to R. megaphyllus was 

observed. However, neither (3) establishment or long-term persistence of the virus in the 

new host, or (4) virus adaptation in the new host were identified. Bats from the genus 

Rhinolophus may be more likely to foster host shifts than other species of bats and pose a 

risk for the emergence of other bat coronaviruses (Cui et al., 2007). This study identified 

the interspecies transmission of a variant of Miniopterus bat coronavirus HKU8 which 

supports this contention. Additionally, the findings support the hypothesis that the 

presence of bats from the genus Rhinolophus is a risk for the emergence of both SARS-

like and other bat coronaviruses (Cui et al., 2007), and could indicate that we have 

detected the precursors required for the emergence of an Australian bat coronavirus. 

However, the lack of evidence for the establishment of this coronaviruses in the genus 

Rhinolophus suggests a low likelihood of emergence at this time. 
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Coronavirus evolution 

Given this general host tropism for bat coronaviruses, two methods of evolution have been 

proposed to explain coronavirus diversity in bats and other species (Cui et al., 2007, 

Vijaykrishna et al., 2007). Divergent evolution requires the inter-species transmission of a 

common ancestor bat coronavirus between related species of bats and subsequent 

adaption and establishment in the new host would result in families and suborders of bats 

having related coronaviruses, whilst transmission between unrelated species of bats or 

other species would result in a more divergent coronaviruses (Wang et al., 2006, Lau et 

al., 2012). However, to account for the identification of related coronaviruses in related 

 

Figure 14. Interspecies contact of Australian bats. 

The presence of Australian bats utilising the same roosts and flyways illustrates the potential for 

interspecies contact, the first event required for the emergence of zoonotic viruses (Wang et al., 2006). 

Panel A: Rhinolophus megaphyllus (left arrow) and Miniopterus spp (right arrow) from far north 

Queensland; Panel B: Macroderma gigas (top arrow) and Rhinonicteris aurantia (bottom arrow) from the 

Northern Territory.  
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species of bats in different locations throughout the world, divergent evolution would 

require the global distribution of each newly diverged coronavirus, a process that may be 

possible given some bats’ ability for range movement (Breed et al., 2010), but not all. An 

alternative explanation for the diversity of coronaviruses is co-evolution of bats and 

coronaviruses (Cui et al., 2007), whereby the divergence of each bat species was mirrored 

by the divergence of the coronavirus it hosted. This method of evolution would account for 

the diversity, relatedness and global distribution of bat coronaviruses but would require 

that bat coronaviruses are as old as the most common bat ancestor, 65 million years 

(Churchill, 2008). However, co-evolution alone does not explain the presence of different 

coronavirus genera in the same species or genus, i.e. Hipposideridae and Rhinolophidae 

hosting both Alpha and Betacoronaviruses (Woo et al., 2006) which would require some 

host shifting, an ability previously reported in Rhinolophidae (Cui et al., 2007). The most 

plausible scenario is that the current diversity of coronaviruses in bats was the result of co-

evolution with the occasional fostering of host shifts by Hipposideridae and Rhinolophidae.  

A Betacoronavirus in flying foxes: implications for bush meat? 

A Betacoronavirus was identified in P. alecto from south-east Queensland. Whilst other 

coronaviruses have been identified in bats from the family Pteropodidae (Woo et al., 2007, 

Tong et al., 2009), this is the first identification of a coronavirus in a flying fox (genus 

Pteropus). Also, the detection of anti-coronavirus antibodies in P. alecto, P. conspicillatus, 

P. neohibernicus, P. poliocephalus, P. scapulatus, and P. vampyrus from far north and 

south-east Queensland, the Northern Territory, East Timor, Malaysia and Papua New 

Guinea suggests that coronaviruses are widely distributed amongst species of this genus 

and their distribution. 

Flying foxes are commonly hunted and are an important source of bush meat in many 

countries throughout their distribution (Epstein et al., 2009). The presence of flying foxes in 

live animal markets (where they are sold for human consumption) creates a scenario 

similar to that found in the People’s Republic of China where bats from the genus 

Rhinolophus are also sold for human consumption and are thought to have been 

responsible for the spill-over of SARS into civets (Guan et al., 2003, Tu et al., 2004). When 

assessing the risk of the emergence of other bat coronaviruses, the presence of flying 

foxes in live animal markets should be considered a factor as they could provide an 

alternate route for emergence. 
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Genetic instability of a Betacoronavirus 

A Betacoronaviorus was identified in R. aurantia from the Northern Territory. This 

coronavirus is unique in that it had an inserted codon in the RNA-dependant RNA 

polymerase gene. This codon (GCT) is inserted at nucleotide position 423 of the PCR 

amplicon or at nucleotide position 15,632 when compared with the complete genome 

sequence of SARS coronavirus (HKU-39849, Genbank accession AY278491.2, data not 

shown). Whilst the function of this inserted codon (if any) is unknown, it illustrates the 

variety of mechanisms (including insertions, deletions, mutations and recombination) that 

coronaviruses use to maintain their genetic instability, and as a result generate diversity 

(Lai and Cavanagh, 1997). This diversity provides variants with evolutionary advantages, 

including the adaptation to a new host or greater pathogenicity (Lai and Cavanagh, 1997). 

Anti-coronavirus antibody detection 

Anti-coronavirus antibodies were detected in all species of bats in which  coronavirus RNA 

was detected (where serum or plasma was available for testing), except R. aurantia. Of 

the 126 R. aurantia surveyed, coronavirus RNA was detected in only 1 bat. This sample 

size was sufficient to detected coronavirus or anti-coronavirus antibodies at a prevalence 

of 2% (Cannon and Roe, 1982), and suggests that either infection occurs at this low level 

and we were unable to detect antibodies using the SARS crude antigen ELISA, or that R. 

aurantia also has the ability to foster host-shifts of coronaviruses from other species (Cui 

et al., 2007) and this host-shifting is a rare event. For the latter scenario to occur, the 

coronaviruses detected in R. aurantia would need to have been transmitted from a species 

of bat with which interspecies contact was possible (Wang et al., 2006). In the Northern 

Territory, R. aurantia was caught roosting with both H. ater and Macroderma gigas (Figure 

14). Further surveillance of both Australian H. ater and M. gigas is necessary to identify 

the coronaviruses hosted by these species and determine if they are the same or closely 

related to that identified in R. Aurantia. If so, it would be another example of interspecies 

transmission of coronaviruses in Australian bats. Also of interest, are Scotorepens whose 

prevalence of anti-coronavirus antibody prevalence was 100% (n=24), which strongly 

suggests a high rate of coronavirus infection. 

Tissue tropism 

The majority of coronaviruses previously reported in bats were detected in faecal samples 

or rectal swabs indicating a predominantly enteric tropism (Lau et al., 2005, Poon et al., 



Australian bat coronaviruses 

82 

2005, Chu et al., 2006, Tang et al., 2006, Dominguez et al., 2007, Lau et al., 2007). From 

the subset of 30 bats that were sampled to identify tissue tropism in Australian bat 

coronaviruses, coronavirus RNA was detected in faecal samples or rectal swabs of 11 

bats. Of these 11 bats, coronaviruses RNA was detected in the throat swab of only two 

bats and was not detected in any blood samples. Whilst this sample size limits statistical 

analysis, it suggests that bat coronaviruses will only be detected in throat swabs 

secondary to detection in faecal samples or rectal swabs, confirming a predominantly 

enteric tropism of bat coronaviruses. It also indicates that blood samples are not useful for 

the detection of bat coronaviruses. 

Co-habitation of civets (Paguma larvata) and bats (Rhinolophus monoceros) 

Whilst no evidence of coronavirus infection was detected in either the civets (Paguma 

larvata) or bats (R. monoceros) from Taiwan (Table 1), both were found co-habiting the 

same cave. This scenario illustrates the potential for interspecies contact between bats of 

the genus known to host SARS-like coronavirus (Lau et al., 2005, Li et al., 2005), and a 

non-bat species considered to be the origin of the SARS outbreak in humans (Guan et al., 

2003, Tu et al., 2004). This observation suggests a potential alternate route for the 

emergence of SARS-like coronaviruses other than the live animal markets of the People’s 

Republic of China, as this cave was also frequented by humans for the purpose of mining 

guano (pers. comm. Chao-Lung).  

Conclusion 

This study identified coronaviruses in Australian bats and evidence of infection of 

coronaviruses in bats from East Timor, Indonesia, Malaysia and Papua New Guinea. It 

also identified an interspecies transmission of an Australian bat coronavirus, supporting 

the hypothesis that the presence of bats from the genus Rhinolophus is a risk for the 

emergence of both SARS-like and other bat coronaviruses (Cui et al., 2007). Whilst the 

precursors required for the emergence of an Australian bat coronavirus were detected, 

there appears to be a low risk of the emergence at this time. The study extended the 

known relationship of related bat coronaviruses being hosted by bats of the same species 

or genus to bats of the same family or suborder. It also elucidated the current diversity of 

coronaviruses in bats suggesting that it is the result of co-evolution with the occasional 

fostering of host shifts by Hipposideridae and Rhinolophidae, and that bat coronaviruses 

are as old as the most common bat ancestor, 65 million years (Churchill, 2008). 
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These findings advance our understanding of the diversity of coronaviruses in bats. This 

diversity, the global distribution of bats and the propensity of coronaviruses to successfully 

cross species barriers suggests SARS-like coronaviruses may not be the only example of 

a bat coronavirus being the cause of future disease outbreaks. 
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Chapter 4 Alphacoronavirus infection dynamics in a population of 

Miniopterus spp. 

Introduction 

Relatively little is known about the ecology and infection dynamics of coronaviruses in wild 

animals (Poon, Chu et al. 2005) and whilst many surveys have been conducted to identify 

coronaviruses in bats, few have reported more than descriptive statistics (Lau et al., 2005, 

Li et al., 2005, Poon et al., 2005, Chu et al., 2006, Tang et al., 2006, Woo et al., 2006, 

Dominguez et al., 2007, Lau et al., 2007, Muller et al., 2007, Woo et al., 2007, Tong et al., 

2009). However, some putative risk factors for the infection of bats with coronaviruses 

(assumed through detections of genomic material by RT-PCR) have been reported and 

most appear to be associated with maternal colonies. Sub-adults, lactating females, and 

more generally, any female bat associated 

with maternal colonies, and even the 

formation of the maternal colony itself, 

have all been reported as risk factors for 

infection (Gloza-Rausch et al., 2008, 

Pfefferle et al., 2009, Drexler et al., 2011). 

These risk factors and peaks of infection, 

characterised by increased virus 

concentration and prevalence, are 

hypothesised to be due to the formation of 

a colony of sufficient size and density as to 

allow attainment of a critical basic 

reproductive rate in susceptible bats and 

also due to a new wave of susceptible bats 

within the colony - juveniles who have lost 

their perinatal protection but not yet 

mounted their own adaptive immunity 

(Gloza-Rausch et al., 2008, Drexler et al., 

2011). It was also suggested by Gloza-

Rausch et al. (2008) that the lower 

detection rates of coronavirus in adult bats 

 

Figure 15. An abandoned gold mine in south-

east Queensland, Australia. 

With a drive length of 60m, this mine was 

abandoned in the 1920’s and is now inhabited by 

bats. 
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could be due to partial immune protection 

from previous infection earlier in life, as 

with other bovine, murine and porcine 

coronaviruses (Weiss and Navas-Martin, 

2005). 

Studies of bat adaptive immunity have 

provided evidence for both the antibody 

and cell-mediated (innate) immunity in bats 

(Barrett, 2004, Field, 2005, Plowright et al., 

2008, Breed et al., 2011, Baker et al., 

2013, Epstein et al., 2013, Baker et al., 

2014). Although bats appear to share most 

features of the immune system with other 

mammals, qualitative and quantitative 

differences in immune responses have been reported. These differences may allow the 

asymptomatic nature of viral infections in bats (Baker et al., 2013). 

The ability for antibodies to provide protection from infection is an important feature of the 

immune system (Baker et al., 2013). Not only have neutralising antibodies in bats been 

shown to confer protection but it has also been demonstrated that maternal immunity is 

passed from dams to pups, with the duration of maternal immunity lasting up to eight 

months (Field, 2005, Plowright et al., 2008, Breed et al., 2011, Baker et al., 2013, Epstein 

et al., 2013, Baker et al., 2014). Using my technique described in Chapter 2 (Smith et al., 

2010), this study endeavoured to elucidate the immunological response by bats to an 

Alphacoronavirus infection and identify any other risk factors that may contribute to the 

dynamics of their infection. 

Materials and methods 

Sampling 

An abandoned gold mine in south-east Queensland, Australia (Figure 15 & 16), was 

selected for this study due to its inhabitance by three species of bats, Miniopterus 

australis, M. schreibersii (Figure 19) and Rhinolophus megaphyllus (Figure 18), and also 

due to the previous detection, in bats from this mine, of a variant of the Alphacoronavirus, 

Miniopterus bat coronavirus HKU8 (Chapter 3). Approximately 180 bats (30 M. australis, 

 

Figure 16. Bats roosting at the mines entrance. 

For public safety, the mine is barred but it still 

allows access by bats which can often be seen 

roosting near the entrance. 
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30 M. schreibersii and 60 R. megaphyllus) were sampled once each season over a period 

of two years, between 2006 and 2008.  A collapsible bat trap (Figure 9 & 17), placed at the 

entrance of the mine, caught bats as they returned to roost each morning after a nights 

foraging. Bats were then individually housed in clean cloth bags and a polythene cooler 

until sampled (Figure 10). A single faecal pellet (collected directly from a defecating bat or 

from its clean cloth bag) was placed into 1 ml of sucrose potassium glutamate albumin 

(SPGA) with added penicillin, streptomycin and fungizone. When no faecal pellet was 

obtained, the anus was swabbed and the swab placed into 1 ml SPGA. Bats were 

manually restrained and bled as described in Chapter 2 (Smith et al., 2010). Briefly, a 25 g 

needle was used to puncture either the brachial or the propatagial vein. Venous blood 

would then bead on the surface of the skin and could be collected using a micropipette 

and sterile tip (Figure 11). Collected blood was diluted 1:10 in phosphate buffered saline to 

limit clotting. Bats were sexed based on the presence of external genitalia; male bats have 

an obvious penis (Churchill, 2008). Female bats were assigned to one of two age classes 

(Churchill, 2008); 

 Adult: bats that are in reproductive condition (pregnant) or have reproduced in 

previous years (developed teats) 

 Sub-adult: bats that are adult size but have not yet reached sexual maturity (not 

pregnant and minute teats) 

Male bats can reportedly be aged more subjectively, based on knobbly wing joints 

indicating immature cartilaginous epiphyises in the forearm long bones (Churchill, 2008). I 

initially attempted this approach, but subsequently abandoned it because of concerns of 

mis-classification, and so all males bats were placed in the age class Male. 

All bats were then temporarily marked with a non-toxic pen inside their ear (Figure 20), to 

prevent recapture and sampling of the same bat within a season, and released at the 

entrance of the mine within 6 hours. 
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Sampling was conducted with approval 

from the Department of Primary Industries 

and Fisheries, Queensland, Animal Ethics 

(SA 2006/06/117 and SA 2007/005/194), 

Environmental Protection Agency, 

Queensland Parks and Wildlife Service 

(WISP03887606 and WISP04906107). 

Coronavirus detection and sequencing 

Template RNA was extracted from 560 l 

of SPGA using the QIAamp® Viral RNA 

Mini Kit (QIAGEN) following the 

manufacturer’s instructions (QIAGEN, 

2010). Reverse transcription followed by 

cDNA amplification using a polymerase 

chain reaction (RT-PCR) targeting a 

conserved region of the coronavirus RNA-

dependent RNA polymerase gene, as 

described by Poon et al. (2005), was 

performed using the Superscript III One-Step RT-PCR System with Platinum® Taq DNA 

Polymerase (Invitrogen). 

Anti-coronavirus antibody detection 

Anti-coronavirus antibodies were detected using a modified SARS coronavirus crude 

antigen ELISA developed by Yu et al. (2006). Whilst using the same antigen (gamma-

irradiated SARS-CoV, grown in Vero E6 cells), the scarcity of the horseradish peroxidase 

(HRP) conjugated anti-coronavirus chicken antibodies (developed for the competitive 

ELISA) were replaced with HRP-conjugated Protein AG for the detection of bat anti-

coronavirus antibodies bound directly to the antigen. 

Descriptive statistics 

 

Figure 17. Preparing the collapsible bat trap 

Scientist Carol de Jong, prepares the collapsible 

bat trap for placement at the mines entrance. 
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Descriptive statistics, including mean 

prevalence and the calculations of 95% 

confidence intervals for binomial 

populations (Wilson 1927) were calculated 

in Excel®. 

Determining risk factors through 

multivariable analysis 

To prevent bias of the regression 

coefficients and allow valid interpretation of 

multivariable analysis, the datasets were 

edited as suggested by Peduzzi et al. 

(1996) and Pedhazur (1997), in that; 

1. The number of bats per cohort 

(observations) must be greater than 10 

2. There must be at least one test 

detection (event) per cohort 

3. The number of events must not 

equal the number of observations 

Modelling of binomial proportions (logistic 

regression, GenStat® 11th Edition) was 

used to identify risk factors associated with a particular outcome (detection of coronavirus 

by RT-PCR or anti-coronavirus antibodies by ELISA).  The general strategy for building a 

logistic regression model was as suggested by Hill and Ward (2008): 

 

Figure 18. Rhinolophus megaphyllus. 

One of the three species of bats that inhabit the 

mine, Rhinolophus megaphyllus, more commonly 

known as the Eastern horseshoe bat, named after 

its large elaborate noseleaf that assist with 

echolocation. 
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1. “Perform univariable logistic 

regression to identify potential risk 

factors, also known as the 

unadjusted odds. For each variable, 

note the change in deviance to the 

model and the p-value associated 

with this change. (Note: The ‘total’ 

deviance measures the difference 

between the observed data and 

what is predicted by the model 

containing only the intercept, the 

‘residual’ deviance measures the 

difference between the observed 

data and what is predicted by the 

model that includes a variable. The 

difference between these two 

deviances follows a Chi-square (2) 

distribution with the number of 

degrees of freedom in the model. 

Variables whose deviance p-value 

is <0.25 should be considered for inclusion in the model, variables with a deviance 

p-value >0.25 are unlikely to be risk factors for the outcome but should be 

considered as potential confounders.” 

2. “Use the univariable model with the lowest deviance p-value as the foundation. One 

at a time, add the remaining variables, whose deviance p-value <0.25, and note the 

change in deviance to the model and the p-value associated with this change. The 

added variable with the lowest deviance p-value (now significant at a p-value <0.05) 

can be added to the model.” 

 

Figure 19. Roosting Miniopterus spp. 

Commonly known as bentwing bats, Miniopterus 

spp. roost densely together, possibly facilitating 

the transmission of coronaviruses. 
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3. “Using the above two-variable 

model, continue adding, one at a time, the 

remaining variables. As before, note the 

change in deviance to the model and the 

p-value associated with this change. 

Continue adding variables to the model 

until they no longer significantly improve 

the fit (the p-value associated with the 

change of any added variable is no longer 

<0.05).” 

4. “Check for interaction. Using the 

multivariable model, add, one at a time, all 

possible two way interactions of the risk 

factors. Note the change in deviance to the 

model and the p-value associated with this change. If more than one interaction 

term improves the models fit, use the multivariable model and the best fitting 

interaction to determine whether any additional interaction terms further improve the 

model.” 

5. “Check for confounding. Using the multivariable model with any interactions, add, 

one at a time any potential confounders. If the addition of a potential confounder 

changes the odds ratio associated with any risk factor by >10%, then that variable 

is a confounder.” 

6. “Assess the overall adequacy of the model. As previously stated, deviance follows 

an approximate Chi-square distribution, if the model fits well, residual deviance (the 

difference between the observed data and what is predicted by the final 

multivariable model with any interactions and confounders) will not be statistically 

significant.” 

Referents were manually selected but were generally those with the greatest observations 

to minimise aliasing categories in the logistic regression model. 

Results 

Bats from the mine were sampled each season over a two year period between 2006 and 

2008. Using the previously outlined methodology to edit data, the following cohorts were 

 

Figure 20. A bat marked with a non-toxic pen 

inside its ear. 

This bat was identified as being a recapture (from 

sampling a few days prior) by the temporary mark 

from a non-toxic pen inside its ear. 
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removed each of the datasets (RT-PCR and ELISA) before analysis and are shown in 

Appendix 1 & 2 

For the RT-PCR dataset of 518 results; the following cohorts were removed before 

analysis; 

 Species R. megaphyllus removed, no RT-PCR detections (392 results remaining) 

 Unknown Sex removed (391 results remaining) 

 Unknown Age removed (381 results remaining in final dataset, Table 8) 

For the ELISA dataset of 457 results, the following cohorts were removed before analysis; 

 Species R. megaphyllus removed, as above, no RT-PCR detections (335 results 

remaining) 

 Unknown Sex removed (334 results remaining, Table 9) 

Descriptive statistics, model building strategies, multivariable analysis and model 

predictions for the detection of coronavirus by RT-PCR (n=381) and anti-coronavirus 

antibodies by ELISA (n=334) are presented below. 
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Table 2. Descriptive statistics for the detection of coronavirus RNA by RT-PCR. 

Variable Category Detected (Total) Prevalence (95% CI) 

Season    

 Spring 44 (158) 28 (21-35) 

 Summer 16 (49) 33 (21-47) 

 Autumn 25 (95) 26 (19-36) 

 Winter 16 (79) 20 (13-30) 

Species    

 Miniopterus australis 38 (154) 25 (19-32) 

 Miniopterus schreibersii 63 (227) 28 (22-34) 

Sex    

 Male 52 (189) 28 (22-34) 

 Female 49 (192) 26 (20-32) 

    

Age    

 Male 52 (189) 28 (22-34) 

 Female sub-adult 29 (95) 31 (22-40) 

 Female adult 20 (97) 21 (14-30) 

 

Table 3. Model building strategy for the multivariable analysis of the detection of coronavirus RNA by 

RT-PCR 

Variable Residual deviance P 

Season 437.9 0.434 

Species 440.2 0.503 

Sex 440.5 0.660 

Age 438.0 0.261 

   

Season+Species+Season*Species 437.0 0.815 

Season+Sex+Season*Sex 434.4 0.506 

Season+Age+Season*Age 429.9 0.458 
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Figure 21. Multivariable model for the seasonal prediction of the detection of coronavirus by RT-

PCR in Miniopterus spp. 

The final model suggests an increase in the prevalence of coronavirus RNA (likely due to infection) rate 

in sub-adult females over spring and summer, during the formation of maternal colonies. 
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Table 4. Descriptive statistics for the detection of anti-coronavirus antibodies by ELISA. 

Variable Category Detected (Total) Prevalence (95% CI) 

Season    

 Spring 92 (125) 74 (65-81) 

 Summer 36 (39) 92 (80-97) 

 Autumn 64 (94) 68 (58-77) 

 Winter 33 (76) 43 (33-55) 

Species    

 Miniopterus australis 80 (124) 65 (56-72) 

 Miniopterus schreibersii 145 (210) 69 (62-75) 

Sex    

 Male 105 (166) 63 (56-70) 

 Female 120 (168) 71 (64-78) 

Age    

 Male 105 (166) 63 (56-70) 

 Female sub-adult 45 (79) 57 (46-67) 

 Female adult 75 (89) 84 (75-90) 

Table 5. Model building strategy for the multivariable analysis of detection of anti-coronavirus 

antibodies by ELISA. 

Variable Residual deviance P 

Season 387.2 <0.001 

Species 421.2 0.395 

Sex 419.3 0.111 

Age 403.8 <0.001 

   

Season+Species 387.2 0.981 

Season+Sex 382.1 0.023 

Season+Age 365.8 <0.001 

   

Season+Age+Species 365.6 0.652 

Season+Age+Sex - - 

   

Season+Age+Season*Age 352.1 0.034 
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Figure 22. Multivariable model for the seasonal prediction of the detection of anti-coronavirus 

antibodies by ELISA in Miniopterus spp. 

The final model suggests an increase in the prevalence of antibodies (possibly in response to a recent 

infection) in all cohorts over spring and summer, during the formation of maternal colonies. 
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Discussion 

Minopterus spp. and Miniopterus bat coronavirus HKU8 

Miniopterus spp., specifically Miniopterus schreibersii, have the widest natural distribution 

of any bat species, extending from Europe, to southern Africa, to south-east Asia and 

Australia, and across to Japan, New Guinea and the Solomon Island (Churchill, 2008). 

 

Figure 23. Seasonal variation in anti-coronavirus antibody titres in Miniopterus spp. 

A dot histogram illustrates the increased anti-coronavirus antibody titre in summer suggesting an 

immunological response to a recent infection. 
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Throughout its range, this genus has been found to be infected with the 

alphacoronaviruses, Miniopterus bat coronavirus 1 and Miniopterus bat coronavirus HKU8 

whilst displaying no signs of disease (Poon et al., 2005, Chu et al., 2006, Tang et al., 

2006, Woo et al., 2006, Muller et al., 2007, Woo et al., 2007, Tong et al., 2009). These 

unique attributes of a highly prevalent coronavirus, in a common bat, easily captured using 

recognised techniques, made it an excellent host to study. Also, with my technique for 

sampling small quantities of blood from bats, (Smith et al., 2010), it provided a unique 

opportunity to study the immunological response by bats to coronavirus infection. 

Modelling the infection of an Alphacoronavirus in Miniopterus spp. 

My predictive modelling for the detection of coronavirus RNA (which is defined as 

excretion from an infected individual), suggests a pronounced increase in the viral 

prevalence of infected sub-adult females during spring and summer (Figure 21). Whilst not 

statistically significant, the putative identification of this risk factor for infection (sub-adult 

bats) was previously suggested by Drexler et al. (2011) and Gloza-Rausch et al. (2008) 

and supports the model’s ability to predict the patterns of infection of coronavirus in 

Miniopterus spp. Also predicted by this model was a subtle increase in the prevalence of 

infection in adult females, also during spring, summer and autumn. In south-east 

Queensland’s spring and summer, Miniopterus spp will form maternal colonies and give 

birth to pups (Churchill, 2008). Thus, my predictive model now appears to capture other 

previously reported factors for an increased rate of coronavirus infection - formation of 

maternal colonies and the ongoing lactation of adult females (Gloza-Rausch et al., 2008, 

Drexler et al., 2011). Whilst comment on the dynamics of infection of males is not possible 

(due to possible confounding of mixed ages), it is interesting to note that prevalence 

remains relatively stable and does not decrease in winter as does the rate of infection for 

both sub-adult and adult females. 

As with the model for the detection of coronavirus RNA, the model for the detection of anti-

coronavirus antibodies, also predicted an increased prevalence during summer (Figure 

22). However, this model predicted not only a dramatic increase in the prevalence of anti-

coronavirus antibodies in sub-adult females, but also in adult females and males. These 

antibodies then appeared to wane over the coming seasons, with males and adult females 

dropping to a seroprevalence of approximately 50% and sub-adult females down past 

20%. In support of this model, is the titre of anti-coronavirus antibodies, for each season 
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(Figure 23). The measurements indicate that the median titre of 0 in winter and 1:50 in 

both spring and autumn, were in direct contrast to a median titre of 1:400 in summer. 

Caveats for interpretation 

There are several caveats for interpretation of this study’s results. Whilst a valid and 

significant model for the detection of anti-coronavirus antibodies was built, the same was 

not the case for the detection of viral genome by RT-PCR, as all variables were forced into 

this model, with the model that produced the lowest deviance being selected for 

interpretation (season and age, Table 3). However, this is the same model that produced a 

statistically significant model for the detection of anti-coronavirus antibodies (Table 5). This 

consistency of variables between models, and the previous identification of these variables 

as risk factors for the detection of coronavirus, provides confidence for its use in modelling 

the prediction of coronavirus prevalence in Miniopterus spp. (Gloza-Rausch et al., 2008, 

Drexler et al., 2011). It should also be noted, that any observational or predicted 

differences between sub-adult and adult female bats could also be true for sub-adult and 

adult male bats, however, the inability to accurately age male bats will seriously confound 

this cohort’s results. An effort was made to age bats using other morphological 

measurements (weight and forearm length), but with no significant difference identified 

between sub-adult and adult female bats (not shown), this strategy was abandoned. Any 

future study elaborating on this study’s predictions will require an accurate ageing 

methodology for male bats. 

A hypothesis of the infection dynamics of an Alphacoronavirus in Miniopterus 

spp. 

By themselves, each of these models and the antibody titre measurements provided 

valuable information on the ecology of a virus in a population, but together, this information 

can be used to form a hypothesis of the infection dynamics in that population. Below 

(Figure 24), is an attempt to describe that hypothesis. Due to possible confounding of 

males by age, this hypothesis is presented and argued from the female population of bats, 

where accurate aging was possible. 
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1. Spring (Year 1): Juvenile female bats (Miniopterus spp.) born within the confines of 

a maternal colony have not received adequate protection from maternal antibodies 

(passed across the placenta and additionally through colostrum from their mother). 

Susceptible, these bats succumb to their first (primary) infection by coronavirus but 

initiate an immunological response, including the production of anti-coronavirus 

antibodies. Alternatively, some bats are protected by maternal antibodies and 

remain so until winter, at which time the maternal antibodies have waned sufficiently 

to result in that cohort being susceptible to infection (Field, 2005, Plowright et al., 

2008, Epstein et al., 2013).  

2. Summer (Year 1): As more susceptible sub-adults become infected, both the viral 

and serological prevalence for this cohort increases. 

3. Autumn (Year 1): Eventually, with the dispersal of the maternal colony and the sub-

adults immunological response having conquered the infection, the viral prevalence 

of this cohort begins to decrease.  

 

Figure 24. Hypothesis of the infection dynamics of an Alphacoronavirus in Miniopterus spp. 
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4. Winter (Year 1): The serological prevalence for this cohort has also been 

decreasing for some time now, as antibodies to the primary infection wane and 

maternal antibodies are lost. All sub-adult bats are now again, susceptible to 

infection. 

5. Spring (Year 2): Last year’s sub-adult bats are now one year old and aged as adult. 

Returning to the maternal colony, they are again exposed to the coronavirus 

resulting in a secondary infection (for bats who have only just lost their maternal 

antibodies, this will be their primary infection). 

6. Summer (Year 2): This secondary infection is similar to the first in that there is an 

immunological response, however, this response is dramatically different in that 

there is a stronger and more rapid production of antibodies and an apparent 

quashing of infection (suggested by low viral prevalence). 

7. Autumn (Year 2): Even after dispersal of the maternal colony and having recovered 

from the infection, the prevalence of antibodies remains high in adult females. 

8. Winter (Year 2): This high serological prevalence continues into winter, and unlike 

sub-adults, adults now have a protective component against future coronavirus 

infection. 

This ability for an immunological system to recognise a virus, or other antigen, from a 

previous infection is an important immunological asset, it allows the rapid production of 

antibodies that appear to control infection. This anamnestic or immunological memory 

response by bats to coronaviruses is not unique, other studies have suggested that long-

term repeated infection of bats with rabies virus may confer significant immunological 

memory and reduced susceptibility to infection (O’Shea et al., 2014). It also suggests that 

if bats have this immunological memory and are not actively producing antibodies at the 

time of sampling, then cross-sectional surveys underestimate the amount of exposure to 

an antigen (Turmelle et al., 2010). 

Conclusion 

The data and models from this study were used to develop a hypothesis of the infection 

dynamics of an Alphacoronavirus in Miniopterus spp. The hypothesis is similar to the 

classical SIR model, where individuals are either susceptible to infection, infected, or 

recovering from that infection. Field (2005) used SIR models to describe the infection 

dynamics of Hendra virus in flying-foxes, and determined population size, infection and 

recovery rates were all key parameters. There is also an elaboration of the model were if a 
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pup has received protection from maternal antibodies, their progression through states of 

disease could be tracked using the MSIR model, where a state of maternally derived 

immunity exists before becoming susceptible to infection. The study also suggested that 

bats have an anamnestic or immunological memory which may limit secondary 

coronavirus infections with a stronger and more rapid production of antibodies, compared 

to a primary infection. 
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Chapter 5 Maintenance of a coronavirus infection in a population 

of Australian bats (Myotis macropus) by persistent infection of 

individuals 

Introduction 

In spite of the potential for serious consequences of virus epidemics emerging from bats, 

knowledge is currently lacking on their ecology. For example, it is still unknown how these 

viruses, with human pathogenic potential, are maintained, amplified or controlled in bats 

(Drexler et al., 2011). Drexler et al. (2011) identified two peaks of amplification of 

coronaviruses, characterised by increased virus concentration and increased detection 

rates, upon the formation of a colony of Myotis myotis in Germany and following 

parturition. It was hypothesised that the initial peak was probably due to the formation of a 

colony of sufficient size and density to allow the establishment of a critical basic 

reproductive rate in susceptible bats. The second peak, after parturition, was associated 

with a new wave of susceptible bats, newborn pups who had lost their perinatal protection 

but not yet mounted their own adaptive immunity (Drexler et al., 2011). In another attempt 

to better define the epidemiology of coronaviruses, Lau et al. (2010) marked 511 Chinese 

horseshoe bats (Rhinolophus spp) from 11 sites and recaptured 113 (22%). From this 

study it was estimated that viral clearance occurred between 2 weeks and 4 months after 

infection and suggested that coronaviruses in Chinese horseshoe bats caused an acute 

self-limiting infection associated with weight loss. It was also identified that the peak 

activity for coronaviruses was during spring, soon after hibernation, and that mating and 

feeding activity may have facilitated the spread of the virus within and between roosts. In 

Chapter 4 of this thesis, it was identified that throughout a two year study, a population of 

Australian bats (Miniopterus australis and M. schreibersii) was constantly infected with a 

variant of the Alphacoronavirus (Miniopterus bat coronavirus HKU8) at a prevalence of at 

least 17%. In an attempt to identify the ways in which coronaviruses are maintained at a 

relatively high viral prevalence, we conducted a mark-recapture study on another 

population of Australian bats (Myotis macropus) which was infected with a putative novel 

Alphacoronavirus. 

M. macropus is primarily a costal species, with its distribution extending from the 

Kimberley in northern Western Australia, around to Victoria and South Australia. This bat 
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can be distinguished from all other bats in the Vespertilionidae family by its 

disproportionately large feet. M. macropus rakes these large feet over the water’s surface 

and catches small fish, prawns and aquatic insects. These bats also forage on flying 

insects, including moths, beetles and spiders. They generally roost near water in caves, 

trees hollows and under bridges in small groups (less than 15), but colonies of several 

hundred are known. The number of litters a female will produce each year varies with 

latitude. In Victoria (lowest latitude of its distribution), a female will have only one 

pregnancy with a single young born in November or December. In northern New South 

Wales (lower-middle latitude) two litters of single young are produced in October and 

January. The first ovulation occurs in August and the second occurs soon after birth of the 

first litter. Both pregnancies last 12 weeks and females continue to lactate with the first 

young in the second pregnancy. Lactations lasts eight weeks and mother and pup roost 

and forage together for another 3 - 4 four weeks. Only dominant males who have an 

estalished territory mate, defending a harem of 1 - 12 females from other males. In 

northern Queensland (higher latitude), females have three pregnancies per year (Churchill, 

2008).  

Methods 

Sampling 

A colony of M. macropus (Figure 25), in which we had identified a putative novel 

Alphacoronavirus (Chapter 3), roosted in the lifting holes of a bridge in south-east 

Queensland (Figure 26). Eight sampling events commenced on the 13th January 2009 and 

continued weekly over two months until the 2nd March. A ninth and final sampling event 

occurred one month later, 31st March 2009. During the first 4 sampling events bats were 

marked with implantable radio frequency identification transponders, more commonly 

known as ‘microchips’, subcutaneously on the dorsum as described by Wimsatt et al. 

(2005) (Figure 27). During a sampling event when a bat was marked or recaptured, a 

single faecal pellet (collected directly from a defecating bat or from its clean calico bag) 

was placed into 1 ml of sucrose potassium glutamate albumin (SPGA) with added 

penicillin, streptomycin and fungizone. When no faecal pellet was obtained, the anus was 

swabbed and the swab placed into 1 ml SPGA, as above. Pregnancy status of female bats 

was determined by palpation. 
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Sampling was conducted with approval from the Department of Primary Industries and 

Fisheries, Queensland, Animal Ethics (SA 2006/06/117 and SA 2007/005/194), 

Environmental Protection Agency, Queensland Parks and Wildlife Service 

(WISP03887606 and WISP04906107). 

Coronavirus detection and sequencing 

Template RNA was extracted from 560 l of SPGA using the QIAamp® Viral RNA Mini Kit 

following the manufacturer’s instructions (QIAGEN, 2010). Reverse transcription followed 

by cDNA amplification using a polymerase chain reaction (RT-PCR) targeting a conserved 

region of the coronavirus RNA-dependent RNA polymerase gene, as described by Poon et 

al. (2005), was performed using the Superscript III One-Step RT-PCR System with 

Platinum® Taq DNA Polymerase (Invitrogen). Amplicons consistent with the expected 

length of 440 nucleotides were purified using the QIAquick® PCR Purification Kit as per 

the manufacturer’s instructions (QIAGEN, 2008). Purified amplicons were directly 

sequenced using BigDye® Terminator v3.1 Cycle Sequencing Kit as per the 

manufacturer’s instructions (Applied Biosystems, 2002), the extension products were 

purified using the ethanol/EDTA precipitation  method (Applied Biosystems, 2002) and 

analysed at the Griffith University DNA Sequencing Facility (Brisbane, Australia). 

Nucleotide sequence traces were edited using Sequence Scanner v1.0 (Applied 

Biosystems). The final consensus sequence were derived from sense and anti-sense 

primers and a reference sequence (M.mac/AUS/SEQ/034/2008) deposited in GenBank 

under accession EU834951. 
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Statistical analysis 

Binomial confidence intervals (95%) for a proportion (or prevalence) were calculated using 

Wilson (1927). To ascertain whether bats with multiple detections (Bats 1-7) were being 

reinfected on a regular basis, we assumed that a detection was evidence of a reinfection 

and tested the null hypothesis that the rate of infection in these bats was the same as 

those with single detections (Bats 8-23) using a chi-square test of association with a Yates 

value corrected for continuity (www.vassarstats.net). In an attempt to identify risk factors 

that may be used to differentiate recaptured bats with multiple detections and recaptured 

 

Figure 25. A female Myotis macropus (Bat 22) and her 2 week old pup. 

This female had an implantable radio frequency identification transponder, more commonly known as a 

‘microchip’, subcutaneously implanted on the dorsum during Week 2 of the mark-recapture study, when 

she was identified (by palpation of the abdomen) as being pregnant. She was recaptured on Week 4 and 

was again identified as being pregnant, on Week 5 she had given birth and the pup was attached. On 

Week 7 the pup was still attached and they were both photographed. When recaptured on Week 12 the 

pup was no longer attached and was assumed to have weaned, roosting separately with the other 

weaned pups that were observed in the colony. Photograph courtesy of Steve Parish. 

http://www.vassarstats.net/
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bats with single detections, modelling of binomial proportions (logistic regression, GenStat 

Fifteenth Edition, VSN International Ltd) was employed. 

 

Results 

Sampling 

Fifty two bats were marked during the first 4 sampling events (weeks 1-4). Forty two (81%) 

of the marked bats were recaptured on subsequent sampling events (weeks 2-8 and 12) 

and often they were recaptured more than once (Table 6). Recaptured bats were sampled 

on each occasion. The reproductive status of the 16 adult females captured in the study 

was assessed (Table 7). Females were observed to be pregnant between weeks 1-5 (13th 

January-9th February), have dependant young between weeks 3-5 (27th January – 9th 

February) and lactating between weeks 3-12 (27th January – 31st March). 

 

Figure 26. Myotis macropus roosting in the lifting holes of a bridge in south-east Queensland. 

Removal of bats from these relatively shallow holes provided a successful capture rate. 
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Coronavirus detection and sequencing 

There were multiple detections of coronavirus RNA in seven of the recaptured bats (17%, 

Bats 1-7), single detections of coronavirus in 16 (38%, Bats 8-23) and coronavirus was not 

detected in 19 (45%, Bats 24-42). The seven recaptured bats which had multiple 

detections of coronavirus had coronavirus detected over periods of 1, 8 (n=2), 9, 10 (n=2) 

and 11 weeks, a mean of 8 weeks. Sequencing of the purified amplicons and subsequent 

phylogenetic analysis identified three genotypes (A, B and C) of a putative novel 

Alphacoronavirus infecting the population. Lack of complete sequence precluded 

classification as described in Chapter 3. Of the ten bats that were not re-captured, five 

were coronavirus-positive and five were coronavirus-negative (Table 2).  

Statistical analysis 

The prevalence of coronavirus RNA in 52 Myotis macropus from this study is presented in 

Figure 28. Assuming that a detection was evidence of a reinfection, the null hypothesis 

 

Figure 27. A radiograph of a male Myotis macropus. 

A radiograph of a male Myotis macropus with an implantable radio frequency identification transponder, 

more commonly known as a ‘microchip’, subcutaneously implanted on the dorsum. Radiograph courtesy 

of Kenilworth Veterinary Clinic. 
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that the rate of infection in bats with multiple detections (Bats 1-7) was the same as those 

with single detections (Bats 8-23) was rejected (2=11.2, d.f.=1, p=0.0019). Modelling of 

binomial proportions (logistic regression) did not identify any correlations between 

recaptured bats with multiple detections and recaptured bats with single detections, and 

age (2=2.05, d.f.=2, p=0.359) or sex (2=0.76, d.f.=1, p=0.383). 
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Table 6. Detection of a putative novel Alphacoronaviruses in a 52 Myotis macropus from a mark-

recapture study conducted over 3 months. 

A, B and C
Coronavirus genotypes 

     Week 

Recaptured Coronavirus RNA Bat Sex Age 1 2 3 4 5 6 7 8 12 

Recaptured              

 Multiple Detections             

  1 Male Unknown +
C
 -      +

C
 +

C
 

  2 Female Adult - +
A
 +

A
    +

A
  +

C
 

  3 Female Sub-adult  +
A
 +

A
  -     

  4 Female Sub-adult  +
B
     - - +

A
 

  5 Male Unknown   +
A
 +

A
 -  -  +

A
 

  6 Male Unknown    +
C
     +

C
 

  7 Male Unknown    +
A  

     +
B
 

 Single Detection             

  8 Female Sub-adult +       -  

  9 Male Unknown  + -     -  

  10 Male Unknown  + -    -   

  11 Male Unknown  + - -   - -  

  12 Female Sub-adult  + -  -     

  13 Female Sub-adult  +      - - 

  14 Male Unknown   + - -  - -  

  15 Male Unknown   +  -     

  16 Male Unknown -  +       

  17 Female Adult  - +       

  18 Female Adult    - +    - 

  19 Female Adult -   -     + 

  20 Female Adult  - -      + 

  21 Female Adult  - - -     + 

  22 Female Adult  -  - -    + 

  23 Female Adult   - - -    + 

 Not Detected             

  24 Female Adult -  -     - - 

  25 Female Adult - - -    -   

  26 Female Sub-adult - -        
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  27 Male Unknown - -        

  28 Female Adult -      -  - 

  29 Male Unknown -   -   -   

  30 Male Unknown -       -  

  31 Female Sub-adult -    - -    

  32 Female Adult  -   -    - 

  33 Female Adult  - -      - 

  34 Female Sub-adult  - -      - 

  35 Male Unknown   -    -  - 

  36 Female Adult   -    -  - 

  37 Female Adult   -  -  -   

  38 Female Adult   -      - 

  39 Female Sub-adult    -    - - 

  40 Male Unknown    -    - - 

  41 Male Unknown    -    - - 

  42 Male Unknown    -     - 

Not Recaptured              

 Single Detection             

  43 Male Unknown  +        

  44 Male Unknown  +        

  45 Female Sub-adult   +       

  46 Female Sub-adult   +       

  47 Male Unknown    +      

 Not Detected             

  48 Male Unknown -         

  49 Female Adult  -        

  50 Male Unknown  -        

  51 Male Unknown   -       

  52 Female Sub-adult    -      
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Figure 28. Prevalence of a putative novel Alphacoronaviruses in a 52 Myotis macropus from a mark-

recapture study conducted over 3 months. 

Error bars indicate 95%CI (Wilson, 1927) 
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Table 7. Reproductive status of the adult females Myotis macropus captured in this study. 

When captured, a three letter coding system was used to describe the reproductive status. Pregnancy (P), 

dependant young (D) and lactating (L) are recorded in that order if observed. If not observed, a dash is 

recorded as a placeholder, i.e. a pregnant female who has no dependant young and is not lactating will be 

represented by P--. Whilst a female who has given birth (no longer pregnant) and now has dependant young 

and is lactating will be represented by -DL.  

 Week 

Bat 13
th

 Jan 21
st

 Jan 27
th

 Jan 3
rd

 Feb 9
th

 Feb 15
th

 Feb 23
rd

 Feb 2
nd

 Mar 31
st

 Mar 

2 P-- P-- P--    --L  --L 

24 P--  ---      --L 

28 

 

P--      --L  --- 

25 P-- P-- P--    --L   

33  P-- P--      --- 

17  P--  P-- -DL    --L 

14  P-- P--       

32  P--   P-L    --- 

49  P--        

15  P-- P-- ---     --- 

11  P-- P--      --- 

38   P--      --- 

37   P--  P-L  --L   

36   ---      --- 

20   PDL  P--    --- 

23    P-- P-L    --- 

P      

D          

L          

Discussion 

Persistent or long-term infection 

This study identified that Australian bats (Myotis macropus) were infected with a putative 

novel Alphacoronavirus over periods of up to 11 weeks. This period of infection in the 

colony is consistent with that observed by Lau et al. (2010) of between 2 weeks and 4 

months. However, whereas Lau et al. (2010) suggested that SARSr-Rh-BatCoV caused an 
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acute, self-limiting infection in individual Chinese horseshoe bats, it appears that our virus 

is capable of a persistent or long-term infection of bats for almost 3 months. Persistent 

infection has previously been suggested as playing a role in the maintenance of 

coronaviruses in populations of bats, as it does for other coronavirus, including feline 

coronaviruses were it has been shown that naturally infected cats shed FECV 

intermittently for periods up to 10 months but some (~15%) become chronic shedders, 

doing so for years or a lifetime (Addie et al., 1995, Hartmann, 2005, Weiss and Navas-

Martin, 2005, Chu et al., 2006, Tang et al., 2006). This study is unique in that it identified a 

pattern of infection in individual bats, not populations of bats, that supports the hypothesis 

for persistent infection. 

The apparent discrepancy between an acute infection observed by Lau et al. (2010) and a 

persistent infection interpreted from this study’s results requires clarification. It is possible 

that the discrepancy is real and there are true variations in patterns of infection for different 

species of coronaviruses and bats, or it could be that the limited rate of recapture of 

infected bats in the study by Lau et al. (2010) precluded an accurate interpretation of 

infection. Whilst a significant marking effort of 511 bats was made by Lau et al. (2010), 

only 113 (22%) bats were recaptured and coronavirus was only ever detected in 63 of the 

511 bats (12%), limiting the number of bats from which interpretations could be made. Of 

these 63 bats, shedding of coronavirus was detected in only one bat on more than one 

occasion (two weeks apart) and ten bats which were detected shedding coronavirus at one 

sampling event were not detected shedding when recaptured (between 4 and 16 months 

later), providing an interpretation of an infectious period of between 2 weeks and 4 

months. Conversely, whilst only employing 52 marked bats, our study had a viral 

prevalence of 54% (28 bats) and a recapture rate of 81% (42 bats). The weekly sampling 

events and the affinity of bats for the lifting holes in which they roosted, provided a unique 

opportunity to frequently recapture marked individuals that were shedding coronavirus. 

This increased probability of recapture of bats shedding coronavirus allowed interpretation 

of the pattern of infection at a resolution not previously studied. Thus, the current study is 

possibly more accurate than that of Lau et al. (2010), and the suggestion of persistent 

infection of coronaviruses in bats is likely to be sound. 

Why not reinfection? 

Sequencing of the purified amplicons from recaptured bats with multiple detections of 

coronavirus (Bats 1-7) and subsequent phylogenetic analysis identified three genotypes of 
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the putative novel Alphacoronavirus. These genotypes differed by eight single nucleotide 

polymorphisms, from a possible 440 nucleotides, and all were degenerate (translating only 

one phenotype). This suggests that the different genotypes are likely members of the viral 

quasispecies infecting the host, since all members of a quasispecies are likely to be 

present in all infected hosts it is unlikely that these genotypes can be used to determine 

reinfection.  

To further investigate the possibility of reinfection, the study tested the null hypothesis that 

the rate of infection in bats with multiple detections (Bats 1-7) was the same as those with 

single detections (Bats 8-23). To accomplish this, each detection of the putative novel 

Alphacoronavirus in bats with multiple detections (Bats 1-7) was assumed to be a 

reinfection. The null hypothesis was rejected, indicating that the rate of infection in bats 

with multiple detections was not the same as that of bats with single detections. 

Hypotheses to explain this scenario include; 

(1) Bats 1-7 were persistently infected and were responsible for the acute, self-limiting 

infection of Bats 8-23  

(2) Bats 1-7 had their health or immunity compromised and were susceptible to re-

infection at a rate greater than Bats 8-23 

(3) All bats were persistently infected but Bats 8-23 were intermittently shedding when 

captured 

Poor health or compromised immunity 

Previous studies have suggested that poor health or compromised immunity, associated 

with pregnancy and lactation, are risk factors for increased seroprevalence of viruses in 

bats (Plowright et al., 2008, Breed et al., 2011).  Similarly, a correlation between the 

detection of coronaviruses in female bats associated with maternity colonies has also been 

established (Gloza-Rausch et al., 2008, Pfefferle et al., 2009). The colony used in this 

study had been selected for its ease of access and the unique roosting behaviour of bats 

in the bridges lifting holes, providing a successful recapture rate. It was opportunistically 

and irregularly sampled over the previous year, with a coronavirus RNA detection 

prevalence of between 30% (19-45%, 95%CI) one year prior to the commencement of the 

mark-recapture study, and 0% (0-15%, 95%CI) three months prior. It was only during the 

first sampling event that the majority of female adults (88%) were identified as being 

pregnant and that the study site was considered a maternity colony. In agreement with 
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Gloza-Rausch et al. (2008), Pfefferle et al. (2009) and Drexler et al. (2011), it appears that 

the site has an increased prevalence of coronavirus when used as a maternity colony 

(during the mark-recapture study and exactly one year prior), as opposed to other times 

(three months prior) when no coronavirus was detected and no pregnant females were 

observed. However, these correlations do not extend to recaptured bats with multiple 

detections (Bats 1-7), with modelling of binomial proportions (logistic regression) not 

identifying any correlation with age (2=2.05, d.f.=2, p=0.359) or sex (2=0.76, d.f.=1, 

p=0.383). With no correlation with age or sex and using these same variables as markers 

for pregnancy and lactation (adult females), there are no indications that recaptured bats 

with multiple detections of coronavirus (Bats 1-7) are so because of poor health or 

compromised immunity, associated with pregnancy and lactation. 

Acute, self-limiting infection or intermittent shedding? 

A SARS coronavirus crude antigen ELISA developed by Yu et al. (2006) and used 

effectively in Chapter 3, was not successful in detecting antibodies in these bats. It 

appears that either the test was not suitable for detection of antibodies against the novel 

Alphacoronavirus present in this colony or that antibodies were not raised against the 

infection. The limited availability of diagnostic tools for the detection of bat coronaviruses 

precluded further serological analysis and differentiation between an acute, self-limiting 

infection (in which a rising antibody titre would be expected) and long-term infection with 

intermittent shedding (in which a relatively stable antibody titre would be expected). 

Similarly, the lower sensitivity of a traditional gel based PCR (as compared to quantitative 

real time PCR), the presence of inhibitory factors in the faecal pellets and anal swabs 

collected for testing, and variations of viral shedding in individuals precludes determination 

if recaptured bats that were virus-negative on re-capture had an acute infection or were 

intermittently shedding. 

Susceptible bats through migration or birth 

Migration of bats has previously been shown to play a role in the maintenance of viruses; 

immigration allows the maintenance of an infection through newly introduced susceptible 

individuals (Drexler et al., 2011, Plowright et al., 2011). However, the population of bats 

used in this study appeared relatively closed with the population size remaining between 

72 and 101 bats (data not shown) and apparent high fidelity to the roost site (assumed 

from the high recapture rate of marked bats, 81%). It is therefore unlikely that immigration 
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of susceptible bats was responsible for the maintenance of the Alphacoronavirus in this 

relatively small and closed population. Throughout a three year study,   Drexler et al. 

(2011) observed that strong and specific amplification of RNA viruses, including 

coronaviruses, occurred upon colony formation and following parturition. It was suggested 

that the initial peak, upon colony formation, was due to the massing of enough susceptible 

bats to reach a critical basic rate of viral reproduction and that the second amplification 

peak was associated with the establishment of susceptible subpopulation of newborn pups 

losing their perinatal immunity. Interestingly, two apparent peaks of infection (not 

statistically significant) were also observed during the current three month study of a 

maternal colony. Whilst bats occupied this colony irregularly throughout the year, it was 

upon the formation of the maternity colony that the first peak was observed (Figure 28), 

coinciding with the observations of Drexler et al. (2011). The second peak followed two 

months later, as it did for Drexler et al. (2011), but cannot be attributed to the maternal 

antibody loss in the subpopulation of newborn pups in this study, as none were sampled. 

Indeed, the second peak resulted from detections of coronavirus RNA in almost all the 

bats with multiple detections (Bats 1-2, 4-7) and a number of single detections in adult 

females (Bats 19-23), some of whom had been pregnant and lactating. This second peak 

is more suggestive of infection of a cohort (adult females) from persistently infected bats or 

the synchronised intermittent shedding of the same cohort who may now have poor health 

or compromised immunity after weaning a pup. 

Conclusion 

This study identified that Australian bats (Myotis macropus) were infected with a novel 

putative Alphacoronavirus over periods of up to 11 weeks. The pattern of infection 

observed supports not only the hypothesis for persistent infection of coronaviruses in bats 

but also suggests an acute infection or intermittent viral shedding in others. 
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Chapter 6 General discussion 

A defining event 

The global SARS outbreak in 2003 was a defining event in emerging infectious diseases 

(EIDs) awareness. Prior to SARS, the perception in ‘developed’ countries was that EIDs 

were confined to ‘under-developed’ countries; a reflection of inadequate socio-economic 

circumstances, of limited public health resources, and a consequence of entrenched 

cultural practices. While elements of these factors undoubtedly underpin disease 

emergence, this perception is naïve in that it ignores the exponential expansion of global 

connectivity (predominantly by air travel) in recent decades. SARS, and more recently the 

emergence of MERS in Saudi Arabia and Ebola in Africa, demonstrated that disease 

emergence in a remote region or area threatens countries and people around the globe. 

As a consequence of my earlier role in a multi-institutional, multi-disciplinary international 

team that identified Rhinolophus bat species as the putative natural reservoir of a SARS-

like coronavirus in China (Li et al., 2005), the initial focus of this thesis was to identify any 

SARS-like coronaviruses in Australian bats. Reassuringly for Australia’s public health and 

biosecurity imperatives, this research found no evidence of SARS-like coronaviruses in 

Australian bats. However, clear evidence of other bat coronaviruses was found and their 

discovery redirected the research focus to elucidate their diversity and relatedness to 

identified bat coronaviruses worldwide, the process of evolution that they had undergone, 

and an understanding of their dynamics of infection and maintenance in host populations. 

In Chapter 1, the current literature on bat coronaviruses was reviewed. My initial research 

was at the forefront of this area of research, and I was invited to contribute to a chapter in 

the Food and Agricultural Organisation (FAO) of the United Nations in their publication 

“Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and 

public health interests” (Newman et al., 2011). Because of the novelty and impact of SARS 

a wave of global research paralleled mine requiring particular update of the literature 

review over the course of the thesis. Chapter 2 described a novel technique that I 

developed and published to collect blood samples from very small bats. This technique 

represents a major methodological advance in the surveillance of bats for EIDs, and has 

been widely cited (Racey et al., 2011, Anthony et al., 2013, Olival et al., 2013, Larison et 

al., 2014, Olival and Hayman, 2014, Sheta et al., 2014, Olival et al., 2015). 
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Australian bat coronavirus infection dynamics 

The data and models from Chapter 4 support a hypothesis regarding the infection 

dynamics of a novel putative Alphacoronavirus in Miniopterus spp. The hypothesis is that 

the formation of a maternal colony and ongoing lactation are risk factors for infection (as 

previously identified by Drexler et al. (2011) and Gloza-Rausch et al. (2008)), and that a 

susceptible-infected-recovering (SIR) model, or a maternal-SIR for sub-adults with 

protective maternal antibodies, could describe an individual bat’s state of infection, and 

that bats have an immunological memory which may limit secondary coronavirus 

infections, with a stronger and more rapid production of antibodies. Chapter 5 identified 

that individual Myotis macropus were infected with a novel putative Alphacoronavirus over 

periods of up to 11 weeks, this observed pattern of infection supports the hypothesis of 

persistent infection of coronaviruses in some individual bats. Patterns of infection in other 

individuals are suggestive of intermittent viral shedding (of persistently infected bats) but 

could also be interpreted as an acute infection (lack of antibody detection in this species 

precluded distinguishing between the two). While taking care to avoid over-interpretation, 

Chapter 5 suggests that another paradigm could be added to the hypothesis of the 

infection dynamics for bat coronaviruses from Chapter 4 - that of a carrier state, where 

some infected bats become chronic shedders. This carrier state (Figure 29) could 

potentially then be a source of infection to a colony, maternal or otherwise. Potentially, a 

carrier status could be responsible for both primary and secondary infections of other bats, 

either alternating between being a carrier and being infected (having a secondary 

infection), or just being a carrier. Persistent infection has previously been suggested as 

playing a role in the maintenance of coronaviruses in populations of bats, as it does for 

other coronaviruses, including feline coronaviruses. Naturally infected cats shed FECV 

intermittently for periods up to 10 months, but some (~15%) become chronic shedders, 

doing so for years or a lifetime (Addie et al., 1995, Hartmann, 2005, Weiss and Navas-

Martin, 2005, Chu et al., 2006, Tang et al., 2006). 

This hypothesis warrants further investigation, including the production of statistically 

significant models from surveillance data. This was not possible within the logistical and 

funding constraints of this thesis, but with additional surveillance from the same or similar 

sites, increased sample sizes, and appropriate tools to age male bats, this hypothesis 

could be thoroughly tested. A mark-recapture study conducted over an entire year would 

allow an understanding of infection dynamics outside of parturition and birthing. 
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When discussing the infection dynamics of bat coronaviruses it would be remiss to ignore 

the unique biology of these, the only mammals with the ability for true sustained flight. 

Flight has previously been linked with viral infection dynamics, O'Shea et al. (2014) 

suggested that elevated metabolism and body temperature generated during daily cycles 

of flight was analogous to a febrile response in other mammals and on an evolutionary 

scale produced a diversity of viruses more tolerant of the fever response. Also, it has been 

suggested that reactive oxygen species (a by-product of metabolism) placed positive 

selective pressure on a high proportion of the genes in the DNA damage checkpoint. 

These flight induced adaptions may have had inadvertent effects on bat immune function 

and life expectancy (Zhang et al., 2013). 

By themselves these adaptations in response to the evolution of flight could have an effect 

on viral infection dynamics, but the product of flight itself (general frequent and long 

distance movement (Roberts et al., 2012)) would also surely have some selective pressure 

on viruses hosted by bats. For example, in Chapters 4 and 5 increased prevalence of 

 

Figure 29. A revised hypothesis for the infection dynamics of coronaviruses in bats. 
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coronavirus was associated with the formation of maternal colonies as did Drexler et al. 

(2011) and Gloza-Rausch et al. (2008). Whilst it is reasonable to assume that this 

increased viral prevalence is the result of the congregation of susceptible bats, conversely, 

a survival strategy is required for the coronaviruses during periods of its host’s dispersal 

(when flight has afforded the bats the ability to separate over large distances). Could it 

also be that whilst bats have adapted to the evolution of flight by controlling the damage of 

DNA and effects of viral infection, viruses have also evolved with the product of flight to 

survive periods of time when susceptible hosts are sparse? Is this the difference that 

fundamentally drives different transmission dynamics of coronaviruses in bat populations 

and requires a persistent infection for bat coronaviruses to endure?   

Continued surveillance 

Collectively, this thesis provides evidence of a diversity of coronaviruses (belonging to 

both Alpha and Betacoronavirus genera) in bats throughout Australasia. It demonstrates 

firstly that coronaviruses are not recent introductions to Australian bats, and secondly 

supports a hypothesis of an ancient, complex and adaptive evolutionary association. More 

specifically, it supported hypotheses that bats from the genus Rhinolophus may be more 

likely to foster host shifts than other species of bats, and their presence increases the risk 

of emergence of both SARS-like and other bat coronaviruses. Further, it extended the 

known relationship of bat coronaviruses hosted by bats of the same species or genus to 

bats of the same family or suborder. It also indicated that the current diversity of 

coronaviruses in bats is the result of co-evolution with the occasional fostering of host 

shifts by Hipposideridae and Rhinolophidae, and that bat coronaviruses are likely to be as 

old as the most common bat ancestor - 65 million years.  

Following on from the above, while the lack of detection of SARS coronaviruses in this 

study provides preliminary evidence of the lack of occurrence in Australian bat 

populations, it would be inappropriate to over-interpret the absence of evidence. Indeed, 

the detection of a broadly clustering SARS-like Betacoronavirus in Rhinonicteris (from the 

Northern Territory) warrants urgent follow-up. More broadly, additional and targeted 

surveillance of putative higher risk host species is required to confirm or refute the 

preliminary findings and hypotheses of this thesis. A complementary and parallel research 

approach could be to screen potentially susceptible close contact non-bat populations for 

evidence of spillover. This was initially a part of the PhD research plan however limited 

resources precluded its implementation. Structured surveillance of demonstrated 
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coronavirus susceptible species such as rodents (Wang et al., 2015) or other native 

mammal populations in the immediate vicinity of identified infected bat populations would 

confirm or refute spillover potential. The co-habitation of bats and civet cats in caves in 

China (Chapter 3) appears to provide opportunity for the spillover of coronaviruses from 

their natural reservoir host to an amplifying host; however, surveillance of wild civet cats 

shows an absence of infection in the natural population. Are the dense and diverse 

population of animals in Chinese wet markets a requirement for spillover or does it also 

occur in nature, generally resulting in the death of a solitary dead-end host? If death is the 

result, then rural areas in countries like Australia will largely protect it from EIDs, as dead-

end hosts are unlikely to have contact with other humans or livestock. However, 

encroachment of humans into native areas and fragmentation of remnant areas decrease 

this isolation and leave us vulnerable to EIDs, coronavirus, Ebola, Hendra and Nipah virus 

are all the result of human encroachment into native areas, increasing contact with wildlife 

and promoting spillover of EIDs. 

Notwithstanding this project’s research outputs, it is evident that coronavirus surveillance 

in Australian bats is incomplete and that a wider spectrum of bat species needs to be 

investigated. A timely example of this is the recent identification of MERS-like 

coronaviruses in bats from the genus Taphozous spp in Saudia Arabia. Whilst no suitable 

samples (faeces or anal swabs) were available from Australian Taphozous for coronavirus 

detection or identification, anti-coronavirus antibodies were detected in over 20% of 

Taphozous serum samples collected for this thesis in Australia. If a general rule of species 

tropism for bat coronaviruses (discussed in Chapter 3) is applied to these findings, it is 

suggestive of a MERS-like coronavirus circulating in Australian bats, and with 

Queensland’s substantial camel export industry, requires immediate attention. A high 

prevalence of anti-coronavirus antibodies were also detected in Mormopterus becarii and 

Scotorepen spp and indicates that likely not all Australian bat coronaviruses were 

identified in this study. 

When first drafted in 2011, this thesis included the paragraph, “These findings advance our 

understanding of the diversity of coronaviruses in bats. This diversity, the global 

distribution of bats and the propensity of coronaviruses to successfully cross species 

barriers suggests SARS-like coronaviruses may not be the only example of a bat 

coronavirus being the cause of future disease outbreaks.” With the emergence of MERS in 

September 2012, it took only a year to validate these words, providing an enduring 
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reminder that as we travel through our lives, altering the environment in which we live, we 

facilitate contact between species that have never met and potentially provide 

opportunities for the spillover of viruses that are still unnamed. 

 



Appendices 

125 

Appendices 

Table 8. RT-PCR dataset collected each season over two years between 2006-2008. 

Season Species Sex Age Detected (Total) 

Spring     

 M. australis    

  Female   

   Adult  2 (7) 

   Sub-adult  2 (16) 

  Male   

   Unknown 9 (33) 

 M. schreibersii    

  Female   

   Adult 5 (33) 

   Sub-adult 14 (30) 

  Male   

   Unknown 12 (39) 

Summer     

 M. australis    

  Female   

   Adult 1 (3) 

   Sub-adult 1(2) 

  Male   

   Unknown 4 (13) 

 M. schreibersii    

  Female   

   Adult 1 (1) 

   Sub-adult 2 (3) 

  Male   

   Unknown 8 (27) 

Autumn     

 M. australis    

  Female   

   Adult 5 (19) 

   Sub-adult 3 (8) 

  Male   

   Male 4 (18) 

 M. schreibersii    

  Female   

   Adult 5 (18) 

   Sub-adult 5 (19) 

  Male   

   Unknown 3 (13) 

Winter     

 M. australis    

  Female   

   Adult 0 (4) 
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   Sub-adult 1 (10) 

  Male   

   Unknown 6 (21) 

 M. schreibersii    

  Female   

   Adult 2 (12) 

   Sub-adult 1 (7) 

  Male   

   Unknown 6 (25) 

Total    101 (381) 

 

Table 9. ELISA dataset collected each season over two years between 2006-2008. 

Season Species Sex Age Detected (Total) 

Spring     

 M. australis    

  Female   

   Adult 3 (4) 

   Sub-adult 5 (8) 

  Male   

   Unknown 14 (22) 

 M. schreibersii    

  Female   

   Adult 29 (30) 

   Sub-adult 17 (24) 

  Male   

   Unknown 37 

Summer     

 M. australis    

  Female   

   Adult 1 (1) 

  Male   

   Unknown 7 (9) 

 M. Schreibersii    

  Female   

   Adult 1 (1) 

   Sub-adult 3 (3) 

  Male   

   Unknown 24 (25) 

Autumn     

 M. australis    

  Female   

   Adult 16 (19) 

   Sub-adult 5 (8) 

  Male   

   Unknown 11 (18) 

 M. schreibersii    
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  Female   

   Adult 17(18) 

   Sub-adult 12 (19) 

  Male   

   Adult 3 (12) 

Winter     

 M. australis    

  Female   

   Adult 2 (4) 

   Sub-adult 3 (10) 

  Male   

   Unknown 13 (21) 

 M. schreibersii    

  Female   

   Adult 6 (12) 

   Sub-adult 0 (7) 

  Male   

   Unknown 9 (22) 

Total    (201) 334 
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