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Abstract
Context. Management of human–wildlife conflicts is of critical importance for both wildlife conservation and

agricultural production. Population models are commonly used to simulate population dynamics and their responses to

management actions. However, it is essential that this class of models captures the drivers and mechanisms necessary to
reliably forecast future system dynamics.

Aims. We aimed to develop a flexible modelling framework with the capacity to explicitly simulate individual

interactions with baits (with or without the presence of other management tools), for which parameter estimates from field
data are available. We also intended for the model to potentially accommodate multi-species interaction and avoidance
behaviours.

Methods. We expanded an existing spatially explicit, individual-based model to directly simulate bait deployment,
animal movements and bait consumption. We demonstrated the utility of this model using a case study from Western
Australia where we considered two possible exclusion-fence scenarios, namely, the completion of a landscape-scale and

smaller-scale fences. Within each of these proposed cells, using data obtained from a camera-trap study, we evaluated the
performance of two levels of baiting to control wild dogs (Canis familiaris), in contrast with the option of no control.

Results. The present study represents a substantial step forward in accurately modelling predator dynamics. When
applying ourmodel to the case study, for example, it was straightforward to investigatewhether outcomeswere sensitive to

the bait-encounter probability. We could further explore interactions between baiting regimes and different fence designs
and demonstrate how wild dog eradication could be achieved in the smaller cell under the more intense control scenarios.
In contrast, the landscape-scale fence had only minor effects unless it was implemented as a preventive measure in an area

where wild dogs were not already established.
Conclusions. The new component of the model presented here provides fine-scale control of single components of

individual–bait interactions.

Implications. The effect of management actions (e.g. lures) that affect this process can be easily investigated. Multi-
species modelling and avoidance behaviours can readily be implemented, making the present study widely relevant for a
range of contexts such as multi-species competition or non-target bait uptake.

Additional keywords: conservation biology, introduced species, pest control, population dynamics, population
modelling, species interactions, wildlife management.
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Introduction

Human–wildlife conflicts are one of the frequent challenges
faced by managers around the world (Madden 2004). Of these
conflicts, direct interactions between predators and humans, or

human assets such as livestock, are of greatest public concern
(Haque et al. 2015;Olson et al. 2015; Trinkel andAngelici 2016).
A range of tools is employed to mitigate these impacts and

populationmodels are often used to improve planning efforts and
test possible intervention strategies (Himes Boor 2014).

We previously developed an individual-based, spatially exp-
licit model in HexSim (Schumaker and Brookes 2018) to investi-

gate predator population dynamics and their response to various
management strategies (Pacioni et al. 2018). Although this model
was useful, it had limitations. For example, the mortality owing

to a baiting regime was constant regardless of the population size
because additional mortality was applied as a percentage, based
on the toxic bait rate. This was unrealistic because the probability

of a bait being encountered, and, therefore, eaten, is proportional
to the number of animals in the area where the bait is being
deployed. Hence, in high-density populations, the same baiting

regime is likely to be more effective than it is in low-density
populations.

Likewise, in the originalmodel, the risk that an individual was
exposed to a bait was dependent on the area of the landscape that

the animal explored (i.e. home range), which was parameterised
with home-range values obtained from radio-tracking data col-
lected over a year in the same region. Baits can be effective for

over a year, but generally their lifespan is much shorter as a result
of consumption by non-target species or degradation (Kreplins
et al. 2018). The original model did not explicitly take into

account that some of the baits deployed were removed by non-
target species and, therefore, not available to the target species,
and did not remove baits once they were consumed. Hence, the
mortality as a result of control activities was overestimated by the

previous model. Pacioni et al. (2018) applied a conservative
mortality rate to baiting so as to prevent overestimating the effect
of the simulated management control. However, a model that

more closely reflects real dynamics will improve management
plans and targets.

Last, the original model did not allow for competition among

different species exposed to the same baiting regime, and it could

not account for learnt behaviours, which may affect management

outcomes. To address those issues, and becausewe anticipate that

aspects such as species interaction and avoidance behaviour may

have important implications for management programs, we

modified the model of Pacioni et al. (2018) to more accurately

simulate the mechanics of bait deployment and consumption so

that it would be possible to more precisely evaluate the likely

effects of different management strategies. We were further

motivated by the aim of developing a more flexible tool to

investigate responses to various control regimes that has para-

meters that can be easily obtained from field data. For example,

the probability of bait encounter, and then the probability of bait

uptake given an encounter (parameters in the newmodel), can be

reliably estimated using motion-activated cameras, whereas cor-

rectly estimating the overall mortality rate resulting from a

specific baiting regime is more challenging. Although our initial

work, and the case study we applied the new model to, are

focussed on wild dog populations, given the generality of the
newmodelling framework, we consider the present work broadly

relevant and transferable to other predator species as well.
We used a case study from Western Australia (WA) to

demonstrate the utility of the new modelling approach. In

Australia, dingoes, free-living domestic dogs and their hybrids
(Canis familiaris), collectively referred to as ‘wild dogs’, pose a
significant threat to livestock enterprises, particularly small stock

(sheep and goats). Nationally, annual total economic losses to the
livestock industry resulting fromwilddogs havebeenestimated at
AU$89 million (McLeod 2016). Anecdotal evidence has indi-
cated that in the southern rangelands inWA, wild dog density has

increased in recent years and has contributed to the decline of
small-stock enterprises in the region. A recent estimate of the
economic impact of wild dogs on WA rangeland goat and sheep

industries identified annual losses of approximately AU$25
million (Bell 2015) and wild dogs account for over 75%
(.AU$1.3 million) of the annual expenditure on pest plant and

animal control by recognised biosecurity groups in the southern
rangelands (DPIRD, unpubl. data).

A suite of techniques is available for the control of wild

dogs, including trapping, ground and aerial baiting, and exclu-
sion fencing. Best-practice wild dog management promotes a
community-based approach regardless of individuals’ land use
(i.e. nil-tenure approach; Allen 2011), but this requires planning

and a high level of participation by landholders and there are
limitations to this approach because of the mix of enterprise
choice, absentee landholders and variable attitudes towards bait

use (Allen 2017). Alternative methods of wild dog control
include the use of ‘cell-fencing’ (multiple properties fencing
their collective outer boundaries with wild dog-proof fencing),

which prevents immigration. Here, we considered the develop-
ment of two possible exclusion fences in the Murchison Region,
WA, namely, the completion of a landscape-scale fence to

enclose a large area, or a smaller-scale cluster-fence (Fig. 1).
Within each of these proposed cells, we evaluated the perfor-
mance of two levels of baiting, in contrast with the option of no
control. By simulating wild dog population dynamics, we

predict possible changes that would occur under the proposed
management plans.

Materials and methods

Study area

As study sites, we used a proposed large-cell fence and an inset
smaller cell, both of which were partially complete (Fig. 1). The
large cell comprised an area of ,88 000 km2 and included
pastoral properties, unallocated crown land and conservation

estate. The proposed large cell is bordered on one side by the
existing State Barrier Fence and on another by the existing
MurchisonVermin Fence (previously known as the No. 1 Rabbit

Fence). The north-western side of the cell has not been con-
structed. The inset small cell is ,2600 km2.

The focus of the study was the area inside the large cell.

However, we also included an area of,80 000 km2 surrounding
the large cell as a source area for wild dogs entering the cell, so
that there was ,20 km between the fence and the limit of this

area. Together the large-cell area and the surrounding area
formed the total study site (176 000 km2). The study area was
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mapped as a raster image comprising square pixels of 1.3 km on
each side. Pixel values were used to represent resource avail-
ability (a unit-less parameter), which was determined by the

minimum straight-line distance to land systems containing
rocky outcrops. Because the study area is in an arid environment,
we used rocky outcrops as the primary habitat resource. A
maximum resource value of 75 was assigned to pixels falling

within the first 500mof land systems containing rocky outcrops,
and resource value declined as the distance to those land systems
increased, reaching a lower bound of 45. Urban areas were

assigned a resource score of 15 and pixels comprising salt lakes
had a resource value of zero.

HexSimwas then used to convert this raster map into a vector

array of space-filling hexagonal cells, each having an area of

11.2 km2 and a width of 3.6 km (measured between parallel
sides). Each hexagon enclosed a set of raster pixels, often
including partial pixels along the hexagon edges. The hexagons

were assigned a score equal to the area-weighted mean of the
pixel resource-availability values falling within their bounds.

Model structure and parameters

We started with the model developed by Pacioni et al. (2018).
Thismodel, also developed inHexSim (Schumaker andBrookes

2018), was a spatially explicit, individual-based model, and it
simulated wild dog dynamics with yearly time steps. Simulation
parameters were drawn from published research on biology

and ecology of dingo populations in theWAnorthern rangelands,
as described in Pacioni et al. (2018), and the model included

Legend
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Fig. 1. Map of the study area delineating existing and proposed fences in the rangelands inWestern Australia.
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important elements of the social behaviour such as pack aggre-
gation, pack territoriality, and it linked reproduction to pack

composition (for details, see Pacioni et al. 2018; Appendix S1
Model description, available as Supplementary material to this
paper). To adapt the model to simulate more realistic dingo–bait

interactions, we first changed the time-step unit from 1 year to 2
months (Fig. S1, available as Supplementary material to this
paper). The 2-month time-step choice was based on the realistic

length of life of baits in this environment (Kreplins et al. 2018).
This time step was also convenient because we had movement
data for wild dogs over an approximate 2-month period
(Thomson 1992). Accordingly, we adjusted the movement

parameters in the model to align these with the new time step.
We rounded the average area explored by each wild dog (from
Thomson 1992) to the nearest integer number of hexagons

(5 hexagons for loners, and 1 hexagon for pack members).
Last, we implemented a framework that explicitly simulates

the interaction between wild dogs and baits (see below). It is

important to recognise that this framework can be extended to
simulate interaction among any species (discussed inmore detail
below), providing these can be correctly parameterised in the

model. Hence, this approach provides a tool to simulate com-
petitive dynamics among predator species or between predators
and non-target species.

Wild dog interactions with baits can be thought of as a

probabilistic process that includes several components. First, a
wild dog needs to encounter a bait, which occurs with a
probability of P(E). Once the bait is encountered, whether the

wild dog consumes the bait is determined by the conditional
probability of bait consumption, given it has been encountered,
namely P(B|E). Moreover, because a wild dog can encounter a

bait multiple timeswithin the 2-month life span of the bait, it was
necessary to determine how many times the same individual
would encounter the same bait, repeating, for each time, the

process described above. If awild dog consumes a bait, it will die
with probability P(Mc|B).

We used data from Kreplins et al. (2018) to obtain several
parameter values for the newly developed model. Kreplins et al.

(2018) monitored the fate of ,936 baits with heat-in-motion
camera traps and sand pads during three baiting rounds in an area
within the large cell that we simulated. Even though we could

explicitlymodel eachnon-target species,wedidnot implement this
because of computational constraints and because it fell outside the
scope of the study. However, to account for the deployed baits that

were unavailable to wild dogs because of removal by non-target
species, we calculated the average percentage of baits that were
removed in autumn and spring and applied a fixed percentage in
each of these seasons in the model. This is equivalent to assuming

that the non-target species have the same abundance and that they
interact in the same way with poison baits in each baiting round.

We assumed that a wild dog’s area of activity (A) over each

2-month time step was fixed, having a centre of activity s and
dispersions (e.g. Ramsey et al. 2005).We expected that when a
bait location coincides with the centre of activity s within the

2-month period, the number of encounters (ni,j) between the bait
i and the wild dog jwill follow a Poisson distribution, with a rate
l0 (i.e. mean number of encounters per 2 months), as follows:

ni;j � Poisson l0ð Þ ð1Þ

Because HexSim simulates each wild dog’s movements, the
model is then able to establish whether an individual is in a
hexagon with a bait present. We further assumed that ni,j would
progressively decrease with the distance between the bait and

the activity centre s, following a half-normal distribution, as
follows:

n i;jð Þ � Poisson l0 � e�d2i;j=2s
2
s

� �
ð2Þ

where di,j is the distance between the bait i and the activity centre
s and s is the standard deviation of the half-normal distribution

and is proportional to the area of activity A. For each wild dog,
the value of s was selected on the basis of its social status (i.e.
whether a pack member or loner) by using the upper and lower

limit of the distribution ofs (see below), so that themodelwould
take into account that loners tend to have wider areas of activity.
Note that when di,j¼ 0, Eqn 2 simplifies to Eqn 1. Otherwise, ni,j
decreases as d increases. The coordinates of s within a hexagon

were randomly drawn from a uniform distribution, in each
baiting event and each time step, in such a way that the final
location was constrained to be within the circle bound by the

hexagon. Bait locations were assigned similarly.
The parameter values for l0, s and P(B|E) were estimated

from the camera-trap data of Kreplins et al. (2018). Kreplins

et al. (2018) detected 325 wild dog-bait encounters. Of these,
only four baits were consumed by wild dogs. Therefore, we set
P(B|E) ¼ 0.0123. Using wild dogs’ unique morphological
features, several individuals could be identified and, therefore,

it was possible to fit a spatial mark–resight model for a partially
marked population to estimate l0 (which is equivalent to the
camera detection rate) and s from Eqn 2 (Chandler and Royle

2013; Forsyth et al. 2019).We defined a bait encounter as the co-
occurrence of a wild dog and a bait in the same image and used a
binary covariate in the analysis to indicate whether the bait was

available or not (that is, whether it was already removed), under
the expectation that the detection rate could vary depending on
the presence of the bait. We limited this analysis to the first

baiting round and included data only for the baits with a known
fate. Furthermore, we assumed that within the 2-month period,
bait consumption was uniformly lethal (that is, P(Mc|B) ¼ 1).
We also removed the baits at the end of each simulated time step;

therefore, baits that were not consumed did not accumulate in
the environment. However, it is important to point out that the
model is able to include bait accumulation, should this feature be

required in future research.
A few additional minor changes were made to the model of

Pacioni et al. (2018) to adjust for the new time-step units, and

smaller movements. During the simulations, HexSim kept track
of the resources available within the home range of each
individual. These were potentially available to individual wild
dogs, although multiple individuals within the same territory

would compete for the same resources. Within the same social
status (dominant or subordinate animals and pack members or
loners) and age class, resources are stochastically assigned to

individuals, but dominant and adult animals have priority over
subordinates and younger wild dogs (see details on the competi-
tion parameters below for resource acquisition of loners).

A resource category (low, medium, high) was assigned to each
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individual, on the basis of the percentage of their resource target
that they were able to obtain (Pacioni et al. 2018; Appendix S1

Model description). Resource targets represent the resources
required by each individual, which were set to 40 for adults and
yearlings and five for juveniles. These resource categories are

linked to different levels of mortality so that individuals that lack
resources have a higher mortality rate. The modified model
differs from that of Pacioni et al. (2018) in that individuals in

the high-resource category have the same mortality rate as do
those in the medium class. This was undertaken so that the
population ismore responsive to reaching carrying capacity. That
is, when the population overshoots carrying capacity, it more

quickly returns below carrying capacity, whereas, in Pacioni et al.
(2018), there was a relatively longer time lag.

We adjusted the minimum resource required for individuals to

join a pack in comparison to Pacioni et al. (2018), whichwas set to
80 (that is, the resource requiredby two individuals). Thiswasdone
because, as the landscape explored is smaller when the time unit is

set to 2 months, no pack formation would be otherwise possible.

Concurrently, we also adjusted the competition parameter, which
was set to 50%.As explained inmoredetail in Pacioni et al. (2018),

competition between loners and packmembers to access resources
is controlled by this parameter, and we had to ensure that loners
could access a minimum amount of resources, given that a lower

resource requirement is applied to pack formation, and pack
members have priority in accessing resources in HexSim (see
Appendix S1 Model description).

Because life-history events (e.g. pack formation, breeding,
natural mortality) are spread across different seasons (Fig. 2),
the model needs to run through a few cycles before reaching
equilibrium. To speed up the computation time, we let themodel

with no control run for the equivalent of 6 years. We saved the
model steady-state conditions at the end of these shorter
simulations and used them to initialise all simulations used for

analysis here. Hence, all simulations start with a wild dog
density being closer to carrying capacity, except for those
scenarios where the large cell was empty (i.e. post-eradication

simulations, see below).
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Fig. 2. Mean wild dog density projections (shaded area indicates one standard deviation) from scenarios with

different fencing options (by row and colour) and control levels (line types) with l0 ¼ 0.4 (left) or l0 ¼ 1.3 (right).

Thick dashed line indicates a density of 0.5 dogs per 100 km2.
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A framework similar to that used for the baiting process could
be easily implemented to simulate trapping and shooting. In fact,

the efficiency of this control methodwill similarly depend on the
probability of encountering the trap, and then that the wild dog
will be trapped, once the trap has been encountered. However,

we did not have data for trapping equivalent to those we had for
baiting, so we were not able to accurately parameterise these
events and decided tomaintain the approach used in Pacioni et al.

(2018; that is, to apply a fixed percentage mortality as a function
of the landscape used by the wild dog where trapping and
shooting occur). The final model is available in Appendix S1.

Management scenarios

Wild dogs are generally controlled in the study area by using a
combination of baiting, trapping and shooting. Trapping and
shooting were simulated by applying 5% additional mortality in

all scenarios that implemented control.
The following three baiting regimes were modelled:

� No Control
� Current Control: intended to simulate the current control
implemented in the area, which is characterised by two baiting

events, one in autumn (pre-breeding) and one in spring (post-
breeding). For each baiting event, the selected properties where
baits were deployed and the bait rate (either 3 or 10 baits km�1)

were based on records collected for 2015 by the Meekatharra
Rangeland Biosecurity Association (MRBA) biannual coordi-
nated baiting (MRBA, unpubl. data, see below).

� MinimumStandard: a baiting regime designed to resemble the
proposed management approach inside of the large cell, as
identified in the Meekatharra Rangeland Biosecurity Associ-
ationWild DogManagement Plan 2014–2019 (MRBA 2014).

In this regime, the whole cell is baited (with the exception of
salt lakes) at 10 baits km�1 every 6 weeks (i.e. eight sessions
per year, four before breeding and four after). We simulated

this option by developing scenarios where the new minimum
standard control was applied for the first 3 years and then
reversed back to the Current Control as for the proposed

management plan.

Weused the records of theMeekatharraRangelandBiosecurity

Association to calculate the number of baits that were deployed,
on average, during 2015 (the year for which we had data) and, by
using ArcGIS (ESRI 2011), we obtained the length of the roads in

the properties included in the large cell. We then computed the
mean bait rate on each road in each property, and, eventually, the
total number of baits within each hexagon that would be deployed
in each of the baiting regimes in the cell under the Current Control

and the Minimum Standard, assuming 10 baits km�1.
All control options described above were modelled with

three possible fencing solutions, which are summarised below.

� Incomplete: without the completion of the large-cell fence.
Following on from Pacioni et al. (2018), the existing fence

was assumed to have 2% permeability.
� Complete: with the completion of the large-cell fence with 2%
permeability.

� Small cell: completion of the small cell (2600 km2). Given the
small size of the fence, we assumed that it was possible to
maintain the permeability of the fence at zero.

If eradication was achieved in the large cell, we evaluated the
level of control that would be needed to keep the large cell free of

wild dogs. This was undertaken by including scenarios where
the large cell was initialised with no wild dogs inside. Because
the small cell was assumed to have a completely dog-proof

fence, we limited the ‘post-eradication’ simulations to scenarios
with and without a completed fence of the large cell, and with
and without Current Control.

Statistical analysis

Simulated data were collated and statistical analysis was con-

ducted with the R package HexSimR (Pacioni et al. 2018) or
custom scripts in R 3.5.2 (R Core Team 2018). We defined
immigrant wild dogs as those born outside the fence but whose

location was recorded within the fenced area at the end of each
time step. The wild dog mean density was calculated considering
only extant populations (that is, simulations where the wild dog
population went extinct were removed before analysis). We

computed themean probability of eradication as the proportion of
simulations where the population size was zero, and the ‘func-
tional’ probability of eradication as the proportion of simulations

where the wild dog density was,0.5 dogs per 100 km2. The 95%
confidence intervals for probability parameters were computed
with the function binom.confint, from the R package binom

(Dorai-Raj 2014), by using the Wilson method (Brown et al.

2001). Pairwise statistical comparisons between mean densities
of the scenario were performed computing the strictly standar-

dised mean difference (Zhang 2007) because its significance is
not influenced by sample size (which is large in our case).

Results

As expected, estimates of s were consistent regardless of
whether the bait was present in front of the camera or not. Hence,
we estimated this parameter by fitting the model without this

covariate. The mean estimate was 8500 m, with a 95% upper
limit of 9411m,whichwas applied to loners, and a lower limit of
7678 m, which was applied to pack members. Surprisingly, the

detection rates were lower when the bait was present (that is,
l0¼ 0.4, 0.2–0.8) than when it was not (1.3, 1–1.6). On the basis
of these results, we ran the simulations twice, once with l0¼ 0.4

and another with l0¼ 1.3, so as to evaluate the sensitivity of the
results to this parameter value.

Management scenarios

No Control

Under the No Control option, if a wild dog population was

established in the cell, wedid not detect any difference inwild dog
density, which fluctuated around the carrying capacity of ,12
dogs per 100 km2, across the three considered fencing solutions

(Table S1, available as Supplementary material to this paper,
Fig. 2). For this reason, we do not discuss these results further.

Current Control

The value of l0 had a strong effect on the results. The Current
Control scenarios predicted significantly (P, 0.001) lower wild
dog densities than did the No Control option in both short-term

(Year 5) and long-term (Year 30) trajectories in all fencing
options, but only when l0 ¼ 1.3 (Table S1, Fig. 2).
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In the short term (5 years), the mean density was,8 dogs per
100 km2, regardless of the fencing option applied (i.e. complete

or not, or the small cell). In the long term (Year 30), the mean
density was ,3 dogs per 100 km2 with an incomplete or
complete fence, and 1.7 dogs per 100 km2 when a small cell

was simulated (Table S1, Fig. 2).
When l0 ¼ 0.4, the wild dog density under the Current

Control scenario was lower than under the No Control option
(P, 0.036) only in the long term (Year 30) and in the scenario

where the fence was completed (Table S1, Fig. 2). With this
level of control, the completion of the fence did not change wild
dog density significantly compared with the incomplete-fence

scenarios. Similarly, although there was a tendency in the
simulations with the small cell to have a slightly lower density
at Year 30, the density was not significantly lower.

Minimum Standard Control

When theMinimum Standard level of control was simulated,
the predictedwild dog densities were significantly lower, in both

the short- and long-term trajectories, than were those obtained
with the No Control and the Current Control options within the
same fence option (Table S1, Fig. 2; P# 0.0003 when l0¼ 1.3,
andP, 0.04 when l0¼ 0.4). Also, themean wild dog density in

the small cell with the Minimum Standard level of control was
significantly lower than it was in the other two fence alternatives
(P , 0.001, except in the comparison with the complete-fence

option at Year 30, where P ¼ 0.017) when l0 ¼ 1.3 (Table S1,
Fig. 2).

Probability of eradication

The only scenario that had a probability of eradication higher
than zerowaswhere the small cell wasmodelled andwhen lethal
control was applied as planned in the proposed newmanagement

(i.e. Minimum Standard, Fig. 3) with l0 ¼ 1.3. Implementation
of the Minimum Standard of 6-weekly baiting (effectively

quadrupling the Current Control level of baiting) resulted in a
rapid decline of wild dog abundance, with a,50%decline in the
first year compared with the No Control option. The population

continued to rapidly decline, with the probability of eradication
becoming significantly larger than zero at Year 12 and progres-
sively increasing over the 30 simulated years to reach 25% (95%
confidence intervals: 22–29%). Consistent with this pattern, the

inspection of the probability of functional eradication profiles
further demonstrated that the small cell andMinimum Standard is
the most efficient combination between fencing and control

(Fig. 4). This was the only fencing solution where the Current
Control level was effective in achieving functional eradication.
When the small cell was implemented, the probability of func-

tional eradication was significantly larger than zero at Year 23,
with the Current Control reaching 2.3% (95% confidence inter-
vals: 1.4–3.9%) at the end of the simulations. Results were more

optimistic when the Minimum Standard baiting regime was
implemented. In this case, the probabilityof functional eradication
was larger than zero at Year 3, reaching 59.7% (95% confidence
intervals: 55.7–63.5%) at the end of the 30-year simulations.

Immigrants

Immigrants did not account formore than 2%of the population
in all the simulations with a complete fence, whereas the propor-
tion of immigrants in scenarios where the fence was incomplete

was highly variable across the 30 simulated years (although
always being relatively small, Fig. 5). Somewhat counterintui-
tively, the proportion of immigrants was higher in simulations

where the Minimum Standard baiting regime was implemented
and smaller when No Control was simulated (,2.5%), with the
Current Control being somewhere in between (,4–8%).
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Post-eradication scenarios

The small-cell scenarios were simulated with a permanent fully
wild dog-proof fence; thus, post-eradication simulations were
limited to the large cell (Table S1, Fig. 6). Broadly speaking, if
eradication is achieved, the role of the fence is more substantial. If

control is suspended after eradication is achieved, the wild dog
population will gradually recover reaching a mean density of 5–7
dogs per 100 km2 at the end of the 30-year simulations, with no

statistical difference depending on whether the fence was com-
pleted or not. However, in the short term, the completion of the
fence will maintain the mean wild dog density at ,0.5 dogs per

100 km2, for,10 years, whereas in the scenarios without a com-
plete fence, thewilddogdensitywill go above this thresholdwithin
3 years and will be significantly (P, 0.001) higher in Year 5.

Our results indicated that ongoing control activities at the

Current Control level, after achieving eradication, will maintain
the population at a density of,0.5 dogs per 100 km2 for all of the
simulated years in the model with l0¼ 1.3, and the first 20 years

when l0 ¼ 0.4 and the fence is completed. Without completion
of the fence, the wild dog density is predicted to go above this
threshold within the first 10 years (Table S1, Fig. 6).

Discussion

We have demonstrated how our model can be used to test
management scenarios by simulating different levels of control
within a large cell with and without a completed fence, or,
alternatively, limiting the exclusion fence to a smaller cell of

producers. We first discuss the management implications of this
work, and, then, the general benefits of the improved modelling

framework that we have developed, as well as indicate areas of

further expansion.

Management of wild dogs within a large cell

The main principles underpinning the establishment of the large

cell are as follows: (1) the control of the wild dog population in
the cell is necessary to re-establish small-stock enterprises in the
area and (2) immigration of wild dogs prevents effective wild

dog control in the cell. Preventing immigration with a fence
should facilitate effective control and allow livestock enter-
prises to re-establish. However, the primary finding of our study

was that, once wild dogs are established, there are only minor
differences in population trajectories between scenarios with
and those without the completion of the fence. Reproduction of
the wild dog population is clearly of greater contribution to the

growth in the wild dog population than is immigration from
outside the cell. For example, under the Current Control sce-
narios without the fence completed, average immigration is

between 2% and 6%, which we argue is insufficient to cause a
drastic change in population trajectories. However, interest-
ingly, in the absence of a complete fence, a more intense baiting

regime is responsible for a higher proportion of the population
inside the cell being immigrants. We argue that this is because
the removal of resident individuals frees up resources that

facilitate the survival of immigrants. In contrast, with a stable
population, pack members defend the territory and deter access
to resources by immigrants (Thomson 1992; Corbett 1995).

Although substantial control of wild dogs could be achieved

through increased control practices, our results also indicate
that both levels of control (i.e. the Current Control and the
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Fig. 4. Mean probability of functional eradication (that is, the probability of wild dog density to be ,0.5

dogs per 100 km2) as a function of time (shaded area represents 95% confidence intervals) for scenarios with

different fencing options (colour) and control levels (line types) with l0 ¼ 0.4 (left) or l0 ¼ 1.3 (right). Note

that results vary only for Current and Minimum Standard Control levels different with l0 ¼ 1.3 in the small

cell. For all other fence and control combinations, results overlap.
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Minimum Standard) in the large cell are inadequate to achieve
true eradication of the wild dog population. The proposed

Minimum Standard of control as advocated in the Meekatharra
Rangeland Biosecurity Association Wild Dog Management
Plan 2014–2019 (MRBA 2014) effectively reduces wild dog

populations by a third to a half in the first year and a half to two-
thirds within 3 years, depending on the value of l0. However, it
is likely that there would be significant challenges associated
with the implementation of 6-weekly baiting in terms of time

and provision of meat for baits, bait manufacture and bait
deployment. Furthermore, it should be noted that in Kreplins
et al. (2018), the baits are taken only by juveniles, so it is

possible that the modelled mortality owing to baiting is over-
estimated.With regard to impacts of wild dogs on livestock, it is
important to note that a reduction in wild dog numbers does not

guarantee a linear decrease in livestock losses (Fleming et al.

2014). Thomson (1986) indicated that prevention of losses for
sheep producers is achieved only when there is 100% removal

of resident wild dogs within paddocks and reinvasion is
prevented.

In contrast, the small-cell option appears to provide a more
feasible alternative. We considered the size of this exclusion

fence to be small enough to reasonably expect that it could be
maintained to be fully wild dog-proof. Scenarios that imple-
mented this fencing solution were the only ones where an

absolute eradication could be achieved. Even if not achieved,
when the Minimum Standard of control was implemented (and
when l0¼ 1.3), themean population density was below 0.5 dogs
km�2 for most of the second half of the 30 years, which we

would expect to provide substantial relief to small-stock produ-
cers. However, it is important to note that the threshold of 0.5
dogs km�2 we considered is somewhat arbitrary and there is no

evidence that, at this density, the economic benefits for the
livestock industry are equivalent to those of true eradication.
Given the smaller size of the enclosed area, the costs and the

logistics involved in implementing such a high level of control
are likely to be reduced. Additionally, because all participants
have a direct interest in controlling wild dogs, any issues of

variable implementation of control measures should be
resolved. Moreover, if true eradication is achieved, control
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could be suspended, except to prevent fence breaches, providing

a further return on investment.
There was a substantial difference in the results depending on

the value used for parameter l0. Curiously, the estimation of the

encounter rate with camera-trap data was lower when a bait was
present in front of the camera. This could be a result of active
avoidance of the baits bywild dogs. Indeed, Kreplins et al. (2018)

observed wild dogs urinating or defecating on or in proximity of
the baits, which is a behaviour thought to encourage active
avoidance. Alternatively, our finding could be due to a response

to the actual human activities related to deploying the baits. Wild
dogs could have resumed their normal activities in a fewdays, but,
because most baits were removed by non-target species within a
few days (Kreplins et al. 2018), our estimates could be biased.

Because we could not distinguish between these two alternative
hypotheses, we evaluated the effect of baiting by using both
values. Regardless of what the true value for this parameter is, the

general trend remains unchanged in that only the Small Cell
option seems to provide an opportunity for an absolute or
functional eradicationofwilddogs andpossibly allows the control

regime to be suspended once eradication is achieved. The differ-
ence of the impact of baiting on wild dogs between l0 values
suggests that, should newor refined tools becomeavailable and be

effective in increasing the encounter rate, efficacyof control could
be greatly increased. Despite the discouraging results from
Kreplins et al. (2018), our results indicated that there might be
value in further exploring the use of lures in future research.

The modelling framework

Weextended our previousmodel to simulate interactions between

predators and baiting deployment in the landscape. Whereas we

recognise that the mathematical approach integrated in our

framework is well established, as is the modelling environment
(HexSim),weargue that the newcoding thatwe implemented, and
make available here, will facilitate further research in this field.

The new coding is computationally intensive because it explicitly
simulates single interactions between predators and baits, but we
consider that this cost isminimal comparedwith the benefits of the

model. Being an individual-based, spatially explicit model, this
framework allows for a fine control of single components of the
dynamics. Moreover, HexSim provides a very flexible module-

based platform where further elements can be easily integrated.
Coupled with the R package that we developed (HexSimR,
Pacioni et al. 2018), which facilitates HexSim output-data han-
dling and analysis, simulation results are readily available. We

argue that the present study represents a substantial step forward in
our capacity to accurately model predator dynamics, and their
response to different management options.

HexSim allows multi-species modelling. That is, more than
one species can be concurrently modelled. By linking each of the
modelled species to the simulation features that we have devel-

oped, it will be possible to explicitly evaluate the effect of baiting
programs on multiple predators (e.g. wild dogs, cats (Felis catus),
foxes (Vulpes vulpes)), as well as the removal of baits by non-

target species.Whereas these aspects were not of primary interest
in our case study, they may be an important priority for other
research where mesopredator release is anticipated to affect
management strategies. Additionally, this approach may be rele-

vant in conservation settings where non-target species may be
native, threatened species, and the intent is to deliver a control
program that reduces the abundance of introduced predators,

while limiting the impact on native species.
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Another research area where we envisage that our model can
be of substantial assistance is in the investigation of conse-

quences of learnt behaviours. It has been hypothesised that
predators that are exposed to sublethal doses of poisonous baits
may develop bait-avoidance behaviours because they associate

the bait with a negative experience (Allsop et al. 2017; Kreplins
et al. 2018). This acquired knowledge could be transferred either
vertically, by teaching young animals to avoid baits, or horizon-

tally to other conspecifics, by marking the baits present in the
environment (e.g. by urinating on them) to prompt avoidance
(Taylor 2017). A possible important consequence of bait-
avoidance behaviours is that the efficacy of baiting programs

is progressively reduced (Binks et al. 2015; Kreplins et al.

2018). Although quantifying the effect of learnt behaviours is
challenging in the field, it could be easily implemented within

our framework. It would be straightforward to, for example,
compare whether the predicted consequences matched mea-
sured differences between a naı̈ve versus an experienced popu-

lation. Implementing this component in our model would
involve the flagging of individuals that were exposed to baits
but did not die (this clearly implies that the mortality probability

when the bait is consumed is less than 100%). For these animals,
l0 or P(B|E) would be reduced to reflect their knowledge and
negative association with the bait. The simulations can keep
track of the offspring of these individuals, and pass on this

acquired trait. Indeed,HexSim has an inbuiltmechanism for trait
inheritance. Horizontal knowledge transfer, instead, can be
simulated by flagging the baits that have been successively

encountered by individuals that were exposed to sublethal-bait
intake. These flagged baits can then have a lower P(B|E) in
their successive interactions with other individuals than would be

the case for baits that have been urinated or defecated upon. We
have already demonstrated a strong sensitivity of themodel to the
value of the encounter rate, indirectly highlighting how important

these dynamics could be in altering the predicted outcome.

Further work

Werecommend that futurework includemonitoringof bait uptake
by target and non-target species as a function of their landscape

use, so as to further refine the parameter estimates of the model,
validate the model outputs and improve its predictive capability.
Similarly, monitoring of trapping practices to obtain estimates of

the probability of encountering a trap, and the probability of being
trapped given a trap encounter, would be beneficial.

Clearly, obtaining predictive trajectories of predator abun-

dance lends itself to become the input of bioeconomic model-
ling, so that it may be possible to not only evaluate management
outcomes from an ecological perspective, but also from a cost–

benefit one. We believe that adequate quantification of the per-
capita predation on livestock and associated economic costs for
the target species (regardless whether this is a threatened or
livestock species) is currently often lacking and we suggest that

further research in this area will make it possible to take full
advantage of the output of the model we have presented here.

Because toxins used for bait preparation as well as method-

ologies to deliver baits are in continuous development, we
envisage that further research should also evaluate the effects
of situations where baits may persist through sequential baiting

events (i.e. bait accumulation in the environment), a feature for
which the model is already equipped.
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