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Abstract
Bactrocera dorsalis, the Oriental fruit fly, is one of the world’s most destructive agri-
cultural insect pests and a major impediment to international fresh commodity trade. 
The genetic structuring of the species across its entire geographic range has never 
been undertaken, because under a former taxonomy B. dorsalis was divided into four 
distinct taxonomic entities, each with their own, largely non-overlapping, distribu-
tions. Based on the extensive sampling of six a priori groups from 63 locations, ge-
netic and geometric morphometric datasets were generated to detect 
macrogeographic population structure, and to determine prior and current invasion 
pathways of this species. Weak population structure and high genetic diversity were 
detected among Asian populations. Invasive populations in Africa and Hawaii are in-
ferred to be the result of separate, single invasions from South Asia, while South Asia 
is also the likely source of other Asian populations. The current northward invasion 
of B. dorsalis into Central China is the result of multiple, repeated dispersal events, 
most likely related to fruit trade. Results are discussed in the context of global quar-
antine, trade, and management of this pest. The recent expansion of the fly into 
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1  | INTRODUC TION

The horticultural sector is one of the largest within the global agri-
cultural economy. Global fruit and vegetable production was esti-
mated at 676.9 and 879.2 million tonnes, respectively, in 2013, with 
global fruit exports in the same year valued at USD 97.02 billion 
(Gyan Research and Analytics, 2014). While developed nations such 
as the United States have long-established horticultural sectors, sig-
nificant growth in commercial horticulture is also occurring in the 
developing world. An expanded horticulture sector is seen not only 
as a mechanism to increase human health in developing nations, but 
also as a way of increasing general living standards through cash 
generation from the sale of fresh commodities for export (Virchow 
& Jaenicke, 2016; Weinberger & Lumpkin, 2007).

One of the major biological impediments to horticultural produc-
tion and export in tropical and subtropical regions of the world is 
the frugivorous tephritid fruit flies (Diptera: Tephritidae) (Hendrichs, 
Vera, De Meyer, & Clarke, 2015). The tephritid or “true” fruit flies 
(not to be confused with drosophilid fruit flies) lay their eggs into 
sound, near-ripe fruit on plant, where the resultant larvae feed. 
Depending on commodity, and in the absence of controls, fruit fly 
damage can easily lead to 80% to 100% crop loss (White & Elson-
Harris, 1992). The global fruit fly problem is exacerbated by a small 
group of highly polyphagous, highly invasive pest species which 
competitively dominate local fauna if they enter and establish in a 
region (Duyck, David, & Quilici, 2004; Duyck et al., 2006), and which 
can subsequently stop fresh commodity trade because of the quar-
antine risk they pose (Dohino et al., 2016). The two best known of 
these invasive tephritids are the Mediterranean fruit fly, Ceratitis 
capitata (Wiedemann), and the focus of this paper, the Oriental fruit 
fly, Bactrocera dorsalis (Hendel).

Oriental fruit fly is one of the world’s most invasive and po-
lyphagous pests of agriculture, with a recorded host range of over 
250 fruits and vegetables (Clarke et al., 2005). Endemic to the Indo-
Asian region, the fly first established outside this native range in 
Hawaii in 1945, where it remains a major pest (Vargas, Piñero, & 
Leblanc, 2015). The fly has subsequently invaded the continental 
United States on numerous occasions and, while the formal reg-
ulatory position is that it is currently absent from the continental 
United States, debate exists in the scientific literature as to whether 
it is permanently established in California (Papadopoulos, Plant, & 
Carey, 2013), or is a repeat invader (Barr et al., 2014). Regardless 
of the position in the United States, B. dorsalis is invasive and 

permanently established in several South Pacific countries (Vargas 
et al., 2015), has invaded and been eradicated twice in Australia 
(Cantrell, Chadwick, & Cahill, 2002), is currently actively invading 
Central China (Chen, Zhang, Ji, Yang, & Zheng, 2014), and is an “A1” 
quarantine pest for the European Union (EPPO, 2015). However, 
it is its invasion, spread, and establishment in sub-Saharan Africa 
that has received most attention in recent time. The fly was first 
detected in Kenya in 2003 (Lux, Copeland, White, Manrakhan, & 
Billah, 2003), and within a span of 14 years has spread across all 
of sub-Saharan Africa and only small parts of South Africa remain 
free of the pest (Manrakhan, Venter, & Hattingh, 2015). The cost 
of lost export markets to Africa due to the invasion has been es-
timated at $2 billion (Ekesi, De Meyer, Mohamed, Massimiliano, & 
Borgemeister, 2016).

All facets of research and management of this pest have 
been confounded by its confused taxonomic history, with the 
fly in recent decades being known under the name of not only 
B. dorsalis, but also B. invadens Drew, Tsuruta & White, B. papa-
yae Drew & Hancock and B. philippinensis Drew & Hancock. As 
a result of a major international collaborative effort (De Meyer 
et al., 2015), these latter three species are now recognized as 
junior synonyms of B. dorsalis (Drew & Romig, 2013; Schutze, 
Mahmood et al., 2015; Schutze, Aketarawong et al., 2015). 
While the synonymization clarifies taxonomic identity and helps 
some aspects of pre- and post-harvest control and market access 
(Dohino et al., 2016; Hendrichs et al., 2015), they also create 
new challenges. An organism, whose geographic range extends 
from Africa, across Asia to the Pacific, might be predicted to 
exhibit macrogeographic population structuring (Ascunce et al., 
2011; Gloria-Soria et al., 2016; Virgilio, Delatte, Backeljau, & 
De Meyer, 2010; Zhang, Edwards, Kang, & Fuller, 2014). As the 
International Plant Protection Convention (FAO, 2011) recog-
nizes “Pest” as “any species, strain or biotype of plant, animal 
or pathogenic agent injurious to plants or plant products,” syn-
onymization of taxa does not negate the issue that different 
geographic populations may still show high levels of population 
structuring and so be of potential quarantine and trade concern 
at the “strain” level.

To address this issue, this paper presents the most compre-
hensive global assessment of B. dorsalis population structuring yet 
undertaken. We sampled from across the entire range of B. dorsa-
lis occurrence, including invasive locations, and used morphological 
data (geometric morphometric analysis of wing shape) and molecular 

temperate China, with very few associated genetic changes, clearly demonstrates the 
threat posed by this pest to ecologically similar areas in Europe and North America.

K E Y W O R D S

Bactrocera dorsalis, geometric morphometrics, microsatellites, mitochondrial genes, population 
structure
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markers (cox1 and nad6 genes and microsatellite loci) to determine 
global population structuring in this species. Three independent 
markers were used in an integrative framework (Schlick-Steiner 
et al., 2010), and in alignment with previous studies of B. dorsalis 
that have shown these markers to be informative at different tem-
poral and spatial scales of population structuring and invasion biol-
ogy (Boontop, Schutze, Anthony, Cameron, & Krosch, 2017; Schutze, 
Krosch et al., 2012; Shi, Kerdelhue, & Ye, 2012). Using DIYABC 
analysis, our global population data also allow us to make informed 
comment on the likely origin of B. dorsalis within the Indo/Asian re-
gion (an issue under debate (Choudhary, Naaz, Prabhakar, & Lemtur, 
2016)) and global invasion pathways.

A second major component of our study is to document mor-
phological and genetic changes associated with the current, ongo-
ing northward invasion of B. dorsalis into Central China. Although 
well-documented in tropical and sub-tropical China (Wan, Nardi, 
Zhang, & Liu, 2011), B. dorsalis was historically absent from Central 
China because of climatic unsuitability (specifically cold stress 
(Stephens, Kriticos, & Leriche, 2007; De Villiers et al., 2016)). 
Nevertheless, B. dorsalis is now able to successfully overwinter 
in central Chinese provinces, such as Hubei Province (Han et al., 
2011). This poses a great concern not only for China, but must 
also to temperate Europe and North America. Climate models 
predict these regions to be “unsuitable” for B. dorsalis (De Villiers 
et al., 2016) but, given the Chinese situation, must now be con-
sidered at threat. Understanding how this invasion is progressing, 
whether there is ongoing gene flow with the source population/s, 
and whether there are morphological or molecular characteristics 
associated with the invasion front, can help inform management 
and prevention of novel invasions into Europe and North America. 
With intensive sampling in China, we assess whether there are 
morphological and/or genetic signatures associated with the inva-
sion front in China which might help inform the risk posed by this 
invasive population.

Taken together, we address the following specific research ques-
tions with these comprehensive data: (a) whether macrogeographic 
population structure is detectable in B. dorsalis populations across 
its entire range; (b) what is the likely region of origin for the species 
and its associated global invasive pathways; and (c) what variation 
occurs in invasive Central China populations. The results are dis-
cussed with respect to the management of this pest.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

Two-thousand eight-hundred and sixty-seven B. dorsalis adults were 
collected from 63 locations and assigned into six a priori groups 
(Central China (CC), Southern China and far northern South-East Asia 
(SCNA), Southern South-East Asia (SSA), South Asia (SA), Africa (AF) 
and Hawaii (HI)) based on biogeographical factors. Thirty-five loca-
tions were sampled within China, belonging to 16 provinces. Details 

of the sampling sites and sampling sizes are given in Supporting 
Information Table S1, and the localities are shown in Figure 1. All 
samples were identified using available taxonomic keys prior to con-
ducting molecular analyses (Liang, Yang, Liang, Situ, & Liang, 1996; 
White & Elson-Harris, 1992). The sampling involved the use of male-
only lures, so females were not collected. The legs or a portion of 
the body were removed for genetic analysis and one wing (usually 
the right) for geometric morphometric shape analysis. The rest of the 
body and the DNA were stored at −20°C with voucher references 
for morphological and molecular verification at the Plant Quarantine 
and Invasion Biology Lab in China Agricultural University.

2.2 | Geometric morphometric analysis

Usually, the right wing was dissected from each fly for slide mount-
ing, image capture and analysis, the left was used instead if the right 
wing was damaged. Wings were slide mounted using DPX mounting 
agent and air-dried prior to image capture using an AnMo Dino-Eye 
microscope eyepiece camera (model # AM423B) mounted on a Leica 
MZ6 stereomicroscope. Fifteen wing landmarks were selected fol-
lowing Schutze, Jessup, & Clarke, 2012 and digitization using tps-
DIG2 v2.16 (Rohlf, 2010).

Raw landmark coordinate data were imported into the com-
puter program MORPHOJ v1.04a (Klingenberg, 2011) for shape 
analysis. Data were first subjected to Procrustes superimposition 
to remove all but shape variation (Rohlf, 1999). Multivariate re-
gression of the dependent wing shape variable against centroid 
size (independent variable) was conducted to assess the effect 
of wing size on wing shape (i.e., allometry) (Drake & Klingenberg, 
2008; Schutze, Jessup et al., 2012). The statistical significance 
of this regression was tested by permutation tests (10,000 rep-
licates) against the null hypothesis of independence. Subsequent 
analyses used the residual components as determined from the 
regression of shape on centroid size to correct for allometric 
effect.

The size of each wing (centroid size) was calculated in MORPHOJ 
v1.04a. Centroid size is an isometric estimator of size calculated as 
the square root of the summed distances of each landmark from the 
center of the landmark configuration. ANOVA with post hoc Tukey’s 
test was used to assess for significant differences among sample 
sites.

Samples were a priori assigned to the above six groups (as for 
centroid size analysis) and 16 provinces within China, from which 
subsequent canonical variates analysis (CVA) was applied to deter-
mine relative differences in wing shape among groups (Krosch et al., 
2013). Significant differences were determined via permutation 
tests (1000 permutation rounds) for Mahalanobis distances among 
groups. We regressed geographic distance (km) between each pair 
of sampling sites determined by Google Earth 7.1.7.2606 against 
Mahalanobis distances calculated from CVA to test for “isolation-by-
distance” (IbD) effects (Wright, 1943). The strength of the associa-
tion was determined by linear regression analysis using the program 
SPSS v17.0.
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2.3 | Genetic analysis

Total genomic DNA was extracted from each individual fly follow-
ing the manufacturer’s protocol from the TIANamp Genomic DNA 
kit (DP304, TIANGEN, China) for animal tissue, and slight modifica-
tions were made to increase DNA concentration (Jiang et al., 2013). 
Eleven microsatellite loci were used in this study: MS3, MS3B, MS4, 
MS5, MS6, Bd9, Bd19, Bd42, Bp198, Bp200, Bi5; technical details 
are given in Dai, Lin, and Chang (2004), Aketarawong, Bonizzoni, 
Malacrida, Gasperi, and Thanaphum (2006), Shearman et al. (2006) 
and Khamis et al. (2008). Fluorescently labeled fragments were 
visualized on ABI PRISM 377 Genetic Analyzer with ROX-500 size 
standard. Allele size was analyzed by software GeneScan version 3.7 
(Applied Biosystems, Beijing, China).

Gene amplification and sequencing methods were reported 
previously (Jiang et al., 2013). The primers designed for this study 
are shown in Supporting Information Table S2. Both directions of 
the cox1 (divided into two fragments at first) and nad6 sequences 
from each individual were reviewed using Chromas (version 2.33) 
and assembled using DNAMAN 5.2 (Lynnon Corporation, Quebec, 
Canada). To delete low-quality sections, all sequences were aligned 
with the standard sequences of B. dorsalis from NCBI using MEGA 
7.0 (Kumar, Stecher, & Tamura, 2016) to generate 1,488-bp cox1 

sequences and 525-bp nad6 sequences, 4,868 sequences were de-
posited in GenBank with accession numbers MG687532-MG689973 
for cox1 and MG689974-MG692399 for nad6.

2.3.1 | Marker characteristics and intra-population 
genetic diversity

For microsatellite data, the number of alleles (NA), number of ef-
fective alleles (NE), observed heterozygosity (HO), and expected 
heterozygosity (HE) were calculated using POPGENE 1.32 (Yeh, 
Yang, & Boyle, 1999). Allelic richness (AR) and gene diversity (HS) 
were calculated using FSTAT 2.9.3.2 (Goudet, 2002). Frequency 
of null allele (AN) was estimated using GENEPOP 4.1 (Raymond & 
Rousset, 1995).

For the sequences, the nucleotide composition and variable po-
sitions were visualized using MEGA 7 (Kumar et al., 2016). The nu-
cleotide diversity (π), haplotype diversity (Hd), and the number of 
haplotypes were estimated using DnaSP 6 (Rozas et al., 2017).

2.3.2 | Population genetic structure

Pairwise FST was calculated for both types of markers using Arlequin 
3.5 (Excoffier & Lischer, 2010) to measure the degree of genetic 

F IGURE  1 Map showing the sampling sites of 63 populations of Bactrocera dorsalis. Specific collection data are presented in Supporting 
Information Table S1. Note: Insert figure: China, Hawaii. The map was created in ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA). URL 
http://www.esri.com/sofware/arcgis/arcgis-for-desktop

info:ddbj-embl-genbank/MG687532
info:ddbj-embl-genbank/MG689973
info:ddbj-embl-genbank/MG689974
info:ddbj-embl-genbank/MG692399
http://www.esri.com/sofware/arcgis/arcgis-for-desktop
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differentiation between pairs of populations. We grouped populations 
into the six prior groups to explore differences between specific regions. 
Isolation by distance (IBD) was examined by testing the correlation be-
tween FST and geographic distances using the program SPSS v17.0.

Bayesian clustering of individuals based on microsatellite gen-
otypes was performed in STRUCTURE 2.0 (Pritchard, Stephens, & 
Donnelly, 2000) to infer genetic structure among the six a priori de-
fined groups and 63 populations of B. dorsalis. We set the number 
of clusters (K) from 1 to 10 and conducted 10 independent runs for 
each value of K. Each run consisted of a burn-in period of 50,000 
steps, followed by 100,000 Markov chain Monte Carlo (MCMC) 
repetitions with a model allowing admixture. ΔK values (Evanno, 
Regnaut, & Goudet, 2005) were computed to select the most likely 
number of K using the online resource Structure Harvester (Earl, 
2011) that explained the structure in data. We then conducted 
model to summarize cluster membership coefficient matrices for 
each value of K with CLUMPP 1.1.2 (Jakobsson & Rosenberg, 
2007), and plotted using DISTRUCT 1.1 (Rosenberg, 2004).

Evolutionary relationships among cox1 and nad6 haplotypes 
were inferred using a haplotype network, constructed under the 
median-joining (MJ) method in NETWORK 5.0.0.3 (Bandelt, Forster, 
& Rohl, 1999).

2.3.3 | Demographic history

DIYABC 2.1 (Cornuet et al., 2014) was used to test evolutionary 
scenarios of expansion: nine scenarios were examined for 2867 
individuals divided into South Asia (SA), Rest Asia (CC, SCNA and 
SSA), Africa, and Hawaii to test invasive pathways and hypotheses 
of whether the likely region of origin is South Asia or Rest Asia. A 
generalized stepwise model was used, with a gamma distribution 
on the mutation rate and default values for all other parameters 
(Boontop et al., 2017). Ninety thousand simulated datasets were 
computed, and posterior probabilities for each scenario were as-
sessed using both the direct and logistic regression methods and 
the closest 90,000 simulated datasets to the observed data. Rates 
of type I and II error were estimated as a measure of confidence in 
scenario choice.

Neutrality tests and mismatch distribution of the sequences 
were calculated in Arlequin 3.5 with 1,000 bootstrap replicates, six 
parameters were calculated: effective population size before expan-
sion (Ɵ0), effective population size after expansion (Ɵ1), time of pop-
ulations expansion (T), Tajima’s D, Fu’s Fs and sum of square deviation 
(SSD) between expected and observed mismatch distribution.

3  | RESULTS

3.1 | Geometric morphometric analysis

One-thousand two-hundred and sixteen wings from flies collected 
from 63 locations covering six a priori defined geographic groupings 
(Figure 1 and Supporting Information Table S1) were used for geo-
metric morphometric analysis. Wing centroid size varied significantly 

across the six population groups (F5, 1210 = 6.128; p < 0.05), with sig-
nificant variation found between populations from Central China 
(largest wings) compared with South Asia and southern South-East 
Asia (smallest wings): The three remaining population groups were 
intermediate between, and not significantly different from, the two 
extremes (Figure 2a). Within China, flies from Hubei and Chongqing 
(Central China), and Sichuan (southern China) possessed significantly 
larger wings than those from Zhejiang province (Central China), but 
all other populations were not significantly different from each other 
(F15,668 = 2.427; p < 0.05) (Figure 2b).

Canonical variate analysis for the six groups and 16 provinces/
cities within China produced five and 15 canonical variates re-
spectively, of which the first two canonical variates cumulatively 
explained 76.29% and 44.49% of the variation. However, there 
was no evidence for structuring among groups in the CVA plots 
(Figure 2c,d). In contrast, among-group Mahalanobis distances were 
significantly different for all six groups and most Chinese provinces/
cities. Hawaii showed the greatest differentiation from other groups, 
with the greatest Mahalanobis distance found between Hawaii and 
Africa. Within China, Taiwan showed significant differentiation from 
all other provinces/cities, with the largest Mahalanobis distance oc-
curring between Taiwan and Anhui (Central China). Invasive Chinese 
populations (i.e., central Chinese populations) were not noticeably 
different from southern Chinese populations (Table 1). For the full 
dataset, a significant isolation-by-distance relationship (Pearson 
correlation = 0.514; p < 0.01) was detected between geographic dis-
tances and Mahalanobis distances (Supporting Information Figure 
S1).

3.2 | Genetic analysis

3.2.1 | Marker characteristics and intra-population 
genetic diversity

From a total of 2,867 B. dorsalis individuals screened for 11 micro-
satellite loci, 236 alleles were observed ranging from 15 to 36 per 
locus. Higher genetic diversity (HS) was found in all Asian groups (CC, 
SCNA, SSA, SA–average HS = 0.632), whereas invasive populations in 
Africa (HS = 0.547) and Hawaii (HS = 0.413) had lower genetic diver-
sity (Table 2, Supporting Information Table S3). In addition to nuclear 
microsatellites, the mitochondrial genes, cox1 (1,488 bp) and nad6 
(525 bp) were sequenced from 2,442 (1,284 haplotypes) and 2,426 
(609 haplotypes) individuals, respectively. Both mitochondrial genes 
exhibited greater haplotype and nucleotide diversity in the Asian 
groups than Africa and Hawaii (Table 2, Supporting Information 
Table S3). All 35 Chinese populations showed high genetic diversity 
for all molecular markers (Supporting Information Table S3).

3.2.2 | Population genetic structure

Significant genetic differentiation based on among-site FST indices 
was observed between all regions and across all molecular markers 
(Table 3, Supporting Information Tables S4 and S5). Hawaii showed 
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the greatest FST differentiation with all other sites, whereas all other 
comparisons among the other regions demonstrated much lower, 
albeit still significant, variation (Table 3). Isolation by distance (IBD) 
was detected from the two sets of molecular markers (Supporting 
Information Figure S1). Within China, genetic differentiation was low 
among all sample sites (Supporting Information Tables S4 and S5).

Bayesian clustering analysis of microsatellite genotypes imple-
mented in STRUCTURE suggested that the maximum value for the 
estimated likelihood of K was found at K = 2 for the six group dataset 
and K = 3 for all 63 populations. Visualization of cluster assignments 
indicated African locations, and Hawaii formed a cluster separate 
to all other Asian locations. No structure was observed within Asia 
when analyzed with African and Hawaiian populations (Figure 3). 
Separate analyses of Asian, Chinese, and African populations were 
conducted to explore population structure within these regions 

(Figure 3). K = 4 was found for African populations where the west-
ern African populations were grouped except for Benin (BJ) which 
formed a unique cluster; Burundi (BI), South Africa (ZALT, KZN), and 
most of Kenya (KE) formed another cluster. K = 9 showed a complex 
structure for 51 Asian populations; K = 4 and K = 6 were found for 
the 35 Chinese populations and the other 16 Asian populations, re-
spectively. Zhenjiang (ZJ) from Central China alone was separated 
from the other three clusters within China; while Myanmar (MM), 
the Philippines (PHD, PHL), and Papua New Guinea (PNG) were dif-
ferentiated from the other Asian populations.

Relationships among mitochondrial haplotypes were inferred 
using network analysis, which showed largely starlike patterns for 
both cox1 (249 haplotypes) and nad6 (219 haplotypes) without the 
third base of codons, and only the torso was displayed (Figure 4). 
All six groups possessed several high-frequency shared haplotypes, 

F IGURE  2 Morphometric results for centroid size and wing shape analysis of Bactrocera dorsalis. (a) Mean (±SE) wing centroid size from 
six groups and (b) 16 provinces/cities, the blue dotted line divides central and southern China. Samples sharing the same letter are not 
statistically different from each other based on one-way ANOVA with Turkey’s post hoc test (α = 0.05). (c) plot of the first two variates 
following canonical variate analysis from six groups and (d) 16 provinces/cities
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including many that were central to the network (Figure 4a,b). 
Further, the four Asian groups showed high haplotype diversity rel-
ative to Africa and Hawaii. There was no evidence for macrogeo-
graphic population structure among regions. Similarly, there was no 
apparent structure observed within China, with many haplotypes 
shared among provinces/cities, and with all locations showing simi-
larly high haplotype diversity (Figure 4c, d).

3.2.3 | Demographic history

Nine scenarios were assessed in DIYABC analysis (Supporting 
Information Figure S2) to identify the likely origin of B. dorsalis within 
the Indo/Asian region and infer global invasion pathways. Logistic 
regression highly supported a scenario of stepwise expansion of 
B. dorsalis from South Asia to Rest Asia and subsequently Hawaii, 
then Africa (scenario 3, p = 0.93, Supporting Information Figures S2 
and S3), with confidence intervals that did not overlap with other 
scenarios (Table 4). Global posterior predictive error under the lo-
gistic approach was 0.474, suggesting the correct scenario was 
supported in 526 of 1,000 test datasets, whereas the global prior 
predictive error was 0.516. The type I error for the selected scenario 
(the proportion of 1,000 test datasets in which this scenario was 
incorrectly rejected) was 0.571. Taken together, this supports the 
notion that South Asia is the center of origin for B. dorsalis.

Neutrality tests performed on the cox1 and nad6 dataset pro-
duced significant negative Tajima’s D and Fu’s FS values for Asian 
populations. Ratios between estimated effective population size 
after expansion (Ɵ1) and effective population size before expan-
sion (Ɵ0), which can serve as an estimate of the extent of popula-
tion growth, indicated that B. dorsalis exhibited a certain degree of 
population growth in all the groups (Supporting Information Table 
S6). Furthermore, the unimodal mismatch distribution (Supporting 
Information Figure S4) supported a model of population expansion 
(pSSD > 0.05).

4  | DISCUSSION

This study represents the largest-ever sampling of B. dorsalis popula-
tions and encompasses both the accepted native range and recent 
(<70 years) invasive locations. This extensive sampling provides 
higher resolution of population relationships and more rigorous tests 
regarding invasive history and region of origin of this highly invasive 
and pestiferous fruit fly than previously available.

4.1 | Global population structure

Microsatellite markers divided B. dorsalis into two genetic units, 
an Asian group and a non-Asian group, while the network of mito-
chondrial haplotypes did not suggest any subdivision in the data. 
The non-Asian group inferred in the microsatellite data corre-
sponded to known recent invasive populations in Africa and Hawaii. 
Interpretation of this pattern would normally imply recent common TA
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ancestry between these locations; however, it is much more likely 
in this case that the pattern shows the effect of separate founder 
events in each location (Nardi, Carapelli, Dallai, Roderick, & Frati, 
2005; Sakai et al., 2001). Both Africa and Hawaii have much lower 
molecular diversity than Asia overall, and the two locations are 
supported by ABC analysis as arising from a South Asian source in 
separate colonization events. Further, genetic differentiation in-
dices support these populations as significantly different to most 
Asian locations, and also to each other. Overall, we argue that these 
data strongly suggest that Hawaii and Africa are the result of sin-
gle separate invasions, with little or no subsequent gene flow with 
source populations in South Asia. This supports previous analyses 

of African populations of B. dorsalis (Khamis et al., 2009; Schutze 
et al., 2015), but suggests also that founder effects in separate in-
vasive populations that arose from the same source can cause these 
populations to appear similar under some analytical scenarios.

Within Asia, weak genetic structure and/or isolation-by-distance 
trends have been recorded in all previous studies (Aketarawong 
et al., 2007; Schutze, Krosch et al., 2012; Shi et al., 2012; Wan, Liu, & 
Zhang, 2012) and were explained by repeated long-distance migra-
tion events, facilitated by the polyphagy of the fruit fly. Our genetic 
and morphological results within Asia agree with this hypothesis 
and infer that there is no macrogeographic sub-structuring across 
the Asian region. Microsatellite data suggested some individual 

CC SCNA SSA SA AF HI

SSR

SCNA 0.00539 –

SSA 0.03269 0.02986 –

SA 0.01698 0.01245 0.02651 –

AF 0.05488 0.05217 0.0772 0.04672 –

HI 0.12552 0.12985 0.14766 0.11694 0.13068 –

cox1/nd6

CC – 0.00261 0.14469 0.01636 0.16363 0.53646

SCNA 0.00426 – 0.15011 0.01387 0.13823 0.51927

SSA 0.12419 0.10505 – 0.14968 0.32940 0.50660

SA 0.01916 0.00813 0.08465 – 0.13246 0.56882

AF 0.05488 0.21112 0.25283 0.19134 – 0.69480

HI 0.57409 0.50943 0.41203 0.53441 0.69314

Note. Values in bold are significant at p < 0.05.

TABLE  3 Pairwise FST among six 
groups of Bactrocera dorsalis

F IGURE  3 Bayesian results based on STRUCTURE of Bactrocera dorsalis. Individuals were grouped by six groups or 63 collection site 
according to Figure 1 and Supporting Information Table S1, each individual was represented by a vertical bar displaying membership 
coefficients, and the blue dotted line divides central and southern China
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populations may be slightly differentiated from their neighbors, 
especially Zhenjiang (ZJ), Myanmar (MM), and Papua New Guinea 
(PNG). These populations are also characterized by lower overall 
genetic diversity. The presence of B. dorsalis in ZJ and PNG is the 
result of very recent colonization events at the northeastern and 

southeastern invasion fronts of B. dorsalis, respectively. In contrast, 
Myanmar would normally be considered part of the native range of 
B. dorsalis in South-East Asia and populations should express high 
genetic diversity. The lower diversity there may be owing to trade 
practices and geographic barriers (Aketarawong et al., 2007; Shi 

TABLE  4 The confidence intervals of direct estimate and logistic regression for chosen scenarios

Scenario
Direct method posterior 
probability (nδ = 500)

95% Confidence 
Intervals

Logistic regression posterior 
probability (nδ = 90,000)

95% Confidence 
Intervals

1 0.0820 0.0000–0.3225 0.0375 0.0000–0.1979

2 0.1100 0.0000–0.3843 0.0010 0.0000–0.1662

3 0.1560 0.0000–0.4741 0.9300 0.9179–0.9421

4 0.0760 0.0000–0.3083 0.0001 0.0000–0.1653

5 0.1080 0.0000–0.3801 0.0011 0.0000–0.1663

6 0.1200 0.0000–0.4048 0.0267 0.0000–0.1881

7 0.0960 0.0000–0.3542 0.0025 0.0000–0.1675

8 0.0640 0.0000–0.2785 0.0001 0.0000–0.1654

9 0.1880 0.0000–0.5305 0.0010 0.0000–0.1750

F IGURE  4 Median-Joining haplotype network of Bactrocera dorsalis for six groups and 16 provinces/cities based on cox1 (a,c) and nad6 
(b,d) data. Size of nodes and pie segments were proportional to haplotype frequency, H1 (contained 1,141 sequences) from Figure 3A 
only displayed the proportion of the six groups by the software, the small black circles represent median vectors (roughly equivalent to 
hypothetical unsampled haplotypes), length of the branched is proportional to number of mutational changes between haplotypes, and the 
blue dotted line divides central and southern China
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et al., 2012), but this is purely conjectural as there are no obvious ex-
planations for the low genetic diversity recorded for this population.

High levels of genetic diversity and gene flow observed between 
Asian populations of B. dorsalis have historically clouded infer-
ences of its potential region of origin. Northern South-East Asia or 
Southern China had been inferred as the potential origin by previous 
authors (Aketarawong et al., 2007; Li, Wu, Chen, Wu, & Li, 2012; 
Schutze, Krosch et al., 2012; Shi et al., 2012; Wan et al., 2012); how-
ever, these studies lacked critical Indian/South Asian populations. 
Recent work within India has shown high genetic diversity within 
Indian populations (cox 1 Hd 0.833–1.00), but there was very lim-
ited integration of that data with non-Indian populations (Choudhary 
et al., 2016). Our global population data allow us to test multiple 
global invasive pathway scenarios under an ABC framework, and 
these tests continue to support the hypothesis of South Asia (= India 
+ Bangladesh) as the original location, even with extensive sampling 
through the rest of Asia.

4.2 | North-Central Chinese invasion

Within China, the ongoing northward spread of B. dorsalis allows di-
rect tests of morphological and molecular differentiation at the in-
vasion front. This invasion began in the early 2000s and northward 
expansion continues (Wang et al., 2009; Yuan, Wang, Song, Rong, & 
Yin, 2008). Critically, B. dorsalis is now moving into central areas of 
China which are climatically similar to temperate regions in Europe 
and North America, which were previously thought climatically un-
suitable to the fly due to overwintering cold stress (De Villiers et al., 
2016; Han et al., 2011). In this, B. dorsalis is proving very similar to 
B. tryoni (Froggatt), another tropical fruit fly species which has dem-
onstrated the capacity to survive temperate winters (Meats, 1976; 
O’Loughlin, East, & Meats, 1984). Understanding how the B. dorsalis 
invasion is progressing, whether there is ongoing gene flow with the 
source population/s, and whether there are morphological or mo-
lecular characteristics associated with the invasion front, can help 
inform management and prevention of novel invasions into Europe 
and North America.

From the extensive sampling within China conducted here, 
our data suggest that there are only subtle signatures associated 
with the invasion front. Central Chinese flies possessed the larg-
est wings of any sampled group and were significantly different 
to South and South-East Asian populations; however, they were 
not significantly different to southern Chinese populations. Larger 
body size in northern populations may be an adaptation to cooler 
temperatures, following a Bergmann cline type model (Blackburn, 
Gaston, & Loder, 1999), but a lack of correlation between wing 
centroid size and latitude for Chinese populations (analysis not 
presented) means this is unlikely. Microsatellite data suggest that 
although there are four population clusters supported within 
China, none of these correspond to the invasive central popu-
lations; it is likely that the frequent fruit trade from southern to 
northern China facilitates multiple repeated dispersal events. 
Global climate change may be creating suitable conditions for the 

northward spread of this species, just as it has for the southward 
spread of B. tryoni into temperate Australia (Sultana, Baumgartner, 
Dominiak, Royer, & Beaumont, 2017). This ongoing expansion of 
B. dorsalis into regions that were considered climatically unsuit-
able poses a threat not only to northern China, but also to ecologi-
cally similar areas in Europe and North America should it establish 
on either continent.

4.3 | Implications for management

Despite our extensive sampling across B. dorsalis’s entire geographic 
range, no macrogeographic population structuring was observed: 
a result fully consistent with prior studies which have covered in-
dividual components of the range (Choudhary et al., 2016; Khamis 
et al., 2009; Schutze, Krosch et al., 2012; Shi et al., 2012). The ge-
netic uniqueness of Hawaii and Africa is linked to the recent inva-
sions (60–15 years, respectively, assuming the invasive populations 
were detected soon after their establishment) of those locations, not 
because of long-term population structuring. Given such consistent 
results from multiple studies, we consider it highly unlikely that dif-
ferent geographic populations of the fly will show marked biological 
differences, such as differences in host use or thermal tolerances, 
which might impact on quarantine, trade, or pest management. 
Indeed, where post-harvest market access research has been done 
on different geographic populations of B. dorsalis, no significant dif-
ferences have been detected between populations (Hallman, Myers, 
Jessup, & Islam, 2011; Myers, Cancio-Martinez, Hallman, Fontenot, 
& Vreysen, 2016), a result consistent with the lack of population 
structuring.

The current movement of B. dorsalis into Central China, with-
out any apparent strong selective pressure, must pose a deep con-
cern for other temperate regions of the world, especially Europe 
and North America. The invasion and spread in the last decade 
of spotted-wing drosophila, Drosophila suzukii Matsumura, across 
both Europe and North America, has demonstrated just how sus-
ceptible the fruit growing industries in those continents are to 
polyphagous fruit feeders (Lee et al., 2011; Walsh et al., 2011). 
Yet, as damaging as spotted-wing drosophila is, its impact is still 
largely restricted to berries and soft fruits. In contrast, B. dorsalis 
attacks fruits from well over 20 plant families and is generally 
regarded as one of global agriculture’s most damaging insects 
(Clarke et al., 2005). Should it permanently establish in North 
Asia, America or Europe, we anticipate a far more northerly 
spread than currently predicted by climate matching models (De 
Villiers et al., 2016).
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