Supplementary material

Stock structure of *Lethrinus laticaudis* (Lethrinidae) across northern Australia determined using genetics, otolith microchemistry and parasite assemblage composition

Diane P. Barton^{A,B,J}, Laura Taillebois^{B,C}, Jonathan Taylor^A, David A. Crook^B, Thor Saunders^{A,B}, Mark Hearnden^A, Alan Greig^D, David J. Welch^E, Stephen J. Newman^F, Michael J. Travers^F, Richard J. Saunders^{G,H}, Chris Errity^A, Safia Maher^I, Christine Dudgeon^I and Jennifer Ovenden^I

^ADepartment of Primary Industry and Resources, Northern Territory Government,

Makagon Road, Berrimah, NT 0828, Australia.

^BResearch Institute for the Environment and Livelihoods, Charles Darwin University,

Darwin, NT 0810, Australia

^CNorth Australia Marine Research Alliance, Arafura Timor Research Facility,

Darwin, NT 0810, Australia.

^DSchool of Earth Sciences, The University of Melbourne, Vic. 3010, Australia.

^EC₂O Fisheries, Cairns, Qld 4870, Australia.

^FWestern Australian Fisheries and Marine Research Laboratories, Department of Primary Industries

and Regional Development, Government of Western Australia, PO Box 20,

North Beach, WA 6920, Australia.

^GCentre for Sustainable Tropical Fisheries and Aquaculture, The Science Place, Building 142,

1 James Cook Drive, Townsville, Qld 4811 Australia.

^HAnimal Science, Queensland Department of Agriculture and Fisheries, EcoSciences Precinct,

Dutton Park, Qld 4102, Australia.

¹Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland,

Brisbane, Qld 4072, Australia.

^JCorresponding author. Email: di.barton@nt.gov.au

Table S1. Summary statistics of 10 microsatellite loci for Lethrinus laticaudis from 304 individuals sampled from 12 locations across northern Australia (see Table 1 for location code)

n is the sample size, n_A is the number of alleles, A_R is the allelic richness, *I* is Shannon's Information Index, H_O is the observed heterozygosity, H_E is the

Location		Lel011	Lel040	Lel033	Lel012	Lel013	Lel032	Lel028	Lel027	Lel044	Lel039
LP	n	29	30	29	18	30	28	30	29	30	29
	n_A	10	11	16	12	8	11	10	18	8	8
	A_R	3.132	8.451	10.256	5.400	5.902	9.679	7.258	12.840	5.373	3.571
	Ι	1.540	2.247	2.522	2.033	1.858	2.318	2.102	2.691	1.810	1.593
	H_O	0.655	0.733	0.828	0.611	0.767	0.821	0.800	0.828	0.733	0.724
	H_E	0.681	0.882	0.902	0.815	0.831	0.897	0.862	0.922	0.814	0.720
	F	0.038	0.168	0.083	0.250	0.077	0.084	0.072	0.103	0.099	-0.006
CP	n	32	32	32	27	30	32	31	32	32	31
	n_A	12	12	15	13	9	12	12	14	9	11
	A_R	4.146	5.361	11.636	7.839	5.863	7.787	6.261	11.378	5.868	3.930
	Ι	1.806	2.063	2.561	2.273	1.907	2.255	2.106	2.519	1.886	1.785
	H_O	0.625	0.719	0.906	0.778	0.800	0.781	0.871	0.844	0.875	0.613
	H_E	0.759	0.813	0.914	0.872	0.829	0.872	0.840	0.912	0.830	0.746
	F	0.176	0.116	0.009	0.108	0.035	0.104	-0.037	0.075	-0.055	0.178
DP	n	23	24	24	21	24	24	24	24	23	23
	n_A	8	15	17	14	7	11	11	14	8	9
	A_R	3.469	5.818	10.105	6.533	5.592	9.000	6.621	9.846	5.658	4.600
	Ι	1.540	2.205	2.552	2.272	1.821	2.279	2.041	2.444	1.844	1.795
	H_O	0.739	0.833	0.875	0.667	0.875	0.958	0.958	0.875	0.783	0.652
	H_E	0.712	0.828	0.901	0.847	0.821	0.889	0.849	0.898	0.823	0.783
	F	-0.039	-0.006	0.029	0.213	-0.066	-0.078	-0.129	0.026	0.049	0.167
CS	п	28	28	28	24	27	27	27	26	28	28
	n_A	9	12	19	14	9	11	11	14	7	9
	A_R	3.015	6.701	11.879	6.898	5.608	7.594	7.967	11.174	4.994	3.664
	Ι	1.461	2.130	2.674	2.294	1.908	2.161	2.211	2.515	1.742	1.586
	H_O	0.643	0.857	0.786	0.667	0.778	0.852	0.852	0.962	0.714	0.679
	H_E	0.668	0.851	0.916	0.855	0.822	0.868	0.874	0.911	0.800	0.727
	F	0.038	-0.007	0.142	0.220	0.053	0.019	0.026	-0.056	0.107	0.067
CV	п	30	30	30	29	30	30	30	30	30	30
	n_A	11	15	16	14	10	11	10	14	10	11
	A_R	3.896	9.677	11.250	8.327	5.590	7.895	5.788	10.465	6.207	4.147

expected heterozygosity, and F is the fixation index $(H_E - H_O) \div H_E$

Location		Lel011	Lel040	Lel033	Lel012	Lel013	Lel032	Lel028	Lel027	Lel044	Lel039
	Ι	1.781	2.473	2.542	2.358	1.915	2.179	2.002	2.455	2.001	1.787
	H_O	0.733	0.833	0.900	0.828	0.900	0.867	0.900	0.933	0.767	0.700
	H_E	0.743	0.897	0.911	0.880	0.821	0.873	0.827	0.904	0.839	0.759
	F^{-}	0.013	0.071	0.012	0.059	-0.096	0.008	-0.088	-0.032	0.086	0.078
Wa	n	27	27	27	24	26	27	27	26	26	23
	n_A	7	11	15	13	8	10	11	14	10	6
	A_R	2.928	4.214	10.962	3.959	5.681	6.451	7.010	10.903	5.474	4.744
	Ι	1.307	1.885	2.522	1.834	1.864	2.025	2.100	2.508	1.943	1.624
	H_O	0.556	0.741	0.963	0.750	0.731	0.815	0.815	0.885	0.769	0.783
	H_E	0.658	0.763	0.909	0.747	0.824	0.845	0.857	0.908	0.817	0.789
	F	0.156	0.029	-0.060	-0.003	0.113	0.036	0.050	0.026	0.059	0.008
RR	п	26	26	25	25	26	25	26	26	26	26
	n_A	6	14	13	10	9	10	10	14	8	8
	A_R	2.965	5.344	9.921	4.771	6.063	7.062	8.145	10.816	5.753	4.462
	Ι	1.248	2.146	2.403	1.825	1.932	2.103	2.174	2.483	1.862	1.702
	H_O	0.577	0.846	0.880	0.640	0.846	0.720	0.808	1.000	0.808	0.885
	H_E	0.663	0.813	0.899	0.790	0.835	0.858	0.877	0.908	0.826	0.776
	F	0.129	-0.041	0.021	0.190	-0.013	0.161	0.079	-0.102	0.022	-0.140
DH	n	23	23	24	21	24	24	24	24	24	22
	n_A	5	10	13	11	8	15	10	14	8	11
	A_R	2.587	4.165	10.195	5.313	5.647	9.366	6.436	10.766	4.220	4.400
	Ι	1.156	1.799	2.418	1.973	1.836	2.435	2.014	2.490	1.689	1.826
	H_O	0.696	0.739	0.833	0.810	0.875	0.917	0.917	0.917	0.750	0.818
	H_E	0.613	0.760	0.902	0.812	0.823	0.893	0.845	0.907	0.763	0.773
	F	-0.134	0.027	0.076	0.003	-0.063	-0.026	-0.085	-0.011	0.017	-0.059
CoP	n	32	33	32	31	32	33	33	33	33	31
	n_A	6	11	17	14	8	13	10	15	8	8
	A_R	2.695	3.463	11.838	5.772	5.211	9.075	4.939	10.945	5.431	4.470
	Ι	1.193	1.709	2.623	2.136	1.799	2.356	1.878	2.509	1.798	1.689
	H_O	0.625	0.697	0.938	0.935	0.781	0.879	0.788	0.939	0.818	0.742
	H_E	0.629	0.711	0.916	0.827	0.808	0.890	0.798	0.909	0.816	0.776
	F	0.006	0.020	-0.024	-0.132	0.033	0.012	0.012	-0.034	-0.003	0.044
VI	n	29	29	29	28	29	29	29	27	29	29
	n_A	7	11	14	14	6	13	9	13	8	6
	A_R	2.620	4.711	9.191	5.580	3.903	7.377	6.675	8.890	5.021	3.511
	Ι	1.217	1.910	2.393	2.130	1.510	2.210	1.980	2.327	1.784	1.424
	H_O	0.759	0.862	0.931	0.714	0.724	0.931	0.862	0.889	0.793	0.655
	H_E	0.618	0.788	0.891	0.821	0.744	0.864	0.850	0.888	0.801	0.715

Location		Lel011	Lel040	Lel033	Lel012	Lel013	Lel032	Lel028	Lel027	Lel044	Lel039
	F	-0.227	-0.094	-0.045	0.130	0.026	-0.077	-0.014	-0.002	0.010	0.084
HB	п	12	12	11	12	10	12	12	11	12	12
	n_A	5	4	9	7	5	7	11	10	5	7
	A_R	2.420	2.420	6.541	3.600	3.390	4.966	6.261	8.963	3.692	4.235
	Ι	1.133	1.072	2.021	1.536	1.349	1.759	2.102	2.240	1.418	1.653
	H_O	0.583	0.500	0.909	0.500	0.700	0.833	0.917	0.909	0.917	0.917
	H_E	0.587	0.587	0.847	0.722	0.705	0.799	0.840	0.888	0.729	0.764
	F	0.006	0.148	-0.073	0.308	0.007	-0.043	-0.091	-0.023	-0.257	-0.200
SC	п	9	9	8	9	9	9	9	9	9	9
	n_A	4	6	8	6	5	9	7	12	5	6
	A_R	3.057	3.176	5.565	4.050	3.000	6.480	3.857	9.000	2.531	3.951
	Ι	1.223	1.377	1.890	1.538	1.301	2.029	1.629	2.351	1.164	1.542
	H_O	0.889	0.556	0.875	0.556	0.778	1.000	0.889	0.889	0.778	0.778
	H_E	0.673	0.685	0.820	0.753	0.667	0.846	0.741	0.889	0.605	0.747
	F	-0.321	0.189	-0.067	0.262	-0.167	-0.182	-0.200	0.000	-0.286	-0.041
All locations	п	300	303	299	269	297	300	302	297	302	293
	n _A	16	21	24	24	14	17	18	21	14	16
	A_R	3.206	5.862	13.170	6.757	6.023	9.453	7.716	12.815	5.592	4.455
	Ι	1.577	2.263	2.742	2.370	1.942	2.415	2.226	2.648	1.900	1.822
	H_O	0.663	0.766	0.886	0.732	0.801	0.857	0.858	0.906	0.788	0.730
	H_E	0.688	0.829	0.924	0.852	0.834	0.894	0.870	0.922	0.821	0.776
	F	0.036	0.077	0.041	0.140	0.039	0.042	0.015	0.018	0.040	0.058

Table S2. Mean concentrations of element : ⁴³Ca ratios from the near core and margin of *Lethrinus laticaudis* otoliths collected from 13 locations across northern Australia

Mn data are not presented for the otolith margin because measurements were generally below detection limits

Location	Li:Ca	Mg:Ca	Mn:Ca	Cu:Ca	Sr:Ca	Ba:Ca
Near core						
Locker Point	0.59657	0.03258	0.30711	0.03752	0.50799	0.59169
Cape Preston	0.60339	0.03880	0.31884	0.03897	0.51557	0.55524
Dampier Peninsula	0.56804	0.03439	0.21931	0.04013	0.51963	0.60075
Camden Sound	0.62068	0.03705	0.34115	0.04289	0.51815	0.65674
Cape Voltaire	0.60595	0.03549	0.36830	0.05034	0.51992	0.67203
Wadeye	0.66468	0.04024	0.49941	0.06123	0.50503	0.66699
Roche Reef	0.66905	0.04067	0.49575	0.05327	0.49857	0.66567
Darwin Harbour	0.65711	0.04028	0.45413	0.04676	0.50736	0.69810
Coburg Peninsula	0.63451	0.03758	0.40964	0.04785	0.49836	0.58151
Vanderlin Islands	0.65843	0.05071	0.58931	0.04620	0.51226	0.70818
Halifax Bay	0.61151	0.03297	0.59989	0.04360	0.51361	0.59588
Sunshine Coast	0.63981	0.03197	0.54945	0.04106	0.47495	0.50343
Moreton Bay	0.68527	0.04006	0.50135	0.05295	0.48461	0.60363
Margin						
Locker Point	0.39906	0.01061	<lod< td=""><td>0.02636</td><td>0.62620</td><td>0.63843</td></lod<>	0.02636	0.62620	0.63843
Cape Preston	0.44393	0.01331	<lod< td=""><td>0.02820</td><td>0.60710</td><td>0.74291</td></lod<>	0.02820	0.60710	0.74291
Dampier Peninsula	0.46168	0.01600	<lod< td=""><td>0.02498</td><td>0.60120</td><td>0.91130</td></lod<>	0.02498	0.60120	0.91130
Camden Sound	0.48318	0.01607	<lod< td=""><td>0.03086</td><td>0.58845</td><td>0.70090</td></lod<>	0.03086	0.58845	0.70090
Cape Voltaire	0.45976	0.01253	<lod< td=""><td>0.03309</td><td>0.63425</td><td>0.82913</td></lod<>	0.03309	0.63425	0.82913
Wadeye	0.42843	0.01115	<lod< td=""><td>0.04069</td><td>0.68103</td><td>0.73175</td></lod<>	0.04069	0.68103	0.73175
Roche Reef	0.53802	0.02458	<lod< td=""><td>0.03411</td><td>0.55718</td><td>0.67397</td></lod<>	0.03411	0.55718	0.67397
Darwin Harbour	0.55079	0.02405	<lod< td=""><td>0.02734</td><td>0.55422</td><td>0.54346</td></lod<>	0.02734	0.55422	0.54346
Coburg Peninsula	0.44138	0.01368	<lod< td=""><td>0.03650</td><td>0.61432</td><td>0.69180</td></lod<>	0.03650	0.61432	0.69180
Vanderlin Islands	0.40217	0.01054	<lod< td=""><td>0.03166</td><td>0.63209</td><td>0.79726</td></lod<>	0.03166	0.63209	0.79726
Halifax Bay	0.47105	0.00920	<lod< td=""><td>0.03870</td><td>0.64461</td><td>0.61327</td></lod<>	0.03870	0.64461	0.61327
Sunshine Coast	0.46464	0.00872	<lod< td=""><td>0.02534</td><td>0.57536</td><td>0.56780</td></lod<>	0.02534	0.57536	0.56780
Moreton Bay	0.48365	0.01416	<lod< td=""><td>0.02725</td><td>0.52527</td><td>0.48720</td></lod<>	0.02725	0.52527	0.48720

Table S3. Results of the multivariate analysis of variance (MANOVA) investigating the spatial variability in otolith near core and margin microchemistry and parasite assemblage of *Lethrinus laticaudis*: overall (all locations, independent of region) and by region

	(4	Source		Pi	llai's Trac	e	F				
Source	Near Core	Margin	Parasite	Near core	Margin	Parasite	Near core	Margin	Parasite		
Overall	72	60	288	0.947	1.466	3.615	4.936***	10.925***	5.676***		
	(1896)	(1580)	(3792)								
WA	24	20	68	0.548	0.650	1.746	3.706***	5.474***	6.240***		
	(560)	(564)	(548)								
NT	24	20	44	0.368	1.151	1.946	2.281***	10.994***	11.536***		
	(540)	(544)	(536)								
Qld	12	10	34	0.918	1.035	1.738	4.668***	7.295***	8.572***		
	(66)	(68)	(44)								

d.f. is the degree of freedom; asterisks indicate significance at: ***, P < 0.001

Table S4. Jack-knife reclassification success for the near core and margin otolith microchemistry results for Lethrinus laticaudis sampled from the three jurisdictional management units

Data are presented as the percentage of fish captured from locations (rows) that are classified by discriminant functions into the various locations (columns)

for analysis within each region. Bold values indicate successful reclassification to the location of origin

Location	LP	СР	DP	CS	CV	Wa	RR	DH	CoP	VI	HB	SC	MB
Near core													
Locker Point	47	17	17	13	7								
Cape Preston	23	27	33	7	10								
Dampier Peninsula	0	29	61	4	7								
Camden Sound	21	17	10	24	28								
Cape Voltaire	13	20	7	10	50								
Wadeye						20	10	13	33	23			
Roche Reef						36	4	16	36	8			
Darwin Harbour						13	4	17	42	25			
Coburg Peninsula						12	9	6	58	15			
Vanderlin Islands						10	0	13	20	57			
Halifax Bay											86	0	14
Sunshine Coast											7	57	36
Moreton Bay											17	42	42
Margin													
Locker Point													
Cape Preston	63	20	0	3	13								
Dampier Peninsula	33	17	13	23	13								
Camden Sound	0	18	46	21	14								
Cape Voltaire	0	21	14	59	7								
Wadeye	10	17	7	13	53								
Roche Reef						57	7	0	17	20			
Darwin Harbour						0	52	36	12	0			
Coburg Peninsula						0	17	79	4	0			
Vanderlin Islands						9	6	0	58	27			
Halifax Bay						17	0	0	33	50			
Sunshine Coast											86	14	0
Moreton Bay											7	79	14
											0	42	58

Table S5. Parasites found infecting Lethrinus laticaudis sampled from 13 locations across northern Australia that were used in analyses

Data are presented as mean abundance with prevalence in parentheses. Data presented are untransformed

Area in body	Location	LP	CP	DP	CS	CV	Wa	RR	DH	CoP	VI	HB	SC	MB
Parasite type	Sample Size	34	35	28	29	29	30	29	24	33	30	14	14	12
Gills and pharyng	geal teeth													
Copepoda	Hatschekia gracilis	1.21	1.89	20.07	4.07	3.97	6.47	7.59	0.33	0.09	16.33		3.86	3.75
		(61.8)	(62.9)	(100)	(89.7)	(93.1)	(93.3)	(93.1)	(16.7)	(9.1)	(96.7)		(78.6)	(91.7)
	Sagum vespertilio		0.06										0.50	
			(2.9)										(28.6)	
Isopoda	Adult					0.03	0.10							
	· · · ·			0.04		(3.4)	(10.0)	0.54	1 50		0.42			
Monogenea	Haliotrema sp.	24.32	27.54	9.36	4.24	10.28	15.70	0.76	1.50	22.30	8.63	5.07	0.50	7.50
		(97.1)	(100)	(46.4)	(31.0)	(89.7)	(93.3)	(20.7)	(54.2)	(87.9)	(46.7)	(85.7)	(21.4)	(58.3)
	Diplectanidae sp.	24.88	12.29	4.93	2.52	6.07	13.53	0.03		12.61	17.93	1.29	2.86	
		(97.1)	(94.3)	(50.0)	(27.6)	(48.3)	(96./)	(3.4)		(84.8)	(73.3)	(14.3)	(14.3)	
	Encotyllabe sp.	(17.6)	0.17	2.32		1.07						2.07	(7, 1)	
Dedecessites area		(17.6)	(11.4)	/1.4)		(58.6)						(71.4)	(7.1)	
Body cavity, mes	Presenteries and tissues	1.24	4 40	657	0.96	0.70	0.90		0.04	0.02		1.00	0.21	
Cestoda	Pseudogiiquinia sp.	(28.2)	(27.1)	(52.6)	(21.0)	(24.1)	(26.7)		(4.2)	(2,0)		(21.4)	(21.4)	
	Paratohothrium sp	(38.2)	(37.1)	(33.0)	(31.0)	(24.1)	(30.7)		(4.2)	(5.0)		(21.4)	(21.4) 1 1 4	
	T araioboinriam sp.		(2, 0)	(3.6)									(28.6)	
	Whalinia sp. 1	0.50	1.00	0.80		0.10	0.07	0.03	0.17		0.50		(20.0)	
	Nybelinia sp. 1	(8.8)	(31.0)	(21.4)		(10.3)	(6.7)	(3.4)	(12.5)		(33.3)		(14.3)	
	Nyhelinia sp. 2	(0.0)	0 34	0.18		0.28	0.03	(3.4)	(12.5)		0.03		(14.5)	
	rybenna sp. 2		(17.1)	(10.7)		(27.6)	(3,3)				(3 3)			
	Nybelinia sp. 5		(17.17)	(10.7)		(27.0)	(5.5)				(5.5)	0.14	2.43	
	rijočinici sp. č											(14.3)	(71.4)	
	<i>Nybelinia</i> sp. 6					0.07						(=)	0.57	
	l l l l l l l l l l l l l l l l l l l					(3.4)							(14.3)	
	Nybelinia sp. 7	0.65	0.34			· /							· /	
	· ·	(8.8)	(14.3)											
	Callitetrarhynchus sp.	· · /	0.03			0.14	0.03							
	~ 1		(2.9)			(10.3)	(3.3)							
	Proteocephalidae spp.	0.09	2.51			2.59	0.03	0.17		0.33				
		(8.8)	(22.9)			(27.6)	(3.3)	(3.4)		(9.1)				

Area in body	Location	LP	СР	DP	CS	CV	Wa	RR	DH	CoP	VI	HB	SC	MB
Digenea	Didymozoidae ex stomach	0.35	0.09	0.29		0.38	0.20			0.21	0.10	0.29		
	wall	(32.4)	(5.7)	(286)		(24.1)	(13.3)			(21.2)	(10.0)	(14.3)		
Nematoda	Anisakidae spp.	0.97	3.17	3.71	0.24	2.17	3.63	0.21	0.04	0.15	0.23	4.00	9.07	0.42
		(55.9)	(74.3)	(50.0)	(17.2)	(65.5)	(56.7)	(13.8)	(4.2)	(12.1)	(23.3)	(78.6)	(71.4)	(8.3)
Acanthocephala	Corynosoma sp.												0.14	
													(14.3)	
	Serrasentis sagitiffer		0.06								0.03		0.36	
			(5.7)								(3.3)		(35.7)	
Intestinal canal														
Digenea	Acanthocolpidae sp.	0.03	0.11		0.14	0.14							0.21	0.25
		(2.9)	(11.4)		(6.9)	(10.3)							(7.1)	(25.0)
	<i>Fairfaxia</i> sp.	0.12	0.17	0.04	0.03			0.14			0.03			
		(8.8)	(11.4)	(3.6)	(3.4)			(3.4)			(3.3)			
	Hemiuridae sp.	0.50	0.46	0.07		0.07	0.40						0.93	0.42
		(14.7)	(22.9)	(7.1)		(6.9)	(23.3)						(50.0)	(8.3)
	Bucephalidae sp.	0.03		0.11		0.03				0.03	0.20	0.07		
		(2.9)		(10.7)		(3.4)				(3.0)	(20.0)	(7.1)		
Nematoda	Cucullanus laurotravassosi		0.23	0.64					0.13	0.12	0.57	0.50		
			(20.0)	(42.9)					(12.5)	(6.1)	(30.0)	(35.7)		

Table S6. Jack-knife reclassification success for the parasite assemblage of Lethrinus laticaudis sampled from the three jurisdictional management units

Data are presented as the percentage of fish captured from locations (rows) that are classified by discriminant functions into the various locations (columns)

Group	LP	CP	DP	CS	CV	Wa	RR	DH	CoP	VI	HB	SC	MB
Locker Point	68	26	0	6	0								
Cape Preston	40	46	0	3	11								
Dampier Peninsula	0	0	64	21	14								
Camden Sound	7	0	0	93	0								
Cape Voltaire	3.5	14	3.5	24	55								
Wadeye						67	3	0	17	13			
Roche Reef						0	79	21	0	0			
Darwin Harbour						0	8	92	0	0			
Coburg Peninsula						0	0	18	82	0			
Vanderlin Islands						3	20	3	0	74			
Halifax Bay											79	7	14
Sunshine Coast											7	79	14
Moreton Bay											0	0	100

for analysis within each region. Bold values indicate successful reclassification to the location of origin

Fig. S1. Results from the Bayesian model-based clustering of microsatellite data from *Lethrinus laticaudis* using the software STRUCTURE. Each vertical line represents an individual and the posterior probability proportions of its genotype assigned to the different genetic clusters. The number of genetic clusters shown ranges from k = 2 to k = 9; each plot represents one tested k. Individuals are plotted in order along the sampling gradient from west to east. Population information was used as a prior in the analysis.