Login | Create Account (DAF staff only)

The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development

Ridge, S. and Brown, P. H. and Hecht, V. and Driessen, R. G. and Weller, J. L. (2015) The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. Journal of Experimental Botany, 66 (1). p. 125. ISSN 0022-0957

[img]
Preview
PDF (Role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development)
1MB

Article Link(s): http://dx.doi.org/10.1093/jxb/eru408

Publisher URL: http://jxb.oxfordjournals.org/content/66/1/125.full.pdf+html

Abstract

In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time.

Item Type:Article
Business groups:Horticulture and Forestry Science
Keywords:BoFLC BoFT BoVIN3 Brassica oleracea Cauliflower Expression Flowering time Vernalization Arabidopsis Brassica Brassica oleracea var. botrytis
Subjects:Plant culture > Food crops
Plant culture > Propagation
Science > Botany > Genetics
Deposited On:18 Mar 2015 02:50
Last Modified:08 Jun 2015 16:03

Repository Staff Only: item control page