# Should I grow wildflowers? information kit Reprint - information current in 2000 



## REPRINT INFORMATION - PLEASE READ!

## For updated information please call 132523 or visit the website www.deedi.qld.gov.au

This publication has been reprinted as a digital book without any changes to the content published in 2000 . We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research:

- Chemical recommendations-check with an agronomist or APVMA www.apvma.gov.au
- Financial information-costs and returns listed in this publication are out of date. Please contact an adviser or industry body to assist with identifying more current figures.
- Varieties-new varieties are likely to be available and some older varieties may no longer be recommended. Check with an agronomist, call the Business Information Centre on 1325 23, visit our website www.deedi.gld.gov.au or contact the industry body.
- Contacts-many of the contact details may have changed and there could be several new contacts available. The industry organisation may be able to assist you to find the information or services you require.
- Organisation names-most government agencies referred to in this publication have had name changes. Contact the Business Information Centre on 132523 or the industry organisation to find out the current name and contact details for these agencies.
- Additional information-many other sources of information are now available for each crop. Contact an agronomist, Business Information Centre on 132523 or the industry organisation for other suggested reading.

Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers.
This publication was last revised in 2000. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland.
This information has been made available to assist users to identify issues involved in wildflower production. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice.

While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

## Economics of PRODUCTION

If you want to earn a living from growing wildflowers you must run the enterprise as a business, not a hobby. Six cash flow budgets and sensitivity analyses for growing eucalypt buds and flowers, eucalypt foliage, kangaroo paw, Protea 'Pink Ice', rice flower and waxflower are presented as a guide. Intending growers should seek specialist horticultural and financial advice before starting their enterprise.

## Contents

Cash flow budgets ..... 58
Eucalypt buds and flowers budget ..... 59
Eucalypt foliage budget. ..... 60
Kangaroo paw budget ..... 62
Protea 'Pink Ice' budget ..... 64
Rice flower budget. ..... 66
Waxflower budget. ..... 68

## Cash flow budgets

One way of assessing the costs of wildflower production is to construct a cash flow budget, and to examine the difference between variable or operating costs (expenditure) and gross return (income) over time (cumulative net return).

Variable or operating costs include growing, harvesting and domestic freight costs. The calculation does not consider fixed or overhead costs such as rates, capital items, interest repayments, electricity, insurance and living costs. Nor does it include business labour (management) and administrative overheads such as telephone, facsimile, stationery and postage, licensing costs and accountant's fees. These costs must be taken into account when calculating a whole farm budget.

The following six budgets are intended as guides only. The budget framework-rather than the figures provided-may be useful for developing appropriate cash flow budgets for your own circumstances. All data included in these budgets are based on information provided to the authors. On both the domestic and export markets, product prices are subject to market volatility, as are input costs. Expect unexpected changes.

No responsibility is taken for accuracy of the data. It should be confirmed and changed where necessary by the user before any decisions based on the results are made. Talk to your accountant and engage the services of a qualified horticultural consultant, preferably specialising in wildflower production, before starting any business venture.

## Assumptions

The budgets are based on a 1 ha monoculture, however, a wildflower farm will often have a wide mix of flower crops in smaller units of production. All machinery operations include costs for fuel and oil, but not for repairs and maintenance. It is common practice for growers to replace young plants lost during establishment with new plants. None of the budgets make provision for this, however, replacement plants can improve overall net returns in some situations.
In these budgets production labour costs are included. In many instances a crop is only made profitable by the extensive use of the owner-operator's own labour. Less profitable crops are often grown for other reasons, such as to extend the overall product range or to ensure continuous employment throughout the year. The management, administrative and marketing expertise of the owner-operator has not been costed.

The gross return to grower is the price received at the drop-off point within Australia. For domestic production this will usually be the flower wholesaler-for overseas sales the exporter or freight forwarder. The costs of export are absorbed into the average unit price returned to the grower. The off-farm overheads associated with exporting include: insurance;


Wildflower grower associations Contacts page 92

Australian Quarantine and Inspection Service (AQIS) fees; freight and distribution costs overseas; and auction, importer and exporter commissions.

These budgets do not include provision for Goods and Services Tax (GST) or inflation and may contain slight rounding discrepancies.

## Eucalypt buds and flowers budget

## Assumptions

One hectare of eucalypt buds and flowers in south-east Queensland, 400 plants, autumn planting, assuming $7 \%$ losses in the first year and 2\% losses in subsequent years. Freight from Toowoomba to Brisbane or Gatton to Sydney.

Cultivated eucalypt bud and flower is a new crop with limited data available. There are indications that some species may only produce every second year after reaching full production. This has been factored in as an average annual yield in the budget. The productive commercial life of the trees is yet to be determined, however, if the plants remain in good health this could be prolonged beyond the nine years assumed in this budget. Some species need replacement after 10 years.

New plants are produced from seed, however, obtaining seed from lines selected for commercial use helps to avoid problems of variability within a species and unsuitable forms.

## Viable farm size

Farm size should be determined from studying estimated returns as listed and also by consultation with people already involved in the industry.

## Long term economic prospects

Long term prospects for the marketing of eucalypt buds and flowers are positive. Overseas buyers have responded with enthusiasm to what they see as an exciting new product. Ausbud is marketing buds and flowers successfully in both the domestic and export markets.

Table 1. Cash flow budget for eucalypt buds and flowers

|  | Year 1 | Year 2 | Year 3 | Year 4 |
| :--- | :---: | :---: | :---: | :---: |
| Year 5 | Year 6 | Year 7 | Year 8 | Year 9 |


| Income \$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yield (saleable stems/plant) | 0 | 0 | 10 | 30 | 60 | 60 | 60 | 60 | 60 |
| Surviving plants (number) | 372 | 365 | 357 | 350 | 343 | 336 | 330 | 323 | 316 |
| Yield (stems/hectare) | 0 | 0 | 3573 | 10503 | 20587 | 20176 | 19772 | 19377 | 18989 |
| Gross return (@ \$0.75/stem) | 0 | 0 | 2680 | 7878 | 15440 | 15132 | 14829 | 14532 | 14242 |
| Expenditure \$ |  |  |  |  |  |  |  |  |  |
| Establishment |  |  |  |  |  |  |  |  |  |
| Plants (400 @ \$1.20/plant) | 480 |  |  |  |  |  |  |  |  |
| Irrigation | 400 |  |  |  |  |  |  |  |  |
| Guards, weedmat | 600 |  |  |  |  |  |  |  |  |
| Soil preparation | 250 |  |  |  |  |  |  |  |  |
| Labour (preparation, planting, irrigation) | 600 |  |  |  |  |  |  |  |  |
| Contingencies | 150 |  |  |  |  |  |  |  |  |
| Operating |  |  |  |  |  |  |  |  |  |
| Fertiliser (@\$0.30/plant)* | 120 | 112 | 109 | 107 | 105 | 103 | 101 | 99 | 97 |
| Chemicals/spraying (@\$0.35/plant)* | 140 | 130 | 128 | 125 | 123 | 120 | 118 | 115 | 113 |
| Harvesting and packing (@ \$0.12/stem) |  |  | 429 | 1260 | 2470 | 2421 | 2372 | 2325 | 2279 |
| Packaging (@ \$0.08/stem) |  |  | 286 | 840 | 1647 | 1614 | 1582 | 1550 | 1519 |
| Freight to market (@ \$3.00 box; 24 bunches/box; 5 stems/bunch) |  |  | 89 | 263 | 515 | 504 | 494 | 485 | 475 |
| Pruning (@ \$2.00 plant)* | 800 | 744 | 729 | 715 | 700 | 686 | 673 | 659 | 646 |
| Contingencies | 150 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
| Total expenditure | 3690 | 1286 | 2070 | 3610 | 5860 | 5749 | 5640 | 5533 | 5428 |
| Net return | -3690 | -1286 | 610 | 4268 | 9580 | 9383 | 9189 | 8999 | 8813 |
| Cumulative net return | -3690 | -4 976 | -4 366 | -99 | 9482 | 18865 | 28054 | 37053 | 45867 |

* This item costed for the number of plants at the start of the year, (rather than for plants surviving at the end of the year).


## Eucalypt foliage budget

## Assumptions

One hectare of eucalypt foliage in south-east Queensland, 1500 plants, autumn planting, assuming $7 \%$ losses in the first year and $2 \%$ losses in subsequent years. Freight from Toowoomba to Brisbane or Gatton to Sydney.

The productive commercial life of the trees is yet to be determined, however, if the plants remain in good health this could be prolonged beyond the nine years assumed in this budget. Some species need replacement after 10 years.

## Viable farm size

Farm size should be determined from studying estimated returns as listed and also by consultation with people already involved in the industry.

## Long term economic prospects

Long term prospects for the marketing of eucalypt foliage are positive. Eucalypt foliage is grown widely throughout Australia and the world. The export potential for silver foliage, however, is very limited.

Table 2. Cash flow budget for eucalypt foliage

|  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Income \$ |  |  |  |  |  |  |  |  |  |
| Yield (saleable stems/plant) | 5 | 30 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Surviving plants (number) | 1395 | 1367 | 1340 | 1313 | 1287 | 1261 | 1236 | 1211 | 1187 |
| Yield (stems/hectare) | 6975 | 41013 | 66988 | 65648 | 64335 | 63048 | 61788 | 60552 | 59341 |
| Gross return (@ \$0.25/stem) | 1744 | 10253 | 16747 | 16412 | 16083 | 15762 | 15447 | 15138 | 14835 |
| Expenditure \$ |  |  |  |  |  |  |  |  |  |
| Establishment |  |  |  |  |  |  |  |  |  |
| Plants (1500 @ \$1.20/plant) | 1800 |  |  |  |  |  |  |  |  |
| Irrigation (@ \$1.00/plant) | 1500 |  |  |  |  |  |  |  |  |
| Weedmat (@ \$1.00/plant) | 1500 |  |  |  |  |  |  |  |  |
| Soil preparation* | 750 |  |  |  |  |  |  |  |  |
| Labour (preparation, planting, irrigation @ \$1.50/plant) | 2250 |  |  |  |  |  |  |  |  |
| Contingencies | 150 |  |  |  |  |  |  |  |  |
| Operating |  |  |  |  |  |  |  |  |  |
| Fertiliser (@ \$0.30/plant)** | 450 | 419 | 410 | 402 | 394 | 386 | 378 | 371 | 363 |
| Chemicals/spraying (@ \$0.35/plant)** | 525 | 488 | 478 | 469 | 460 | 450 | 441 | 433 | 424 |
| Harvesting and packing (@ \$0.12/stem) | 837 | 4922 | 8039 | 7878 | 7720 | 7566 | 7415 | 7266 | 7121 |
| Packaging (@ \$0.05/stem) | 349 | 2051 | 3349 | 3282 | 3217 | 3152 | 3089 | 3028 | 2967 |
| Freight to market @ \$0.02/stem | 140 | 820 | 1340 | 1313 | 1287 | 1261 | 1236 | 1211 | 1187 |
| Pruning (@ \$0.50 plant)** | 750 | 698 | 684 | 670 | 656 | 643 | 630 | 618 | 606 |
| Contingencies | 150 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
| Total expenditure | 11150 | 9697 | 14600 | 14314 | 14034 | 13759 | 13490 | 13226 | 12967 |
| Net return | -9 407 | 557 | 2147 | 2098 | 2050 | 2003 | 1957 | 1912 | 1868 |
| Cumulative net return | -9 407 | -8850 | -6703 | -4 605 | -2 554 | -551 | 1406 | 3318 | 5186 |

* Hilling needed, hence more expensive than the lower density planting of eucalypt buds and flowers.
** This item costed for the number of plants at the start of the year, (rather than for plants surviving at the end of the year).


## Kangaroo paw budget

## Assumptions

One hectare of kangaroo paw in south-east Queensland, 7330 plants, autumn planting, $10 \%$ plant loss per annum. Refrigerated transport from south-east Queensland to Sydney. Plants under weedmat have a life expectancy of five to six years. In the fifth and sixth year stem quality declines, resulting in a lower average price per stem.

Plant losses are inevitable over time; therefore this budget includes provision for a normal rate of plant loss. Refer to the sensitivity analysis on page 63 to see the impact of improved plant survival on cash flow.

## Viable farm size

Two hectares of unencumbered property, assuming optimum production and market prices and minimum plant losses.

## Long term economic prospects

The industry is fairly stable. New varieties are needed to initiate further growth in the industry.

|  | TabYeas. 1 Cash flXoprbtidget for Yeaņzaroo paYpar 4 |  |  |  | Year 5 | Year 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Income \$ |  |  |  |  |  |  |
| Yield (stems/plant) | 5 | 25 | 35 | 30 | 30 | 30 |
| Surviving plants (number) | 6597 | 5937 | 5344 | 4809 | 4328 | 3895 |
| Yield (stems/hectare) | 32985 | 148433 | 187025 | 144276 | 129849 | 116864 |
| Gross return (@ \$0.35/stem in years 1-4 and \$0.25/stem in years 5-6) | 11545 | 51951 | 65459 | 50497 | 32462 | 29216 |
| Expenditure \$ |  |  |  |  |  |  |
| Establishment |  |  |  |  |  |  |
| Plants (7330 @ \$1.50/plant) | 10995 |  |  |  |  |  |
| Irrigation | 3000 |  |  |  |  |  |
| Weedmat | 4000 |  |  |  |  |  |
| Soil preparation | 1200 |  |  |  |  |  |
| Labour (planting) | 1400 |  |  |  |  |  |
| Contingencies | 1000 |  |  |  |  |  |
| Operating |  |  |  |  |  |  |
| Fertiliser | 150 | 300 | 400 | 500 | 500 | 500 |
| Chemicals | 250 | 350 | 400 | 400 | 400 | 400 |
| Maintenance (slashing, etc.) | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 |
| Spraying | 500 | 1000 | 1250 | 1400 | 1400 | 1400 |
| Harvesting, packing and packaging (@\$0.16/stem) | 5278 | 23749 | 29924 | 23084 | 20776 | 18698 |
| Freight to market (@ \$0.02/stem) | 660 | 2969 | 3740 | 2886 | 2597 | 2337 |
| Contingencies | 750 | 750 | 750 | 750 | 750 | 750 |
| Total expenditure | 30432 | 30368 | 37714 | 30270 | 27673 | 25335 |
| Net return | -18888 | 21584 | 27744 | 20227 | 4789 | 3880 |
| Cumulative net return | -18888 | 2696 | 30440 | 50667 | 55457 | 59337 |

Table 4. Sensitivity analysis-cumulative cash flow (excluding capital costs) of 1 ha ( 7330 plants) of kangaroo paw in years 1 to 6 at two loss rates and two freight rates. All other assumptions as per Table 3

|  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No plant losses |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Freight costs |  |  |  |  |  |  |
| \$0.02/stem e.g. south-east |  |  |  |  |  |  |

## $10 \%$ annual plant losses

Cumulative cash flow (excluding capital costs) per hectare

## Freight costs

| \$0.02/stem e.g. south-east <br> Queensland to Sydney | $-\$ 18888$ | $\$ 2696$ | $\$ 30440$ | $\$ 50667$ | $\$ 55457$ | $\$ 59337$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \$0.08/stem e.g. Emerald (central Queensland) to Sydney | $-\$ 20867$ | $-\$ 8189$ | $\$ 8334$ | $\$ 19904$ | $\$ 16903$ | $\$ 13771$ |

## Protea 'Pink Ice' budget

## Assumptions

One hectare of 'Pink Ice' in south-east Queensland, 1500 plants, spring planting, plant losses totalling $10 \%$ (cumulative) over the first three years and at 2\% per year thereafter. First harvest in second year. Refrigerated transport from south-east Queensland to Sydney.
Income figures assume a well-maintained plantation with quality long stemmed flowers. Top production will be reached around the fifth or sixth year, at about 40 to 50 stems per bush. In the seventh to ninth years quality (and hence returns per stem) will decline. Plants will normally need to be replaced after nine years.

## Viable farm size

For proteas such as 'Pink Ice', 5 ha (absolute minimum).

## Long term economic prospects

Domestic: Gluts of 'Pink Ice' after Valentines Day in February through to May cause a drop in price from $\$ 1.00$ to $\$ 0.30$ per stem. Early 'Pink Ice' (November to December) blooms sell at a price premium.
Export: Reasonable for top quality 'Pink Ice' only.

Table 5. Cash flow budget for Protea 'Pink Ice'

|  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Income \$ |  |  |  |  |  |  |  |  |  |
| Yield (stems/plant) (Range) | 0 | 5 | $\begin{array}{r} 12.5 \\ (10-15) \end{array}$ | $\begin{array}{r} 25 \\ (20-30) \end{array}$ | $\begin{array}{r} 45 \\ (40-50) \end{array}$ |
| Surviving plants (number) | 1448 | 1398 | 1350 | 1323 | 1297 | 1271 | 1245 | 1220 | 1196 |
| Yield (stems/hectare) | 0 | 6990 | 16875 | 33075 | 58365 | 57195 | 56025 | 54900 | 53820 |
| Gross return* (@ \$0.75/stem in years 1-6 and $\$ 0.60 /$ stem in years 7-9) | 0 | 5243 | 12656 | 24806 | 43774 | 42896 | 33615 | 32940 | 32292 |
| Expenditure \$ <br> Establishment |  |  |  |  |  |  |  |  |  |

Plants (1500 @ \$5/pot for 15 cm pots)** 7500

| Irrigation | 2500 |
| :--- | :--- |
| Soil preparation | 1000 |


| Mulching | 4500 |  |
| :--- | ---: | ---: |
| Labour (planting, mulching) | 690 | 310 |
| Contingencies | 500 |  |


| Operating |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fertiliser | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
| Maintenance (weeding, slashing, etc. including labour) | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 |
| Spraying | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 |
| Harvesting and packing labour (@ \$0.10/stem) |  | 699 | 1688 | 3308 | 5837 | 5720 | 5603 | 5490 | 5382 |
| Packaging (@ \$0.10/stem) |  | 699 | 1688 | 3308 | 5837 | 5720 | 5603 | 5490 | 5382 |
| Freight to market <br> (@ \$3/carton; 50 stems/carton) |  | 419 | 1013 | 1985 | 3502 | 3432 | 3362 | 3294 | 3229 |
| Pruning*** |  | 559 | 1350 | 2646 | 2594 | 2542 | 2490 | 2440 | 2392 |
| Contingencies | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 |
| Total expenditure | 13715 | 8712 | 7263 | 12771 | 19294 | 18938 | 18582 | 18239 | 17910 |
| Net return | -13715 | -3 469 | 5394 | 12036 | 24480 | 23959 | 15034 | 14701 | 14382 |
| Cumulative net return | -13715 | -17184 | -11790 | 245 | 24725 | 48684 | 63717 | 78418 | 92800 |

* High prices early in season, oversupplied in April and May. This budget is based on a high quality long-stemmed product in years 1 to 6 , with a deterioration in product quality (and hence price) in years 7 to 9 . Prices normally range from $\$ 0.30$ to $\$ 1.00$ per stem, averaging $\$ 3.00$ for a five stem bunch. Returns are low for short-stemmed and late season product.
** 7.5 cm pots are $\$ 3.00$ each, but the first commercial harvest is delayed an additional year. Freight may add an additional $\$ 1.00$ per pot.
*** The requirement for pruning increases as the plants grow larger; hence no pruning year 1, two minutes per plant year 2, five minutes per plant year 3 and 10 minutes per plant in all subsequent years. Labour costed at $\$ 12.00$ per hour for the number of plants surviving at the end of the year.

Table 6. Protea 'Pink Ice'-Effect of sustained lower prices* over a nine-year period on cumulative net return, if marketable stems decline from 45 to 35 stems per plant in years 8 and 9. All other assumptions as per Table 5

|  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Stems per plant | 0 | 5 | 12.5 | 25 | 45 | 45 | 45 | 35 | 35 |
| Net return @ \$0.60 per stem | -13715 | -4518 | 2863 | 7075 | 15725 | 15379 | 15034 | 10553 | 10315 |
| Cumulative net return | -13715 | -18233 | -15370 | -8296 | 7430 | 22809 | 37842 | 48395 | 58711 |

* This may result from poor timing within the market or lower quality flowers from poor plantation management or postharvest practices.


## Rice flower budget

## Assumptions

One hectare of rice flower in south-east Queensland, 4000 plants, autumn planting, with $10 \%$ losses each year for the first three years and $20 \%$ losses in the fourth and fifth years. Harvested stems are sold to the export market ( $75 \%$ ) and the domestic market ( $25 \%$ ). Refrigerated transport from south-east Queensland to Sydney. Rice flower can remain commercially productive for three to four years; however, many growers are now replacing plants after two years. In this example, productivity is well down by the fifth year.

## Viable farm size

Five hectares of unencumbered property, assuming optimum production and market prices and a minimum of plant losses.

## Long term economic prospects

Rice flower has experienced problems in the market due to variable product quality. The long-term future of the crop will depend on the rigid adherence of growers to quality (including maturity) standards. Growers will need to succeed in the often-difficult task of locating commercial cultivars suited to the conditions experienced on their property. The underlying market demand for quality rice flower, particularly in Asian markets, should be sustained if these challenges can be overcome.
A sensitivity analysis illustrating the effect of high, medium and low prices and high, medium and low plant losses on cumulative net returns has been published in the book Rice flower-integrating production and marketing by Carson, C. and Lewis, J.

Table 7. Cash flow budget for rice flower

|  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Income \$ |  |  |  |  |  |
| Yield (stems/plant) | 10 | 25 | 30 | 35 | 35 |
| Surviving plants (number) | 3600 | 3240 | 2916 | 2333 | 1866 |
| Yield (stems/hectare) | 36000 | 81000 | 87480 | 81648 |  |
| Gross return (75\% @ \$0.42/stem export and |  |  |  |  |  |
| 25\% @ \$0.20/stem domestic) | 13140 | 29565 | 31930 | 29802 |  |

## Expenditure \$

## Establishment

Plants (4000 @ \$2.00/plant) 8000
Irrigation 2770
Weedmat or plastic 4000

Soil preparation 1350
Basal fertiliser 300
Labour (planting) 880
Contingencies 1000
Operating

| Fertiliser | 100 | 400 | 440 | 440 | 440 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Irrigation | 300 | 500 | 550 | 550 | 550 |
| Chemicals and packing | 400 | 440 | 500 | 500 | 500 |
| Maintenance (including pruning, spraying and weed control) | 1364 | 1374 | 1164 | 1164 | 1164 |
| Harvesting, packing and packaging (@ \$0.15/stem) | 5400 | 12150 | 13122 | 12247 | 9798 |
| Freight to market (@ \$0.02/stem) | 720 | 1620 | 1750 | 1633 | 1306 |
| Contingencies | 1000 | 1000 | 1000 | 1000 | 1000 |
| Total expenditure | 27584 | 17484 | 18526 | 17534 | 14758 |
| Net return | -14444 | 12081 | 13405 | 12267 | 9083 |
| Cumulative net return | -14444 | -2 363 | 11042 | 23309 | 32392 |

## Waxflower budget

## Assumptions

One hectare of waxflower in south-east Queensland, 2200 plants, autumn planting, $10 \%$ plant loss per annum. Refrigerated transport from south-east Queensland to Sydney. The commercially productive life of waxflower is seven to ten years depending on variety and whether the colour and form is still in demand in the market place. Although the plants become larger with age, the yield of marketable stems declines. Plant losses are inevitable over time; therefore this budget includes provision for a normal rate of plant loss. Refer to the sensitivity analysis on page 69 to see the impact of improved plant survival on cash flow.

## Viable farm size

Five hectares of unencumbered property, assuming optimum production and market prices and minimum plant losses.

## Long term economic prospects

Waxflower is a global commodity that is commonly traded in the market and does not generally attract high (novelty) prices. Long term prospects remain sound if the cultivars grown provide a range of colours over an extended period. Growers need to continually adopt new varieties to maintain market share.

Table 8. Cash flow budget for waxflower
$\begin{array}{lllllllll}\text { Year 1 } & \text { Year 2 } & \text { Year 3 } & \text { Year 4 } & \text { Year 5 } & \text { Year 6 } & \text { Year 7 } & \text { Year } 8 \text { Year } 9 \text { Year } 10\end{array}$

## Income \$

| Yield (420 gram bunches/plant |  |  |  | 12 | 12 | 12 | 12 | 12 | 12 | 8 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| for United States market) | 2 | 8 | 10 | 1443 | 1299 | 1169 | 1052 | 947 | 852 | 767 |  |
| Surviving plants (number) | 1980 | 1782 | 1604 | 1443 |  |  |  |  |  |  |  |
| Yield (bunches/hectare) | 3960 | 14256 | 16038 | 17321 | 15589 | 14030 | 12627 | 11364 | 6819 | 4603 |  |
| Gross return(@ \$2.30/bunch) | 9108 | 32789 | 36887 | 39838 | 35855 | 32269 | 29042 | 26138 | 15683 | 10586 |  |

Expenditure \$

## Establishment

| Plants (2200 @ \$1.50/plant) | 3300 |
| :--- | ---: |
| Irrigation | 3000 |
| Weedmat | 4000 |
| Soil preparation | 1200 |
| Labour (planting) | 820 |
| Contingencies | 1000 |


| Operating |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Fertiliser | 150 | 300 | 400 | 500 | 500 | 500 | 500 | 500 | 500 | 500 |
| Chemicals | 250 | 350 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 |
| Maintenance (pruning, weed control) | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 |
| Spraying | 500 | 1000 | 1250 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 |
| Harvesting, packing and packaging |  |  |  |  |  |  |  |  |  |  |
| (@ \$0.85/bunch) | 3366 | 12118 | 13632 | 14723 | 13251 | 11926 | 10733 | 9660 | 5796 | 3912 |
| Freight to market (@\$0.10/bunch) | 396 | 1426 | 1604 | 1732 | 1559 | 1403 | 1263 | 1136 | 682 | 460 |
| Contingencies | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 |
| Total expenditure | 19982 | 17193 | 19286 | 20755 | 19109 | 17629 | 16296 | 15096 | 10778 | 8672 |
| Net return | -10874 | 15596 | 17601 | 19083 | 16745 | 14641 | 12747 | 11042 | 4905 | 1913 |
| Cumulative net return | -10874 | 4722 | 22323 | 41406 | 58151 | 72792 | 85538 | 96580 | 101485 | 103399 |

Table 9. Sensitivity analysis-cumulative cash flow (excluding capital costs) of 1 ha (2200 plants) of waxflower in years 1 to 4 and years 6, 8 and 10 at two loss rates and two freight rates. All other assumptions as per Table 8

|  | Year 1 | Year 2 | Year 3 | Year 4 | Year 6 | Year 8 | Year 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## No plant losses

Cumulative cash flow (excluding capital costs) per hectare
Freight costs

| \$0.10 bunch e.g. south-east <br> Queensland to Sydney <br> \$0.36 bunch e.g. Emerald <br> (central Queensland) to Sydney | -10280 | 9830 | 35480 | 66820 | 129500 | 192180 | 225160 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | -11424 | 4110 | 24040 | 48516 | 97468 | 146420 | 171392 |

## 10\% annual plant losses

Cumulative cash flow (excluding capital costs) per hectare
Freight costs

| \$0.10 bunch e.g. south-east <br> Queensland to Sydney | -10874 | 4722 | 22323 | 41406 | 72792 | 96580 | 103399 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \$0.36 bunch e.g. Emerald <br> (central Queensland) to Sydney | -11904 | -15 | 13417 | 27997 | 51681 | 69232 | 73081 |

