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Abstract 

THE RESEARCH PRESENTED in this paper discusses the accuracies of remote sensing and 
GIS as yield prediction tools at both a regional and crop scale over three Australian cane 
growing regions; Bundaberg, Burdekin and the Herbert. For the Burdekin region, the 
prediction of total tonnes of cane per hectare (TCH) produced from 4999 crops during 
the 2011 season was 99% using an algorithm derived from 2010 imagery (green 
normalised difference vegetation index) and average yield (TCH) data extracted from 
4573 crops. Similar accuracies were produced for the Bundaberg region during 2010 
(95.5% from 3544 blocks) and 2011 (91.5% for 3824 crops) using a Bundaberg specific 
algorithm derived from 2008–2010 imagery and yield data. The Bundaberg algorithm 
was also accurate in predicting yield at specific in-crop locations (91.5% accuracy; 
SE = 0.028). 

Introduction 

Accurate in-season predictions of regional yield are of vital importance for formulating 
harvesting, milling and forward selling decisions, while at a block scale they provide growers with 
an understanding of both in-crop variability and total production. Currently, annual cane production 
estimates are made by quantifying the area of cane grown within a region by visual in-season yield 
assessments. 

Although this method can produce accuracies of up to 95% (A Pitt pers. comm. 2011) it can 
be influenced by variable climatic conditions such as those experienced in 2010. As such, 
geographic information systems (GIS) and remote sensing (RS) may offer an additional tool for 
validating these predictions as well as potentially providing a more accurate seasonally sensitive 
method of prediction. 

GIS and remote sensing in the sugar industry 

Geographic information systems (GIS) have been widely adopted by the Australian sugar 
industry as an essential tool for the recording and managing spatial data (Davis et al., 2007). One 
such system developed for the Mackay and Burdekin region has greatly increased the integration of 
mill and productivity datasets, thus enabling greater efficiencies in data retrieval and analysis of 
client information (Markley et al., 2008).  

Similarly, the development of a whole-of-community GIS system by the Herbert River 
sugar district has created the capacity to record real-time cane harvester operations via GPS, 
enabling improvements in the coordination and planning of the cane harvest, efficient reporting of 
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harvest performance and the identification of consignment errors. This information has also been 
used to improve rail transport infrastructure safety and efficiency (De Lai et al., 2011). 

Globally, satellite imagery has been identified as an effective tool for predicting sugar cane 
yield (Fernandes et al., 2011; Benvenuti and Weill, 2010; Bégué et al., 2010; Simões et al., 2009; 
Abdel-Rahman and Ahmed, 2008; Bégué et al., 2008; Almeida et al., 2006; Simões et al., 2005; 
Krishna Rao et al., 2002; and Rudorff and Batista, 1990), although such research has been limited 
in Australia (Noonan, 1999; Markley et al., 2003; Robson et al., 2011; Robson et al., 2010; Lee-
Lovick and Kirchner, 1991). 

For the past decade, Mackay Sugar Ltd has been the predominant adopter of satellite 
imagery as a commercial yield forecasting tool for the Mackay region, utilising yield prediction 
algorithms derived from SPOT imagery (Markley et al., 2003). The research presented in this paper 
investigates the development and validation of similar algorithms over three additional Australian 
growing regions including Bundaberg, Burdekin and Herbert. 

Yield predictions using remote sensing techniques 

The amount of electro-magnetic radiation (EMR) reflected from a sugarcane canopy is 
positively correlated to the leaf area index (LAI), which in turn may correspond to the amount of 
biomass within the crop, and therefore yield (Bégué et al., 2010). However, this relationship can be 
influenced by variations in canopy architecture, foliar chemistry, agronomic parameters and sensor 
and atmospheric conditions (Abdel-Rahman and Ahmed, 2008). More specifically, variety, crop 
class (plant or ratoon), date of crop planting or ratooning, duration of harvest period and 
environmental variability are all factors that have been shown to influence the accuracies of yield 
prediction algorithms developed from remotely sensed imagery (Zhou et al., 2003; Singels et al., 
2005; Inman-Bamber, 1994). 

In an attempt to remove influences such as spectral interference or ‘noise’, previous 
researchers have investigated a number of vegetation indices. The most commonly used Normalised 
Difference Vegetation Index (NDVI), addresses some measurement errors associated with 
atmospheric attenuation and shading, however it can saturate in large biomass crops such as sugar 
cane with a LAI greater than three (Benvenuti and Weill, 2010; Bégué et al., 2010; Xiao, 2005; 
Xiao et al., 2004b; Xiao et al., 2004a; Huete et al., 2002; Huete et al., 1997). To reduce the effects 
of saturation, a number of additional indices have been employed including the Green Normalised 
Difference Vegetation Index (GNDVI) (Gitelson et al., 1996; Benvenuti and Weill, 2010). 

Timing of image capture has also been identified to be an important consideration when 
predicting cane yield, especially when compared to the growth phase of the crop. Sugar cane 
undergoes three distinct growth phases including germination or establishment and tillering, 
vegetative development or stalk growth and stabilisation, senescence or maturation (Bégué et al., 
2010; Simões et al., 2005; Fernandes et al., 2011; Krischna Rao et al., 2002). During the vegetative 
growth stage NDVI can increase from 0.15 to 0.7, before remaining relatively stable (if unstressed) 
during the maturation phase, until harvest (Bégué et al., 2010). 

Almeida et al. (2006) identified this time period to be 3–6 months prior to harvest, while 
Simões et al. (2005) suggested 240 days after planting or ratooning. As well as a stabilisation 
period of NDVI, a ‘synchronisation’ of NDVI was also observed across various plant and ratoon 
ages due to climatic factors such as rain and temperature. This synchronisation and stabilisation of 
NDVI is important as it indicates that there is likely to be an extended window of image capture 
where variability in the canopies’ spectral response as well as differences across crops is 
minimalised (Bégué et al., 2010; Almeida et al., 2006; Krischna Rao et al., 2002; Rudorff and 
Batista, 1990). 
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Methodology 

Study districts 

Research was conducted in three climatically distinct Queensland cane growing regions of 
the Herbert (2107 mm of rainfall annually), the Burdekin (1005 mm) and Bundaberg (930 mm) 
during the 2010 and 2011 growing seasons. 

Satellite imagery and spatial data 

During the 2010 and 2011 cane growing seasons, full scene (3600 km2) SPOT 5 satellite 
images were captured over the Herbert (2 June 2011); the Bundaberg region (10 May 2010 and 
27 March 2011); and over the Burdekin region (14 May 2010 and 22 April 2011). 

The spectral resolution of SPOT5 imagery is green (0.5–0.59 µm), red (0.61–0.68 µm), near 
infrared (0.78-0.89 µm) and shortwave infrared (1.58–1.75 µm), with a spatial resolution of 10 m 
pixels. All SPOT5 imagery used for this research was corrected for top of atmosphere reflectance 
(TOA) (SPOT Image, 2008) and orthorectified to a corrected base layer. 

Block boundary GIS vector layers detailing attribute tables of agronomic data, including 
variety, class, total area harvested and tonnes cane harvested, were sourced from either milling or 
productivity services within each region. 

Extraction of spectral information 

For all cane blocks within the extent of each SPOT 5 image (Figure 1) spectral information 
was extracted using the open source software Starspan GUI (Rueda et al., 2005). A 20 m metre 
buffer was applied to each paddock boundary to ensure the extracted information did not include 
non cane-specific pixels. Spectral and agronomic information including mill data was exported to a 
single text file to enable additional analysis. 

Vegetation indices 

To identify the best correlations between satellite imagery and crop yield (TCH), a number 
of vegetation indices were examined including the Normalised Difference Vegetation Index 
(NDVI), Green Normalised Difference Vegetation Index (GNDVI) (equation 1), the Soil Adjusted 
Vegetation Index (SAVI) and the Two-band Enhance Vegetation Index (EVI_2). 

These indices were calculated for every cane block defined by a GIS paddock boundary 
within each image capture area. Using harvested tonnes of cane per hectare (TCH) supplied by the 
respective mills, the indices that provided the highest correlation coefficient were identified. 

For all regions, the GIS attribute data were used to separate the spectral information on the 
basis of variety, crop class (plant or ratoons) and age of crop, in an attempt to improve the 
correlations. 

 
GNDVI = (ΡNIR – PGREEN) / ( PNIR + PGREEN)  (1) 

where PGREEN, and ΡNIR are the TOA reflectance values measured in the green and near infrared 
spectral bands. 

Additionally, predictions of average yield were made for 3544 (2010) and 3,824 (2011) cane 
crops within the Bundaberg region using an algorithm derived from the linear relationship between 
2008 and 2010 crop yield and corresponding SPOT5 data (Robson et al., 2011) (equation 2). 

The accuracy of this algorithm was also evaluated against point source locations within a 
single crop and validated within field measurements. Sampling coincided with the commercial 



Robson A et al.                                                                  Proc Aust Soc Sugar Cane Technol Vol 34 2012 
______________________________________________________________________________________ 
 

4 

harvest of the crop and consisted of 5 m linear cane rows hand cut at replicated locations 
representing high, medium and low GNDVI values, located with a non-differential GPS unit. 

GNDVI yield prediction 
algorithm (Bundaberg) 

y = 3.1528 *EXP(5.6973 * ×) (2) 

where y = predicted average yield (TCH) and × = average GNDVI value extracted from TOA 
SPOT5 image. (n = 150 crops) 
 
 

 

 

 
Fig. 1—SPOT5 images captured over each growing region (a) Burdekin, (b) 

Herbert and (c) Bundaberg and (d) closer view of agronomic information provided 
within the GIS attribute table. 

 
A similar prediction was also undertaken for 4999 cane crops grown within the Burdekin 

region (2011 season) using an algorithm derived from the correlation between 2010 Burdekin crop 
yields and corresponding 2010 imagery (equation 3). 

 

GNDVI yield prediction 
algorithm (Burdekin)

y = 12.691 *EXP(3.8928 * ×) (3) 

where y = predicted average yield (TCH) and × = average GNDVI value extracted from TOA 
SPOT5 image. (n = 4573 crops) 

a. b. c. 

d. 
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Results 

The initial aim of this research was to develop a generic image-based yield algorithm for all 
Queensland growing regions that was non-specific to variety, growth stage, and even seasonal 
variability. 

However, it was quickly identified that one algorithm would be insufficient due to the large 
range of varieties planted as well as variation in growing and climate conditions across each region. 
As such, each growing region was evaluated separately. 

Bundaberg 

The correlation between TCH and spectral data extracted for 3824 cane crops grown within 
the Bundaberg region during 2011 (including 26 varieties with nine ratoon stages, plant, replant and 
standover classes) was promising with all vegetation indices producing correlation coefficients 
above 0.6, with GNDVI producing the highest (r = 0.63) (Table 1). This correlation was further 
improved by segregating the data into plant and ratoon classes. 
 

Table 1—Correlation coefficients (r) identified between TCH and individual spectral 
bands/vegetation indices for the Bundaberg district, 2011 growing season. 

Bundaberg District 

Band/VI All blocks Plant cane 1st Ratoon 2nd Ratoon 3rd Ratoon
Variety Q208 Variety KQ228 

Plant 1st Ratoon Plant 1st Ratoon

Green 0.20 0.23 0.17 0.15 0.16 0.51 0.50 0.41 0.50 

Red 0.42 0.40 0.44 0.47 0.48 0.58 0.55 0.45 0.58 

NIR 0.58 0.70 0.62 0.60 0.57 0.64 0.60 0.74 0.63 

SWIR 0.37 0.28 0.37 0.38 0.38 0.45 0.44 0.44 0.47 

NDVI 0.61 0.67 0.68 0.69 0.66 0.68 0.65 0.66 0.66 

GNDVI 0.63 0.71 0.71 0.70 0.66 0.68 0.68 0.72 0.70 

SAVI 0.61 0.71 0.66 0.65 0.62 0.68 0.64 0.73 0.66 

EVI 2 0.61 0.72 0.66 0.65 0.62 0.68 0.64 0.74 0.66 
 

The stability of correlation across varieties for both GNDVI and NDVI is important as it 
indicates that a ‘generic’ algorithm which is not cultivar specific may be possible for the Bundaberg 
region, a finding that supports initial results presented by Robson et al. (2011). 

To further investigate the consistency of GNDVI values across varying classes, variety and 
seasons, the 2011 data (n = 3824) were overlayed with similar data used to develop the 2008–2010 
algorithm (n= 150) (Figure 2). From Figure 2 it can be seen that although there is variance around 
the line of best fit, the overall trend between GNDVI and TCH is relatively consistent across the 
two data sets. 

The calculation and then subsequent substitution of average GNDVI value (0.567) from 
3544 crops grown during 2010 into the 2008–2010 algorithm produced an estimated average yield 
of 78.1 TCH, highly comparable to the actual milled yield of 81.8 TCH (95.5% accurate). 

For the 2011 harvest season, an average yield of 80.1 TCH was predicted following the 
substitution of average GNDVI value (0.57) sourced from 3824 crops into 2008–2010 algorithm. 
This prediction was within 9% of actual milled harvest yield of 73.3 TCH (91.5%). 

The accuracy of overall prediction, and the fact that the data was not segregated into variety 
or growth stage, indicates that this technology has the potential to predict regional cane yield within 
the Bundaberg growing region, a result that differs from previous findings by Lee-Lovick and 
Kirchner (1991). 
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Fig. 2—Correlation between GNDVI (SPOT 5) and TCH from Bundaberg cane 
blocks during the 2008–2010 (black points) and 2011 (grey points) seasons. 

 

To coincide with regional forecasting, the development of such an algorithm offers the 
potential for predicting individual crop yield as well as the derivation of surrogate yield maps, prior 
to harvest. To test this, the accuracy of the GNDVI yield algorithm was also evaluated over point 
source locations within an individual Bundaberg cane crop (area 18.7 ha, var. KQ228) harvested 
25 July 2011 (Figure 3). This analysis identified a strong relationship between predicted yield from 
a SPOT5 image captured on the 27 March 2011, and final yield measured on the 25 July 2011. 
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Fig. 3—(a) False colour image of Bundaberg cane crop (area 18.7 ha, var. KQ228) harvested 

25 July 2011, with yellow markers indicating field sampling locations, (b) measured verse 
predicted cane yield at the locations identified in (a), (c) Classified yield map generated by 

applying the 2008–2010 GNDVI yield algorithm to the SPOT5 (27 March 2011) pixel values. 

c. 

a.

b. 



Robson A et al.                                                                  Proc Aust Soc Sugar Cane Technol Vol 34 2012 
______________________________________________________________________________________ 
 

7 

The generation of a classified yield map (Figure 3c) and subsequent accurate prediction of 
total crop yield from the average crop GNDVI value (predicted of 92 TCH, actual delivered yield of 
88.7 TCH) further supports the potential of this technology for producing in-season yield variability 
maps. 

Burdekin 

For the Burdekin region, correlation coefficients produced between TCH and SPOT5 
derived vegetation indices (captured 14 May 2010) for all 4573 crops were relatively consistent 
ranging from r=0.39 (NDVI) to r=0.44 (SAVI and EVI_2) (Table 2). 

This correlation remained relatively unchanged when data was segregated into the different 
cultivars Q208 and KQ228, indicating that a yield prediction algorithm for this region may not be 
required to be cultivar specific. 
 

Table 2—Correlation coefficients (r) identified between TCH and individual spectral 
bands/vegetation indices for the Burdekin district 

Burdekin District 

Band/VI All blocks Plant cane 1st Ratoon 2nd Ratoon 3rd Ratoon
Variety Q208 Variety KQ228 

Plant 1st Ratoon Plant 1st Ratoon

Green 0.12 0.08 0.11 0.10 0.18 0.20 0.16 0.02 0.04 

Red 0.18 0.19 0.15 0.17 0.11 0.27 0.23 0.13 0.12 

NIR 0.41 0.40 0.39 0.28 0.20 0.36 0.36 0.50 0.42 

SWIR 0.19 0.18 0.12 0.11 0.06 0.28 0.10 0.07 0.06 

NDVI 0.39 0.42 0.35 0.29 0.21 0.39 0.35 0.41 0.31 

GNDVI 0.43 0.44 0.40 0.29 0.21 0.41 0.35 0.45 0.35 

SAVI 0.44 0.44 0.41 0.31 0.23 0.39 0.37 0.50 0.40 

EVI 2 0.44 0.43 0.41 0.31 0.23 0.39 0.37 0.50 0.40 

 

Unlike the Bundaberg analysis however, there was a noticeable drop in the correlation 
coefficients with ratoon age, especially 2nd and 3rd ratoon (Table 2). This variation indicates that an 
algorithm that is not crop class specific may be inaccurate, especially when predicting point source 
yield within individual crops such as that displayed in Figure 3. 

At a regional level the predicted average crop yield of 4999 crops grown during the 2011 
season using the 2010 algorithm (equation 3) was 99% (actual average yield of 120 TCH, predicted 
118.8 TCH). Although highly accurate, the result is not considered robust, due to the large spread of 
data (r2 = 0.07) produced particularly with standover crops (grey markers in Figure 4). This 
predictive accuracy will however be further validated during the 2011–2012 season. 

Herbert 

The initial correlation between TCH and spectral data (SPOT 5 captured 2 June 2011) for 
8596 cane crops grown in the Herbert region (including 53 varieties, multiple ratoon stages, plant, 
replant and standover) was poor (Table 3). 

This result is believed to be attributed to severe climatic conditions experienced towards the 
end of 2010 and start of 2011. The Herbert region had around 25% of the 2011 crop as ‘stand over’ 
i.e. not harvested from 2010, with the remainder exhibiting various degrees of flood related damage. 
The removal of standover blocks did improve the coefficients. 

The highest regression coefficients were identified by segregating the data into crop class 
and then variety, for example KQ228 plant crop r = 0.65 (GNDVI). 
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Fig. 4—Correlation between GNDVI (SPOT 5) and TCH from 2011 Burdekin cane blocks with 

black points indicating non-standover crops and grey points indicating standover crops. 

 
Table 3—Correlation coefficients (r) identified between TCH and individual spectral 

bands/vegetation indices for the Herbert district. 

Herbert District 

Band/VI 
All 

blocks 
Standover
removed 

Plant 
cane 

1st 
Ratoon 

2nd 
Ratoon 

3rd 
Ratoon

Variety Q208 Variety KQ228 Q200 

Plant 
1st 

Ratoon
Plant 

1st 

Ratoon 
Plant

1st 
Ratoon

Green 0.01 0.03 0.01 0.15 0.15 0.35 0.03 0.13 0.01 0.31 0.06 0.02 

Red 0.10 0.09 0.10 0.05 0.05 0.16 0.17 0.17 0.07 0.20 0.17 0.09 

NIR 0.23 0.46 0.54 0.45 0.40 0.46 0.65 0.55 0.59 0.49 0.50 0.39 

SWIR 0.38 0.42 0.37 0.35 0.05 0.46 0.53 0.48 0.30 0.29 0.35 0.33 

NDVI 0.22 0.40 0.47 0.34 0.31 0.37 0.60 0.16 0.47 0.36 0.50 0.33 

GNDVI 0.23 0.45 0.54 0.42 0.42 0.44 0.65 0.55 0.58 0.45 0.50 0.37 

SAVI 0.23 0.45 0.54 0.42 0.37 0.46 0.65 0.56 0.57 0.45 0.51 0.37 

EVI 2 0.24 0.46 0.54 0.42 0.37 0.46 0.65 0.56 0.58 0.46 0.51 0.37 

 

These results indicate that for the accurate prediction of yield within the Herbert region a 
number of algorithms representing different growth stages and even varieties may be required. This 
hypothesis requires further validation over subsequent growing seasons, particularly seasons that 
are not influenced by extreme climatic conditions. 

Discussion 

The undertaking of this research over the three distinct growing regions was highly 
beneficial considering the array of success identified. Results from the Bundaberg region, and to a 
lesser extent the Burdekin, indicated that a ‘generic’ yield prediction algorithm may be developed 
and then used to accurately predict regional production and even within crop yield variability. 
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Although improved correlations were produced following the segregation of data into 
different groups such as crop class (Burdekin) and variety (Herbert) some consideration has to be 
made on the number of algorithms developed. In regards to variety, fifty-three were planted in the 
Herbert, twenty-six in Bundaberg and nineteen in the Burdekin in the years encompassed by this 
study. 

If other variables such as the segregation of regions into smaller climate-driven micro 
regions or crop class are also accounted for then the number of algorithms required would grow 
substantially. 

One method to address this may be to develop algorithms for only the dominant varieties. 
For example, only three varieties (of nineteen) in the Burdekin accounted for 83% of the total 
number of planted blocks. Alternatively, varieties could be categorised into groups based on their 
spectral signatures. The use of multiple algorithms may increase the flexibility of the predictive 
models for the season upon which it is applied, allowing it to better compensate for changing 
percentages of varieties and classes throughout a district and the addition of new varieties. 

In the past, the adoption of remote sensing as a yield prediction tool by the Australian sugar 
industry has been severely hampered by a number of limitations including: a lack of yield data from 
the mills due to privacy issues, an extended harvesting period resulting in a patchwork of different 
varieties, growth and ratoon stages in close proximity, seasonal or climatic variability, constant 
cloud clover, insufficient computational demands for image processing, a shortage of skilled 
analysts and concerns regarding the benefit-cost of adopting the technology. 

Irrespective of these concerns the research presented in this paper identified satellite 
imagery and associated GIS data as useful tools for supporting current methods of yield forecasting, 
with the potential of improving both regional and in-crop yield predictions in the future following 
further validation. 
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