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Abstract: Epstein–Barr virus (EBV), also known as human herpesvirus 4, is a member of the herpes
virus family. EBV is a widespread virus and causes infectious mononucleosis, which manifests with
symptoms such as fever, fatigue, lymphadenopathy, splenomegaly, and hepatomegaly. Additionally,
EBV is associated with different lymphocyte-associated non-malignant, premalignant, and malignant
diseases. So far, no effective treatment or therapeutic drug is known for EBV-induced infections and
diseases. This study investigated natural compounds that inhibit EBV glycoprotein L (gL) and block
EBV fusion in host cells. We utilised computational approaches, including molecular docking, in
silico ADMET analysis, and molecular dynamics simulation. We docked 628 natural compounds
against gL and identified the four best compounds based on binding scores and pharmacokinetic
properties. These four compounds, with PubChem CIDs 4835509 (CHx-HHPD-Ac), 2870247 (Cyh-
GlcNAc), 21206004 (Hep-HHPD-Ac), and 51066638 (Und-GlcNAc), showed several interactions with
EBV gL. However, molecular dynamics simulations indicated that the protein–ligand complexes of
CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc) are more stable than those of the
other two compounds. Therefore, CIDs 4835509 and 2870247 (Cyh-GlcNAc) may be potent natural
inhibitors of EBV infection. These findings can open a new way for effective drug design against EBV
and its associated infections and diseases.

Keywords: Epstein–Barr virus; in silico screening; glycoprotein L; molecular docking; MD simulation

1. Introduction

The historical Epstein–Barr virus (EBV) infection first arose in 1958 in Uganda. An
English surgeon, Denis Burkitt, perceived frequent cancer among children in equatorial
Africa, which was later named Burkitt’s lymphoma (BL) or Burkitt’s disease. Afterwards,
Epstein, Achong, and Barr isolated herpes virus-like particles from infected tissue samples,
and hence, the virus was named Epstein–Barr virus in 1964. Being the first human tumour
virus, EBV infects approximately 90% of the adult population worldwide [1–3]. Individuals
with healthy immunity might overcome the harmful effects of EBV infection, whereas
immunosuppressive individuals develop several deadly cancers. Despite a notable impact
on health, no well-established clinical management and treatment procedure is available
for EBV infection. EBV infects two types of primary cells in the human body: the B
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lymphocytes and the epithelial cells [4]. Lymphatic diseases like infectious mononucleosis,
Hodgkin’s disease (HD), Burkitt’s lymphoma (BL), post-transplant lymphoproliferative
disorders (PTLDs), T-cell lymphomas, and epithelial diseases such as oral hairy leukoplakia
(OHL), nasopharyngeal carcinoma (NPC), and undifferentiated gastric carcinoma constitute
the whole EBV infection [5,6]. Often, being an orally transmitted virus, EBV spreads
through saliva or contact with the airborne virus, blood transfusion, sexual contact, and
tissue transplantation [7–9]. EBV infection is often asymptomatic, although infectious
mononucleosis is the prototypic form of the disease, including symptoms like fever, sore
throat, cervical and generalised lymphadenopathy, hepatosplenomegaly, and somatic
complaints of fatigue and malaise [10,11].

The Epstein–Barr virus, also known as Human gammaherpesvirus 4, is one of the nine
known human herpesvirus types in the herpes family. It belongs to the order Herpesvirales,
family herpesviridae, subfamily gammaherpesvirinae, and the genus lymphocytovirus [12].
EBV measures from 120 to 180 nm along with a double-stranded linear DNA (~171 Kb
long), encoding ~90 genes [13]. An envelope surrounding the viral genome, protein
nucleocapsid, and viral tegument, and containing both lipids and surface projections is
made of glycoproteins and crucial for host cell infection [10]. Two significant strains with
high similarities, type 1 and type 2, are reported with several variants or sub-types under
each section. EBV-1 and EBV-2 can be distinguished based on the four latent genes (EBNA2,
EBNA3A, EBNA3B, and EBNA3C) [14,15]. To induce in vitro growth transformation, EBV-1
acts more actively than EBV-2, but in both cases, the infection can be lifelong without
any type-specific characteristics [16]. Among the 13 glycoproteins encoded by the EBV
genome, 12 are essential to the lytic replication cycle, and the resting one may be crucial
to latency. Eleven proteins constitute the virion envelope; the other two are nonstructural
proteins. The viral glycoproteins can be categorised into three groups: proteins that help
in virus entry and spread, proteins involved in virus assembly, and proteins involved in
manipulating the host cell. Each of the proteins can contribute multiple functions to viral
pathogenesis [17].

Several anti-EBV neutralising monoclonal antibodies (mAbs) have been designed in
previous works targeting several glycoproteins, including glycoprotein H (gH), glycopro-
tein L (gL), glycoprotein B, glycoprotein 42 (gp42), and glycoprotein 350 (gp350). Almost
all the antibodies failed to inhibit B cell or epithelial cell infection. The 72A1 mAb, C1
mAb (anti-gp350), and F-2-1 (anti-gp42 mAb) potently block the B cell infection but fail to
neutralise infection of epithelial cells [18–26]. The anti-gHgL antibodies, E1D1, CL59, and
CL40, neutralise epithelial cell infection but fail to block B cell infection [19,21,24,26,27].
Only the AMMO1, an anti-gHgL antibody that binds to D-I elements (including gL), D-II,
and the linker helix of the gHgL complex, potently blocks both the B cell and epithelial cell
infection in the host body [28]. However, further clinical trials and observations are needed
to ensure the safety, efficiency, and side effects of this newly developed vaccine.

Fusion mechanisms of EBV in both B cells and epithelial cells require the contri-
bution of heterodimer gHgL complex [29]. The GHG complex of EBV forms a high-
affinity contact with gp42, mediating entry into the B cells. The complex also directly
triggers the epithelial cells’ entry through integrin receptors [19]. Moreover, this com-
plex also regulates gB activation, mediating membrane fusion through conformational
change [30–32]. Mutations around the D-I and D-I/D-II interfaces of the gHgL com-
plex have the most negative influence on fusion mechanisms, as conformational changes
of these domain regions may trigger the membrane fusion of EBV [33,34]. Both the
gp42 and gHgL complexes act as active regulators of overall fusion processes, imply-
ing more importance on their active involvement in fusion [35,36]. Prior studies suggested
a possible role of gL in the folding pattern of gH and its transportation to the cell mem-
brane. gL may also play a crucial role in the binding of gH to gp42 in the fusion mecha-
nism [24,37,38]. Inhibition of gL or any conformational change may inactivate the gHgL
complex and the whole fusogenic mechanism. So, in this work, we have evaluated the
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gL as the significant target protein to filter out some efficient natural inhibitors through
computational methods.

Besides many other options to solve EBV infection, in silico approaches can be a good
option. In silico drug design is now an intense field that evaluates different compounds
against specific pathogens. Computer-aided drug designing (CADD) methods are cost-
effective and time-saving approaches that make the drug-developing stages easier and more
facile [39]. This study used in silico techniques to evaluate different natural compounds
against the EBV pathogenic protein, envelope gL. Natural compounds are significant in clin-
ical approaches against viral or bacterial infections. Nearly one-third of the popular drugs
worldwide are developed from natural compounds or their derivatives. Various struc-
tural configurations, pharmacological activities, and favourable pharmacokinetics biassed
our compound selection to natural compounds rather than synthetic molecules [40–42].
Natural compounds include larger reactive fragments in contrast to synthetic drugs [43].
Hence, we have chosen several natural compounds as candidate inhibitors in this study
to analyse their inhibitory mechanism against the EBV pathogenic protein gL through in
silico approaches.

2. Materials and Methods
2.1. Protein Preparation and Control Ligand Selection

The three-dimensional (3D) crystal structure of EBV gL with a resolution of 4.80 Å was
retrieved from the RCSB Protein Data Bank (PDB) with PDB ID 6C5V [28,44]. Since only gL
was our target protein against which docking of candidate compounds needed to occur, we
removed the glycoprotein H, glycoprotein 42, other protein chains, protein cofactors, water
molecules, and metal ions. The protein cofactors and metal ions were removed to skip
unwanted interference during docking simulations [45]. Subsequently, we added polar
hydrogen atoms and merged non-polar hydrogen atoms using BIOVIA Discovery Studio
Visualizer v21.1.0.20298 [46]. Gasteiger charges were calculated using AutoDock tools
v4.2.6 [47]. Finally, the control ligand, NAG (2-acetamido-2-deoxy-beta-D-glucopyranose),
associated with gL was downloaded from the PubChem database with PubChem CID:
24139 [48].

2.2. Compound Retrieval and Preparation

As natural compounds are highly known for their unique scaffolds, vast diversity,
and better solubility, we opted to screen a library of natural compounds for our proce-
dure. Ambinter (http://www.ambinter.com/; accessed on 10 August 2024) is a French
company with an enriched database including nearly 36 million compound structures,
which can be searched based on similarity to a reference structure or through Simpli-
fied Molecular Input Line Entry System (SMILES) or International Union of Pure and
Applied Chemistry (IUPAC) chemical names. This database is well known for search-
ing for natural compounds, and we can also order any compounds for further in vivo or
in vitro analysis from their website. While it is practically impossible to screen millions
of compounds, it is also true that compounds with high structural similarity and minor
but efficient diversities to the control ligand of a protein show promising possibilities of
working as an inhibitor. Compounds with highly diverse structures to the control ligand
are unlikely to show proper binding affinity. Therefore, we searched for the Ambinter
natural compound library and selected compounds that showed 90% structural similarity
to the control ligand (PubChem CID: 24139) attached to gL. The compounds considered
for further virtual screening were natural and in stock. We used Open Babel v2.4.0. and
AutoDock v4.2.6 to prepare the retrieved compounds and the control ligand. These tools
were employed to merge non-polar hydrogen atoms, detect aromatic carbons, and set the
‘torsion tree’ [47,49].

http://www.ambinter.com/
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2.3. Active Site Prediction

We used the CASTp 3.0 program [50] to identify binding pockets throughout the
protein, keeping the radius probe at the default value of 1.4 Å. This programme employs
computational geometry algorithms, including Delaunay triangulation, alpha shape, and
discrete flow. The server filtered the computed cavities using Richards’ and Connolly’s
surfaces and shortened them by decreasing volume and surface area. We also used the
FTMap server [51] to identify the optimal binding pocket on gL. The FTMap server placed
small probes of organic molecules (varying in size, shape, and polarity) on the protein’s
molecular surface. By evaluating each probe’s most favourable position and clustering
them, the server calculated the average energy and ranked the clusters. It then displayed
a contact graph showing the contact frequency per amino acid for all non-bonded and
hydrogen-bonded interactions.

2.4. Molecular Docking

The site-specific molecular docking analysis was conducted using the PyRx v0.9.2
virtual screening tool AutoDock v2.4.6 [47]. We focused on pocket 2, as identified by CASTp
3.0 and the FTMap server (accessed on 10 August 2024), to determine the binding mode of
the desired protein with selected natural compounds. This pocket also included the highly
interactive amino acids, including those utilised by the control ligand, whereas no other
predicted pockets covered them. PyRx v0.9.2 is a free virtual screening tool widely used
for molecular docking, data preparation, and analysis, and it supports all major operating
systems (OS), including Linux, Windows, and Mac OS. PyRx v0.9.2 provides AutoDock
and AutoDock Vina as docking wizards with an intuitive user interface, making it an
efficient computer-aided drug design (CADD) tool. Pocket 2 of the protein, defining the
assumed active site, was covered by a grid box with specific coordinates and parameters, as
shown in Table 1. After the docking procedure, using the default configuration parameters
of PyRx v0.9.2, several compounds with the top binding energies (kcal/mol) showing
negative values were selected for further evaluation. Finally, the binding interactions of the
protein–ligand complexes were observed using the BIOVIA Discovery Studio Visualizer
v21.1.0.20298 [46].

Table 1. Grid box measurements with grid centre coordinates in x, y, and z axes and grid box size in
x, y, and z dimensions.

Axis Value

C
en

te
r x 128.07503759 Å

y 171.475486746 Å

z 182.924808396 Å

Si
ze

x 18.5380735663 Å

y 16.2103040775 Å

z 19.3724455668 Å

Note: Å = Angstrom.

2.5. Pharmacokinetics Properties Prediction

Designing and developing a novel drug includes the analysis of pharmacokinetic (pk)
properties to ensure the drug’s safe and balanced behaviour inside the human body. The
best compounds (based on docking scores) were evaluated using multiple pharmacokinetic
criteria, including absorption, distribution, metabolism, and excretion (ADME) [52]. These
critical parameters help in filtering novel drugs or inhibitors for specific targets [52]. We
used the SwissADME server (http://www.swissadme.ch; accessed on 10 August 2024) [53],
to assess our selected compounds based on different parameters, including molecular
weight (g/mol), number of heavy atoms, number of aromatic heavy atoms, number of
rotatable bonds, number of H-bond acceptors and donors, LogP, LogS, level of gastroin-

http://www.swissadme.ch
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testinal (GI) absorption, blood–brain barrier (BBB) permeability, synthetic accessibility, and
the number of Lipiniski’s violation [54]. Additionally, we employed the pkCSM server
(http://biosig.unimelb.edu.au/pkcsm/; accessed on 10 August 2024) [55], to examine the
Caco2 permeability, P-glycoprotein (P-gp) substrate, and inhibitor predictions.

2.6. Toxicity Prediction

Taking medicines with varying levels of toxicity can lead to severe complications
for humans and other animals. Toxicity analysis measures the degree to which chemical
compounds can be toxic and cause organ damage. Predicting toxicity is valuable in filtering
out potentially harmful compounds, which can be further evaluated in clinical trials. Thus,
toxicity observation is a crucial aspect of the computer-aided drug design (CADD) process.

We used the pkCSM web-based server (http://biosig.unimelb.edu.au/pkcsm/; ac-
cessed on 10 August 2024) [55] to evaluate the toxicity of our chosen compounds, consider-
ing AMES toxicity, hepatotoxicity, human Ether-à-go-go-Related Gene (hERG) inhibition,
oral rat acute toxicity (LD50), oral rat chronic toxicity (LOAEL), skin sensitisation, Tetrahy-
mena pyriformis toxicity, and minnow toxicity. Additionally, we employed the admetSAR 2.0
online server (http://lmmd.ecust.edu.cn/admetsar2; accessed on 10 August 2024) [56] to
analyse our selected compounds’ carcinogenicity, androgen receptor (AR) binding, honey
bee toxicity, and fish aquatic toxicity analysis.

2.7. Molecular Dynamics Simulation

Molecular dynamics (MD) is crucial for predicting the dynamic behaviour and struc-
tural stability of protein–ligand complexes in a particular physiological environment, which
is essential in drug discovery. This method analyses small molecules’ strength and binding
interactions with the target receptor, examining the protein–ligand complex for interactions
and flexibility.

We used the Desmond package within the Schrödinger suite v2024-3 to perform a
100 ns MD simulation for the complexes formed between the selected four compounds,
the control ligand, and the target protein [57]. The 100 ns MD simulation length has been
sufficient for observing stable interactions and key features involving EBV proteins in
other studies [45,58]. Moreover, we found that the complex formed between our ligands
and target protein generally stabilised after approximately 80 ns of simulation in several
exploratory simulations. Before the simulation, the protein–ligand complexes were pre-
pared using the protein preparation wizard [59]. An orthorhombic boundary box with
dimensions of 10 × 10 × 10 Å3 was allocated for each complex with a simple point charge
(SPC) water model. A 0.15 M salt concentration was maintained by randomly distributing
Na+ and Cl− ions throughout the solvated system. Additionally, the system was relaxed
and minimised using the OPLS3e force field [60].

The constant pressure-constant temperature (NPT) ensemble was maintained with a
constant temperature of 300.0 K along with a fixed pressure of 1.01325 bar [61,62]. Each
complex was first allowed to relax, and then an energy level of 1.2 kcal/mol was applied
during the 100 ps analysis [63]. Applying a 1.2 kcal/mol threshold at each 100 ps interval is
crucial for identifying stable and significant interactions above the energy threshold. After
the production phase, various dynamic analyses were performed, including root mean
square deviation (RMSD), root mean square fluctuation (RMSF), the radius of gyration
(rGyr), solvent accessible surface area (SASA), and protein–ligand interactions to evaluate
the stability and flexibility of the protein–ligand complexes.

3. Results

The necessity of EBV gL in virus fusion and disease generation has already been
proven [24,28,29,37]. Disturbing the general conformation of gL using different natural
compounds may inhibit the EBV fusion mechanisms and viral infections. For structure-
based drug design, we applied virtual screening, molecular docking studies, ADMET
analysis, and molecular dynamic simulation, as shown in Figure 1, to identify novel and

http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
http://lmmd.ecust.edu.cn/admetsar2
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potential inhibitors against EBV and to explore a new treatment option for the associ-
ated diseases.
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Figure 1. The illustration of structure-based in silico screening processes for identification of potential
drug candidates against glycoprotein L. The workflow includes retrieving and preparing protein and
drug candidate compounds, molecular docking, ADMET analysis, and molecular dynamic simulation
processes. Further in vivo processes may aid in evaluating new efficient drugs against EBV as shown
in the faded diagrams in this figure.

3.1. Natural Compounds Exploration and Retrieval

We selected natural compounds as drug candidates due to their disease-inhibiting
properties and high chemical diversity. Additionally, they are less toxic and more effec-
tive [64]. Natural compound libraries typically consist of 60–65% plant-derived compounds,
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5–10% isolated from microorganisms, about 5% from marine species, and the rest from
other natural sources [65].

In our study, we employed similarity-based virtual screening and collected compounds
from the Ambinter natural library. We identified a total of 628 natural compounds with 90%
structural similarity to the control ligand. All of these compounds are available for purchase
from this server for further in vivo analysis. Ambinter provides structural information on
compounds in both SDF and CSV formats. The Pyrx Virtual Screening tool was used to
prepare the retrieved compounds. Open Babel utilised the universal force field (UFF) [49]
for energy minimisation and converted the compounds to the PDBQT format, which is
capable of docking using AutoDock Vina [47].

3.2. Active Site Prediction

Using the CASTp 3.0 program, we visualised our target protein’s top ten probable
binding pockets, gL, as depicted in Figure 2 and Supplementary Table S1 [50]. We used
the FTmap server to identify the top 10 amino acids contributing to hydrogen bonds and
non-bonded interactions (Supplementary Table S2) to predict the most suitable binding
site [66]. Among the seven amino acids in pocket 2, as suggested by CASTp 3.0 and shown
in Table 2, four are among the top 10 residues identified by the FTmap server. Additionally,
pocket 2 was the second largest and third largest pocket in terms of surface-accessible
surface volume and area, respectively (Volume 24.904 Å3 41.519 Å2) (Figure 2). Therefore,
pocket 2 is supposed to be the active site on our target protein, gL.
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Figure 2. The visualisation of the assumed active site pocket and other binding sites in glycoprotein
L with their area (Å2) and volume (Å3). The green-coloured balls represent amino acids included in
our assumed active site, the PocID 2, as identified by the CASTp 3.0 server. The red-coloured balls
show amino acids of other pockets (PocID 1, PocID 3, PocID 4, PocID 5, PocID 6, PocID 7, PocID 8,
PocID 9, and PocID 10) with their position in the gL protein, respectively.
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Table 2. Amino acid (AA) residues of the assumed active site, pocket 2. The amino acids written in
bold font are among the top 10 amino acids, as per the FTmap result.

Pocket ID AA Sequence AA Residue

2 48 ILE

2 50 LEU

2 85 VAL

2 86 VAL

2 89 PHE

2 107 LEU

2 111 LEU
Note: The control ligand of gL showed interaction with the amino acids in bold.

3.3. Molecular Docking Analysis

Molecular docking is the most widely used method in structure-based drug design
to analyse the binding affinity of specific small molecules with targeted protein binding
sites and estimate the detailed molecular basis of interactions [67]. We performed molec-
ular docking in a grid box (Table 1), which was set to cover the assumed active site of
gL (pocket 2) and its adjacent residues. Possible drug candidates usually contain higher
binding energy with a negative sign than the natural ligand associated with a protein
molecule. To ensure that the virtual screening will end up only with highly bound com-
pounds to our target protein, we determined a threshold equal to the binding affinity of the
control ligand. A total of 398 candidate compounds among the total 628 were successful at
passing through our selection criteria of binding affinity (−3.9 kcal/mol). We chose the
best four compounds based on the binding affinity for further analysis. Among the selected
four compounds, the compound N-(6-Cyclohexyloxy-8-hydroxy-2,2-dimethyl-4,4a,6,7,8,8a-
hexahydropyrano[3,2-d][1,3]dioxin-7-yl)acetamide (CHx-HHPD-Ac) with PubChem CID:
4835509 had the lowest docking score of −5.8 kcal/mol. Additionally, the compounds Cy-
clohexyl 2-(acetylamino)-2-deoxyhexopyranoside (Cyh-GlcNAc), N-[(4Ar,6R,7R,8R,8aS)-6-
heptoxy-8-hydroxy-2,2-dimethyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-7-yl]acet-
amide (Hep-HHPD-Ac) and Undecyl 2-acetamido-2-deoxy-B-D-glucopyranoside (Und-
GlcNAc) with PubChem CIDs: 2870247, 21206004, and 51066638, respectively, exhibited
docking scores of −5.7 kcal/mol, −5.6 kcal/mol, and −5.5 kcal/mol, respectively (Table 3).

Table 3. The binding affinities of the top four drug candidates and the NAG (control ligand) with
their compound identities, chemical names, molecular formula, and two-dimensional (2D) structures.
The 2D structures were prepared using ACD/ChemSketch 2.0 software [68].

No. Compound
PubChem CID Compound Name Molecular

Formula 2D Structure Docking Score
(Kcal/mol)

1 24139
Acetylglucosamine (2-Acetamido-
2-deoxy-beta-D-glucopyranose)

(NAG)
C8H15NO6
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Table 3. Cont.

No. Compound
PubChem CID Compound Name Molecular

Formula 2D Structure Docking Score
(Kcal/mol)

2 4835509

N-(6-Cyclohexyloxy-8-hydroxy-
2,2-dimethyl-4,4a,6,7,8,8a-

hexahydropyrano[3,2-
d][1,3]dioxin-7-yl)acetamide

(CHx-HHPD-Ac)

C17H29NO6
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5 51066638
Undecyl 2-acetamido-2-deoxy-B-
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(Und-GlcNAc)

C19H37NO6

Pathogens 2024, 13, x FOR PEER REVIEW 10 of 25 
 

 

5 51066638 
Undecyl 2-acetamido-2-deoxy-B-D-

glucopyranoside 
(Und-GlcNAc) 

C19H37NO6 

 

−5.5 

3.4. Binding Pattern Analysis of Selected Molecules 
All four drug candidates were bound firmly with gL. Their binding interactions were 

observed using the BIOVIA Discovery Studio Visualizer v21.1.0.20298 and elaborated in 
Table 4. The control ligand of gL (PubChem CID: 24139) formed two H-bonds with ILE48 
and two with LEU50. Based on the binding affinity, our top candidate compound, Pub-
Chem CID: 4835509 (CHx-HHPD-Ac), was found to form conventional hydrogen bonds 
and hydrophobic bonds. It formed conventional H-bonds with residues SER46, ILE48, and 
ASP47. It interacted with ILE48 and PHE89 residue by forming hydrophobic bonds. The 
compound PubChem CID: 2870247 (Cyh-GlcNAc) also interacted with these four amino 
acid residues (SER46, ASP47, ILE48, and PHE89). The compound with PubChem CID: 
21206004 (Hep-HHPD-Ac) was observed to interact with ILE48 residue by forming three 
conventional H-bonds and one alkyl hydrophobic bond through different atoms. This 
compound also formed hydrophobic bonds with PHE89, LEU93, LEU107, and LEU111. 
The PubChem CID: 51066638 (Und-GlcNAc) compound contained maximum bonds with 
the target protein. Interactions between this compound and gL were established via con-
ventional H bonds involving amino acids SER46, ASP47, and ILE48 and hydrophobic 
bonds involving ILE48, LEU50, PHE89, LEU93, LEU107, and LEU111 residues. After in-
teraction analysis, we found that eight amino acid residues of the gL interacted with the 
top four drug candidates. These interacting residues included amino acids SER46, ASP47, 
ILE48, LEU50, PHE89, LEU93, LEU107, and LEU111 (Table 4). ILE48, LEU50, PHE89, 
LEU107, and LEU111 constituted the assumed active site for gL (Table 2). The receptor-
ligand interactions were depicted with bond distances through 3D and 2D visualisations 
(Figures 3 and 4). 

Table 4. Analysis of binding interactions between the top four drug candidates and the control lig-
and and glycoprotein L with their binding amino acid residues, binding distance, bond category, 
and bond type. 

PubChem CID Residues Distance Bond Category Bond Type 

24139 
(NAG) 

ILE48 1.85 Hydrogen Conventional Hydrogen 
ILE48 2.44 Hydrogen Conventional Hydrogen 
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3.4. Binding Pattern Analysis of Selected Molecules

All four drug candidates were bound firmly with gL. Their binding interactions were
observed using the BIOVIA Discovery Studio Visualizer v21.1.0.20298 and elaborated
in Table 4. The control ligand of gL (PubChem CID: 24139) formed two H-bonds with
ILE48 and two with LEU50. Based on the binding affinity, our top candidate compound,
PubChem CID: 4835509 (CHx-HHPD-Ac), was found to form conventional hydrogen bonds
and hydrophobic bonds. It formed conventional H-bonds with residues SER46, ILE48, and
ASP47. It interacted with ILE48 and PHE89 residue by forming hydrophobic bonds. The
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compound PubChem CID: 2870247 (Cyh-GlcNAc) also interacted with these four amino
acid residues (SER46, ASP47, ILE48, and PHE89). The compound with PubChem CID:
21206004 (Hep-HHPD-Ac) was observed to interact with ILE48 residue by forming three
conventional H-bonds and one alkyl hydrophobic bond through different atoms. This
compound also formed hydrophobic bonds with PHE89, LEU93, LEU107, and LEU111.
The PubChem CID: 51066638 (Und-GlcNAc) compound contained maximum bonds with
the target protein. Interactions between this compound and gL were established via
conventional H bonds involving amino acids SER46, ASP47, and ILE48 and hydrophobic
bonds involving ILE48, LEU50, PHE89, LEU93, LEU107, and LEU111 residues. After
interaction analysis, we found that eight amino acid residues of the gL interacted with the
top four drug candidates. These interacting residues included amino acids SER46, ASP47,
ILE48, LEU50, PHE89, LEU93, LEU107, and LEU111 (Table 4). ILE48, LEU50, PHE89,
LEU107, and LEU111 constituted the assumed active site for gL (Table 2). The receptor-
ligand interactions were depicted with bond distances through 3D and 2D visualisations
(Figures 3 and 4).
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Figure 3. The 3D-interaction diagrams of protein–ligand complexes derived from the control ligand
and the best four compounds according to the docking scores. All the diagrams were generated
using the BIOVIA Discovery Studio Visualizer tool. The upper left section (a) shows the interaction
of the control ligand PubChem CID: 24139 (NAG). The upper right section (b), middle left section
(c), middle right section (d), and lower left section (e) correspond to the compounds PubChem
CID: 4835509 (CHx-HHPD-Ac), PubChem CID: 2870247 (Cyh-GlcNAc), PubChem CID: 21206004
(Hep-HHPD-Ac), and PubChem CID: 51066638 (Und-GlcNAc), respectively.
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Figure 4. The 2D-interaction diagrams of protein–ligand complexes with bond distances derived
from the best four compounds according to the docking scores. All the diagrams were generated
using the BIOVIA Discovery Studio Visualizer tool. The upper left section (a) shows the interaction
of the control ligand PubChem CID: 24139 (NAG). The upper right section (b), middle left section
(c), middle right section (d), and lower left section (e) correspond to the compounds PubChem
CID: 4835509 (CHx-HHPD-Ac), PubChem CID: 2870247 (Cyh-GlcNAc), PubChem CID: 21206004
(Hep-HHPD-Ac), and PubChem CID: 51066638 (Und-GlcNAc), respectively.
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Table 4. Analysis of binding interactions between the top four drug candidates and the control ligand
and glycoprotein L with their binding amino acid residues, binding distance, bond category, and
bond type.

PubChem CID Residues Distance Bond Category Bond Type

24139
(NAG)

ILE48 1.85 Hydrogen Conventional Hydrogen

ILE48 2.44 Hydrogen Conventional Hydrogen

LEU50 1.97 Hydrogen Conventional Hydrogen

LEU50 2.19 Hydrogen Conventional Hydrogen

4835509
(CHx-HHPD-Ac)

SER46 2.45 Hydrogen Conventional Hydrogen
ASP47 2.87 Hydrogen Conventional Hydrogen

ILE48 2.8 Hydrogen Conventional Hydrogen

ILE48 5.23 Hydrophobic Alkyl

PHE89 4.43 Hydrophobic Pi-Alkyl

2870247
(Cyh-GlcNAc)

SER46 2.95 Hydrogen Conventional Hydrogen
ASP47 2.77 Hydrogen Conventional Hydrogen

ILE48 2.32 Hydrogen Conventional Hydrogen

ILE48 5.3 Hydrophobic Alkyl

PHE89 3.62 Hydrophobic Pi-Sigma

21206004
(Hep-HHPD-Ac)

ILE48 2.5 Hydrogen Conventional Hydrogen
ILE48 1.91 Hydrogen Conventional Hydrogen

ILE48 2.1 Hydrogen Conventional Hydrogen

ILE48 5.38 Hydrophobic Alkyl

PHE89 3.82 Hydrophobic Pi-Alkyl

PHE89 4.73 Hydrophobic Pi-Alkyl

LEU93 3.97 Hydrophobic Alkyl

LEU107 5.47 Hydrophobic Alkyl

LEU111 5.42 Hydrophobic Alkyl

51066638
(Und-GlcNAc)

SER46 1.94 Hydrogen Conventional Hydrogen
ASP47 2.38 Hydrogen Conventional Hydrogen

ILE48 1.97 Hydrogen Conventional Hydrogen

ILE48 4.22 Hydrophobic Alkyl

LEU50 4.8 Hydrophobic Alkyl

PHE89 4.21 Hydrophobic Pi-Alkyl

PHE89 5.43 Hydrophobic Pi-Alkyl

PHE89 3.75 Hydrophobic Pi-Alkyl

LEU93 5.38 Hydrophobic Alkyl

LEU107 5.05 Hydrophobic Alkyl

LEU107 5.04 Hydrophobic Alkyl

LEU111 5.02 Hydrophobic Alkyl

3.5. ADME Analysis

Drug pharmacokinetics describes the interaction between drugs and the human body,
such as absorption, distribution, metabolism, and excretion (ADME). We observed physico-
chemical (PC) properties, lipophilicity, solubility, GI absorption, BBB permeant, synthetic
accessibility, drug-likeness, and other characteristics for ADME profile analysis. ADME
includes consideration of Lipinki’s rules of five, which is a significant requirement for eval-



Pathogens 2024, 13, 928 13 of 25

uating an orally active drug [69]. We followed all ADME profile analysis rules and found
the best four compounds showing no violation of Lipinski’s rules of five. The results of the
ADME analysis for all four selected compounds are represented in Table 5. As they obeyed
Lipinski’s rules of five, their LogP values were below 5. Compounds with PubChem CID:
4835509 (CHx-HHPD-Ac), PubChem CID: 21206004 (Hep-HHPD-Ac), and PubChem CID:
51066638 (Und-GlcNAc) had positive LogP values, meaning they have higher affinities for
the lipid phase. The compound with PubChem CID: 2870247 (Cyh-GlcNAc) had a negative
LogP value and showed more solubility in the aqueous phase. Their LogP values also
influenced their permeability through membranes, potency, selectivity, and promiscuity.
Our top four compounds contained Log S (ESOL) values ranging from −3.18 to −0.99,
indicating that they are soluble or highly soluble in water and can easily be absorbed by
our bodies. They showed high GI absorption and couldn’t cross the BBB as described by
the ADME result.

Table 5. ADME analysis results, including physicochemical properties, lipophilicity, water solubility,
gastrointestinal (GI) absorption, Caco2 permeability, blood–brain barrier (BBB) permeability, etc.
properties for the top four drug candidates.

Properties CID: 4835509 CID: 2870247 CID: 21206004 CID: 51066638

Physico-chemical properties

MW (g/mol) 343.42 g/mol 303.35 g/mol 359.46 g/mol 375.50 g/mol

Heavy atoms 24 21 25 26

Arom. heavy atoms 0 0 0 0

Rotatable bonds 4 5 9 14

H-bond acceptors 6 6 6 6

H-bond donors 2 4 2 4

TPSA (Å) 86.25 108.25 86.25 108.25

Lipophilicity Log Po/w 1.15 −0.34 1.87 2.07

Water solubility Log S (ESOL) −2.19 −0.99 −2.63 −3.18

Pharmacokinetics GI absorption High High High High

Caco2 permeability log Papp in 10−6 cm/s 0.9 0.025 0.89 −0.06

BBB permeability Yes/No No No No No

P-glycoprotein substrate Yes/No No No Yes No

P-glycoprotein inhibitor Yes/No No No No No

Drug likeness Lipinski, Violation Yes; 0 violation Yes; 0 violation Yes; 0 violation Yes; 0 violation

Medi. Chemistry Synth. accessibility 4.85 4.49 5.04 5.14

3.6. Toxicity Analysis

In silico toxicity, measurement is essential for better potential drug candidate selection
before undergoing a clinical trial. Drug toxicity analysis helps to determine the level of
damage that a compound can cause to an organism or substructures of the organism, such
as cells and organs. Our analyses of several toxicological parameters, such as AMES toxicity,
oral rat acute toxicity (LD50), oral rat chronic toxicity (LOAEL), hepatotoxicity, etc., for the
top four drug candidates are shown in Table 6. All of them showed negative results on the
AMES test. Thus, they can’t cause mutations in the DNA of the test organism. Although
a diverse range of drug structures can cause hepatotoxicity, our selected drug candidates
are not hepatotoxic, which means they will not harm human livers. Furthermore, they will
not express any allergic response to the skin because their skin sensitisation results were
also negative.
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Table 6. List of toxicological parameters such as AMES toxicity, hepatotoxicity, carcinogenicity, hERG
inhibition, oral rat acute toxicity (LD50), oral rat chronic toxicity (LOAEL), etc., for the top four
drug candidates.

Endpoint Target CID: 4835509 CID: 2870247 CID: 21206004 CID: 51066638

AMES toxicity (Yes/No) Yes/No No No No No

Hepatotoxicity (Yes/No) Yes/No No No No No

Carcinogenicity Yes/No No No No No

hERG inhibition Yes/No No No No No

Oral rat acute toxicity (LD50) mg/kg 2.613 2.082 2.428 1.999

Oral rat chronic toxicity (LOAEL) log mg/kg_bw/day 1.876 2.549 2.105 2.818

Androgen receptor binding Yes/No No No No No

Skin sensitisation Yes/No No No No No

T.Pyriformis toxicity log ug/L 0.242 0.285 0.278 0.285

Minnow toxicity log mM 3.614 3.687 2.259 1.766

Honey bee toxicity Yes/No Yes No Yes No

Fish aquatic toxicity Yes/No Yes No Yes No

3.7. Molecular Dynamics (MD) Simulation

The stability and flexibility of a protein–ligand complex in a particular environment for
a fixed period can be understood and analysed using molecular dynamics (MD) simulation.
In this study, the four best compounds (CID: 4835509 (CHx-HHPD-Ac), CID: 2870247
(Cyh-GlcNAc), CID: 21206004 (Hep-HHPD-Ac), and CID: 51066638 (Und-GlcNAc)) based
on their binding affinity against the target protein, gL, were subjected to MD simulation
alongside the control (CID: 24139). The conformational changes of the gL protein in each
protein–ligand complex were investigated by deploying a 100 ns MD simulation. Several
parameters of the MD simulation, such as RMSD, RMSF, SASA, rGyr, and protein–ligand
interactions, were used in this study to measure and analyse the stability of the complexes.

3.8. Analysis of RMSD

The deviation of a protein’s structure compared to its initial position in a protein–
ligand complex can be measured by root mean standard deviation. It is an essential
parameter in the MD simulation that can give an idea of the durability and conformational
changes in the protein’s core structure during the simulation time [70,71]. Figure 5A
demonstrates the RMSD values of the complexes of the best four ligands and the control
ligand. The average RMSD values for CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-
GlcNAc), CID: 21206004 (Hep-HHPD-Ac), and CID: 51066638 (Und-GlcNAc) were 2.68 Å,
2.78 Å, 3.23 Å, and 3.73 Å, respectively. Additionally, the average RMSD for the complex
of the control ligand is 2.79 Å. The average RMSD values of all compounds fell between
2.5 Å and 3.8 Å. The complexes of CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247
(Cyh-GlcNAc) showed more durability during the simulation period compared to the
control, whereas the stability of the other two complexes was lacking. The complex of the
CID: 51066638 (Und-GlcNAc) exhibited much fluctuation between 50 and 100 ns during
the simulation period. The highest RMSD values for the complexes of the CID: 4835509
(CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID: 21206004 (Hep-HHPD-Ac), and CID:
51066638 (Und-GlcNAc) were 3.65 Å, 3.74 Å, 4.24 Å, and 5.54 Å, respectively, whereas the
lowest values were 1.22 Å, 1.18 Å, 1.14 Å, and 1.16 Å, respectively. Likewise, the highest
and lowest RMSD values for the complex of control were 4.26 Å and 1.21 Å, respectively.
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Figure 5. (A) The RMSD values of the gL protein of EBV bound with four selected compounds and
control are given. (B) The RMSF values of the residues of the gL proteins binding upon four selected
ligands and control are shown here. The RMSD and RMSF values for the CID: 4835509 (CHx-HHPD-
Ac), CID: 2870247 (Cyh-GlcNAc), CID: 21206004 (Hep-HHPD-Ac), CID: 51066638 (Und-GlcNAc),
and CID: 24139 (control) are present in blue, orange, grey, yellow, and red colours, respectively.

3.9. Analysis of RMSF

The interactions between a ligand and a protein’s specific amino acids (AA) in a
protein–ligand complex could cause fluctuations in the protein’s backbone. These fluc-
tuations can be measured by a parameter called root, which means standard fluctuation
during MD simulation. We calculated the RMSF values of the complexes of the four best
compounds and the control ligand to evaluate the gL’s structural flexibility upon binding
with different ligands compared to its binding with the control ligand. The average RMSF
values for CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID: 21206004
(Hep-HHPD-Ac), CID: 51066638 (Und-GlcNAc), and the control were 1.50 Å, 1.48 Å, 1.64 Å,
2.26 Å, and 1.41 Å, respectively. Figure 5B represents the RMSF values of the gL for the
four best compounds and the control ligand. In Figure 5B, it is shown that there are lots
of fluctuations at the protein’s beginning and end for all ligands, including the control.
The reason behind this is the existence of the N- and C-terminals in the protein structure.
Additionally, the protein showed fluctuations for all the ligands and the control between
30 and 40 AA residues. However, CID: 4835509 (CHx-HHPD-Ac) showed the highest
fluctuation in this region. Furthermore, slight fluctuations were observed between 55 and
65 AA residues of the protein. After analysis of all RMSF for all complexes, it was found
that CID: 51066638 (Und-GlcNAc) was less stable than other ligands, including control.
Moreover, the protein showed additional fluctuations between 17 and 27 AA residues for
CID: 51066638 (Und-GlcNAc). The highest RMSF values for the complexes of the CID:
4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID: 21206004 (Hep-HHPD-Ac),
and CID: 51066638 (Und-GlcNAc) were 5.26 Å, 4.65 Å, 4.34 Å, and 7.01 Å, respectively,
whereas the lowest RMSF values for these ligands were 0.70 Å, 0.60 Å, 0.68 Å, and 0.83 Å,
respectively. Likewise, the highest and lowest RMSF values for the complex of control (CID:
24139) were 4.19 Å and 0.64 Å, respectively.
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3.10. Radius of Gyration (rGyr)

The radius of gyration, or rGyr, refers to the atomic rearrangement of a protein–ligand
complex about its axis. This is another important parameter used to predict the functionality
and compactness of the protein upon binding with a ligand. We measured the rGyr values
of the complexes of CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID:
21206004 (Hep-HHPD-Ac), and CID: 51066638 (Und-GlcNAc) to find out the compactness
of the gL upon binding with our four best compounds (Figure 6A). We also calculated the
rGyr for the control ligand complex to compare the results of the selected compounds. The
average rGyr values for CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID:
21206004 (Hep-HHPD-Ac), and CID: 51066638 (Und-GlcNAc), and the control were 3.66 Å,
3.49 Å, 4.04 Å, 5.02 Å, and 2.89 Å, respectively. It is shown in Figure 6A that the first two
compounds, CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc), have much
better results than the other two compounds, such as CID: 21206004 (Hep-HHPD-Ac) and
CID: 51066638 (Und-GlcNAc), compared to the control ligand. Among the four complexes
for four selected compounds, the protein–ligand complex for CID: 2870247 (Cyh-GlcNAc)
demonstrated less fluctuation in their rGyr during the 100 ns MD simulation.
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Figure 6. (A) Representing the radius of gyration (rGyr) of the five complexes for the four selected
molecules and control obtained from the MD simulation. (B) The SASA values of the target protein
bound with four selected ligands, as well as the control ligand are shown. Both rGyr and SASA values
for the CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID: 21206004 (Hep-HHPD-Ac),
CID: 51066638 (Und-GlcNAc), and CID: 24139 (control) are present in blue, orange, gray, yellow, and
red colour, respectively.

3.11. Solvent Accessible Surface Area (SASA)

Solvent accessible surface area (SASA) is the area of the protein in a protein–ligand
complex that a solvent can access. We exploited this parameter of MD simulation to deter-
mine the accessible area of our target protein when bound with the four compounds or the
control. This will indicate the stability and behaviour of the protein in the complex in differ-
ent solvents, like hydrophobic or hydrophilic. Moreover, this will also help us to understand
how the protein and its ligand will work together in the presence of solvents. The SASA
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values for the CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID: 21206004
(Hep-HHPD-Ac), CID: 51066638 (Und-GlcNAc), and control are presented in Figure 6B.
The average SASA for CID: 4835509 (CHx-HHPD-Ac), CID: 2870247 (Cyh-GlcNAc), CID:
21206004 (Hep-HHPD-Ac), and CID: 51066638 (Und-GlcNAc) were 177.14 Å2, 221.95 Å2,
276.78 Å2, and 282.96 Å2, respectively. The average SASA for the control was 232.04 Å2.
Therefore, it was found that the protein gL had less solvent-accessible area when bound
with the first two compounds, CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-
GlcNAc), compared to the control ligand’s result. This indicates the strong binding of the
CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc) with our target protein.
However, the other two compounds had less favourable results than those mentioned.

3.12. Protein–Ligand Contact Analysis

A simulation interaction diagram (SID) was utilised to evaluate the protein–ligand
interactions and understand the architecture of the complexes of the four compounds with
the protein gL during the 100 ns MD simulation (Figure 7). The protein and the ligands
involved several different bonds, such as hydrogen bonds, water bridges, ionic bonds,
non-covalent bonds, etc., in their complexes. The compound CID: 4835509 (CHx-HHPD-Ac)
formed multiple bonds with the gL at ASP47 and ILE48 residues with interaction fraction
(IF) values of 0.38 and 0.08, respectively (Figure 7A). On the other hand, the compound
CID: 2870247(Cyh-GlcNAc) interacted with the protein by forming multiple bonds at LEU42,
GLU43, ILE45, SER46, ASP47, ILE48, TYR49, and LEU50 residues with the IF values of 0.25,
0.1, 0.25, 0.3, 0.25, 0.9, 0.05, and 0.3, respectively (Figure 7B). Likewise, the compound CID:
21206004 (Hep-HHPD-Ac) showed multiple interactions with gL at LEU42, SER46, ILE48,
TYR49, and LEU50 residues with the IF values of 0.07, 0.22, 0.23, 0.05 and 0.17, respectively
(Figure 7C). Finally, the compound CID: 51066638 (Und-GlcNAc) formed multiple interactions
at LEU40, ALA41, ASN44, ILE48, LEU50, VAL51, ASN53, and THR110 of the protein with IF
values of 0.18, 0.05, 0.05, 0.25, 0.6, 0.55, 0.25, and 0.1, respectively (Figure 7D).
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4. Discussion

B lymphocytes and stratified squamous epithelium cells are the two primary target
cell types of Epstein–Barr virus (EBV) [16,72]. EBV cell attachment and fusion involves
several glycoproteins, including glycoprotein H (gH), gL, glycoprotein B (gB), glycoprotein
42 (gp42), and glycoprotein 350 (gp350), which are conserved throughout the herpesvirus
family [29]. The gH and gL proteins integrate to form a heterodimeric gHgL complex
that directly interacts with the host cell receptor on the epithelial cells. Again, the gHgL
complex of EBV directly interacts with integrins αvβ5, αvβ6, αvβ8 and ephrin receptor
tyrosine kinase A2 (EphA2) and hence triggers the fusion mechanism of EBV with epithelial
cells [19,73]. This complex includes four distinct domains: D-I to D-IV. D-I is constructed
by gL and the N terminus of gH (65 residues). Conformational change across domain I-
domain II induced by the interaction between gHgL and an integrin possibly contributes to
triggering membrane fusion for epithelial cells [19,74]. The gL subunit regulates the folding
pattern of gH and is appointed in the specificity of EBV gB activation [74–77]. The gB is
generally considered the final executor of fusion in all herpesvirus strains. The specificity
of the gB activation in membrane fusion is determined by two gL residues (gL-Q54 and
gL-K94), potentially through direct interactions with gB [74]. The protein gp42 is required
for B cell infection and is unique to EBV. This protein binds to human leukocyte antigen
(HLA) class II on the B-cell surface, contacts the gHgL complex, and facilitates viral entry
into B lymphocytes [78].

Despite employing a sufficient workforce, the development of potential drugs without
involving any dry lab approaches is costly and highly time-consuming. It takes approxi-
mately 10–15 years to bring a new drug into the market with a remarkable efficiency rate.
Utilising CADD, we can strategically pick up a huge number of compounds to check their
potentiality in a virtual environment. In this way, we can filter compounds with a high
probability of success in the progressive stages, sparing unnecessary costs and time for the
experimental part while following an efficient scientific method. Therefore, computer-aided
drug design (CADD) processes have become highlighted innovations in pharmaceutical
companies and research groups [79–81]. Structure-based drug design (SBDD), one of the
two types of CADD processes, involves the evaluation of ligand interactions in the protein
binding site of the 3D crystal structure of the protein [82,83]. Medicines designed using
CADD processes are effective in biological environments. Therefore, CADD can be accepted
as a good choice for quick and efficient drug design against pathogenic viral proteins.

In this study, we employed 628 natural compounds against pocket 2 of the target
protein gL, as suggested by CASTp 3.0 and the FTmap server [50,66]. The FTmap server
was considered to determine amino acids from the overall protein molecule, which can
form many hydrogen bonds and non-bonded interactions. Molecular docking is a must in
CADD methods to identify probable binding modes and interactions of ligands to a binding
site of a specific protein according to the protein conformation and presence of amino acid
residues [84,85]. We docked and screened the compounds against our target protein with
a fixed grid box and considered the best four compounds according to higher binding
affinity. The chosen compounds with PubChem CIDs: 4835509 (CHx-HHPD-Ac), 2870247
(Cyh-GlcNAc), 21206004 (Hep-HHPD-Ac), and 51066638 (Und-GlcNAc) showed docking
scores of −5.8 kcal/mol, −5.7 kcal/mol, −5.6 kcal/mol, and −5.5 kcal/mol, respectively.
In this case, although the compounds were structurally similar, it is proved that small
differences in the functional groups of the compounds can produce different interactions
between the compounds and the binding sites. Interpreting the interactions between
the four compounds and the target protein, we found the presence of strong hydrogen
and hydrophobic bonds. Though the docking scores of the four compounds were not
sufficiently high, that does not eliminate them from the drug probability list. The docking
scores of the candidates are much better than the control ligand. Moreover, while a lower
docking score does not always mean zero potency of a compound as a drug molecule [86],
a higher docking score also cannot ensure the strength of a drug candidate in in vivo or
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in vitro assays [87]. Therefore, further investigation was carried out to reach a significant
conclusion about these four natural compounds.

The pharmacokinetic (PK) profile investigation of lead compounds is an essential step
in CADD processes. Due to poor PK profiles, many highly affinised compounds can be
eliminated from the top list of probable drugs. PK observes the metabolite kinetics of the
compounds in blood, tissues, cells, and organs. Absorption, distribution, metabolism, and
excretion (ADME) belong to the PK properties, which regulate the activity of a drug [88].
Virtual screening can be performed to filter biologically safe and secure compounds and
eliminate compounds with unpleasant properties to check the drug-likeliness of lead com-
pounds [89]. We evaluated Lipinski’s rule of five for the four best compounds. The rule
includes (i) the number of hydrogen bond donors should not exceed 5; (ii) the number of
hydrogen bond acceptors should not exceed 10; (iii) the molecular mass of the compound
should not exceed 500 Daltons; and (iv) the compound should possess an octal-water parti-
tion coefficient (logP) no greater than 5 [54,90]. Molecular weight affects the permeability
of the drug through the biological membranes. The ability of a compound to cross lipid
bilayer membranes of the human body depends on the number of hydrogen bond donors
and acceptors. LogP value, sectioned under lipophilicity, affects the absorption of the
compounds in the body; lower logP mediates higher absorption. We also measured the
number of rotatable bonds, water solubility (LogS), GI absorption, Caco2 permeability, BBB
permeability, P-glycoprotein (P-gp) substrate and inhibitor, and synthetic accessibility of
the best four compounds chosen by molecular docking. The oral bioavailability of a drug
relies on the number of rotatable bonds in the molecule. The solubility of the drug com-
pounds depends on the LogS value, which should always possess a lower value [53].
According to the LogS (ESOL) scale, solubility classes are insoluble < −10 < poorly
soluble < −6 < moderately soluble < −4 < soluble < very soluble < 0 < highly solu-
ble [91]. Human epithelial colorectal adenocarcinoma cells constitute the Caco-2 cell line.
Caco-2 permeability is measured to investigate the absorption of orally administered drugs
through the human intestinal mucosa [55]. The BBB protects the brain from unwanted
compounds and side effects. So, BBB permeability is also a significant term that minimises
the side effects of drugs and enhances working capability [53]. The P-glycoprotein (P-gp),
an ATP-binding cassette (ABC) transporter, acts as a biological barrier that inhibits the
entry of toxins and xenobiotics and eliminates them. The P-gp substrate and inhibitor are
analysed to check the compound’s ability to be transported by or to inhibit P-gp [55]. All
the compounds passed most of these examinations, proving to be eligible for the human
body as an efficient drug molecule.

Compounds can harm different metabolic processes inside the human body and gen-
erate abnormal activities. The doses and properties of a compound that can result in organ
failures are predicted through toxicity tests. In silico toxicity testing is a popular step in
rational drug design, implying CADD [92]. Toxicity reports of compounds help determine
the perfect dose and the safety of a drug molecule. We determined the toxicity properties,
including AMES toxicity, hepatotoxicity, carcinogenicity, oral rat acute toxicity (LD50), oral
rat chronic toxicity (LOAEL), skin sensitisation, etc., for the best four compounds of our
analysis. AMES toxicity describes the mutagenicity of a compound; mutagenic compounds
are hazardous and can act as carcinogens. The value of LD50 describes the dose of a com-
pound that can kill 50% of test animals; it also helps measure acute toxicity. Hepatotoxicity
is essential to prevent liver injury induced by toxic molecules [55]. After analysis, we found
all four molecules to be non-toxic to the human body and, hence, considered them for
further analysis.

Molecular dynamics (MD) simulation is a vital computational tool to predict the
durability and dynamic nature of protein–ligand complexes. It has several parameters, in-
cluding RMSD, RMSF, rGyr, SASA, protein–ligand interactions, etc., that can help scientists
understand the underlying interactions between the ligands and their receptors, as well
as their strength, mobility, and behaviour in the presence of different solvents. This is an
essential method in computer-aided drug discovery in which the stability of the complex
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of a selected ligand and a target protein indicates the strong binding of the ligand with
the target protein. Here, we employed all of the parameters mentioned in a 100 ns MD
simulation to determine the stability of our selected four best compounds with the target
protein gL compared to the control ligand. We calculated the RMSD values for the chosen
ligands to understand the deviation of the protein’s backbone structure upon binding with
our ligands in comparison with its starting pose. Generally, an average RMSD value of a
complex falling between 1 and 3 Å indicates a conformationally stable complex, whereas
more significant than this range suggests changes in the conformation of the protein upon
binding with the ligands, which are unfavourable [93–95]. Our MD simulations provided
a detailed interpretation on how very similar compounds can still bind in completely
different binding modes. It is of utmost importance to understand these distinctions when
contemplating protein–ligand interactions in a more precise manner. In this regard, our two
compounds, CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc), have average
RMSD values that fall between 1 and 3 Å pointing to a stable conformation of the protein
gL upon binding with these ligands separately. Moreover, the average RMSD values for
both of these ligands indicate better results than the average RMSD value for the control
ligand, which is another factor in considering them as a good drug candidate against EBV.
However, the other two selected compounds, CID: 21206004 (Hep-HHPD-Ac) and CID:
51066638 (Und-GlcNAc), have average RMSD values greater than 3 Å, and their results are
also not satisfactory compared to the control result. Furthermore, we applied the RMSF
parameter during the MD simulation and estimated the average RMSF values for the four
compounds and control. The RMSF values provided us with the fluctuations of protein
residues upon binding with the specific ligands. In our study, CID: 4835509 (CHx-HHPD-
Ac) and CID: 2870247 (Cyh-GlcNAc) compounds had the lowest average RMSF values and
almost equal values compared to the average RMSF values of the control. These results also
suggest fewer fluctuations of the residues of the gL upon binding with these compounds,
predicting the stable complexes between the protein and the ligands. On the other hand, the
other two compounds, CID: 21206004 (Hep-HHPD-Ac) and CID: 51066638 (Und-GlcNAc),
had higher average RMSF values than the values of the control, especially CID: 51066638
(Und-GlcNAc), which showed the highest fluctuations throughout the simulation period.
Furthermore, the rGyr and SASA values of the CID: 4835509 (CHx-HHPD-Ac) and CID:
2870247 (Cyh-GlcNAc) were much better than those of the CID: 21206004 (Hep-HHPD-Ac)
and CID: 51066638 (Und-GlcNAc) compounds. The SASA values of both CID: 4835509
(CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc) compounds were also superior to the
value of the control ligand. Considering these analyses, it could be said that the strength of
the interactions between the first two compounds (CID: 4835509 (CHx-HHPD-Ac) and CID:
2870247 (Cyh-GlcNAc)) and the protein gL of EBV is comparatively high and could produce
highly stable complexes. Therefore, the compounds CID: 4835509 (CHx-HHPD-Ac) and
CID: 2870247 (Cyh-GlcNAc) have the highest degree of compatibility against the gL of
EBV and could inhibit the EBV. On the other hand, although the two compounds CID:
21206004 (Hep-HHPD-Ac) and CID: 51066638 (Und-GlcNAc) had high docking scores
against the gL protein of EBV, the MD simulation analysis showed that their complexes
with the protein are considerably unstable compared to the control ligand as well as to
the other two selected compounds. Therefore, they might not be able to inhibit the EPV.
Nevertheless, these analyses were based on computational tools that could only predict
the results. Hence, more in vitro and in vivo studies are needed to confirm the findings of
this study.

5. Conclusions

Glycoprotein L is shown to be a highly potent target for inhibiting EBV infection be-
cause of its multifunctionality. It is an integral part of the gHgL complex and plays a crucial
role in the virus fusion of B-cells and epithelial cells. For successful attachment and fusion,
different structural conformations of the gHgL complex are essential [19,73]. According
to the theoretical study, the gHgL complex requires gL for its orientation and proper fold-
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ing [75–77]. Until now, no effective drugs have been identified to target gL protein and
prevent EBV. In our current study, we performed structure-based virtual screening and
identified four drug-like natural compounds with PubChem CID: 4835509 (CHx-HHPD-
Ac), PubChem CID: 2870247 (Cyh-GlcNAc), PubChem CID: 21206004 (Hep-HHPD-Ac),
and PubChem CID: 51066638 (Und-GlcNAc) having higher binding affinity ranging from
−5.6 to −5.8 kcal/mol towards gL. However, the MD simulation results suggested that
the CID: 4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc) compounds formed
more stable complexes with the gL protein than the others. These results indicate that CID:
4835509 (CHx-HHPD-Ac) and CID: 2870247 (Cyh-GlcNAc) might be the better drug candi-
dates against the EBV and can inhibit the EBV infection. Additionally, all four compounds
showed harmless ADMET properties. The binding affinities and interaction characteristics
analysed in our study support that these two compounds had the potential to inhibit the
function of gL. They may block the fusion process of EBV and may contribute to developing
and optimising new efficient EBV drugs. However, further research is needed to confirm
the findings in the laboratory settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13110928/s1, Supplementary Table S1: The list of top
10 pockets on our target protein glycoprotein L along with their amino acid residues as predicted
by the CASTp 3.0 server, Supplementary Table S2: List of the top 10 amino acids in glycoprotein L
contributing to hydrogen-bonded and non-bonded interactions according to the FTmap server.
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