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A B S T R A C T

The metaphor of the Medawar zone describes the relationship between the difficulty of a scientific problem and
the potential payoff of solving it. This zone represents the realm where questions offer high benefits relative to
the effort required to address them. By harnessing the power of mechanistic modelling, scientists can navigate
towards this zone, moving beyond known unknowns to discover unknown unknowns. This requires models to be
realistic and reliable. Model usefulness, impact, and predictive power can be enhanced by achieving intermediate
model complexity, where the trade-off between the realism and tractability of a model is optimised. To achieve
these goals, we use the pattern-oriented modelling strategy (POM) to direct research into the Medawar zone by
steering model structure towards intermediate complexity. We illustrate this strategy with a detailed conceptual
process. Using example models from agri-ecological systems, we demonstrate how intermediate complexity can
be attained through POM, and how pattern-oriented models of intermediate complexity that reproduce multiple
patterns can uncover both known unknowns and unknown unknowns, which ultimately advances our under-
standing of complex systems and facilitates groundbreaking discoveries. In addition, we discuss the multidi-
mensionality of the Medawar zone in the context of modelling philosophy and highlight the challenges and
imperatives for achieving coherence in the modelling discipline. We emphasize the need for collaboration be-
tween end-users and modellers and the adoption of systematic modelling strategies such as POM.

1. Introduction

In his book ‘The Art of the Soluble’, Sir Peter Medawar (1967) de-
scribes the hump-shaped relationship between the degree of difficulty of
a scientific problem and the payoff that can be achieved by solving it
(Fig. 1). Solving an easy problem involves little or no risk. The necessary
concepts and tools are readily available, and the processes are well
understood, but solving such a problem is usually associated with a
low-impact outcome, often being a piece of the jigsaw puzzle rather than
the big picture, and rarely a breakthrough in itself. On the other hand,
solving difficult problems can be expected to have a high impact, but the
concepts, tools, and understanding required to solve the problem often
are not yet available or fully developed. Attempting to solve such a

problem carries a high risk of failure and therefore no payoff.
By considering this trade-off between difficulty and expected payoff,

scientists can thus ask the ‘right questions’ that offer the highest benefit
per unit of effort. These questions are located within a zone in Med-
awar’s diagram (Fig. 1), where solving them can lead to the maximum
payoff. About two decades later, Loehle (1990) referred to this zone as
the ‘Medawar zone’ in his seminal article about creativity in science.
Innovative and productive scientists are supposed to ask questions that
lead into the Medawar zone. However, a pertinent question arises:
where exactly is the maximum of the Medawar zone, and is it possible to
shift it to the right, towards more difficult and challenging problems?
Loehle (1990) suggests choosing questions that reach beyond the
mundane, because these tend to have a high impact. He sees true
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innovation as the ability to recognize such problems when others do not
even realise they exist.

It thus appears that the quest for the Medawar zone is related to the
fundamental challenge in science to move on from known unknowns to
unknown unknowns. Such hidden problems (unknown unknowns) are
likely to be a pathway to breakthroughs in science. They can hide truths
or outcomes that have potentially high impacts. Scientists, being human,
however, tend to intuitively rely on known concepts when addressing
complex problems. In linguistics, this phenomenon is termed ‘hypo-
cognition’, referring to the inability to perceive a problem or phenom-
enon due to the lack of a word or concept for it (Wu and Dunning, 2018).

The only pathway towards unknown unknowns seems to be undi-
rected, serendipitous or so-called blue-sky research, but with no cer-
tainty of success or contained timeframe. But what if we did not have to
wait around for these unknown unknowns to become exposed acci-
dentally? Here, modelling holds great potential as it allows us to play
with ideas in a rigorous way, thereby leading to new insights into phe-
nomena or problems that cannot at present be observed or otherwise
explained (Mankin et al., 1975).

A model is a purposeful, simplified representation of a real system
(Starfield et al., 1990), and modelling is the process of finding such a
representation that allows us to answer a specific question or solve a
specific problem (Grimm and Railsback, 2005). Therefore, by itself,
modelling usually is a tool to discover known unknowns.

While early scientific models, in particular in physics, used the lan-
guage of mathematics, computational models, also known as simulation
models, have gained popularity in recent decades, due to the increasing
availability of computing power. These models are computer programs
that simulate hypothesised mechanisms or processes dynamically by the
use of algorithms, equations, and probabilistic rules (Cabral et al.,
2017). The advantage is that they allow key features of real systems to be
fully considered, such as space, heterogeneity, and stochasticity, which
are ignored in simple mathematical models (Evans et al., 2013).
Therefore, computational models can serve as virtual experimental
systems that can be manipulated more rapidly than their real counter-
parts (Peck, 2004).

Now, if a model is rich enough in structure and mechanisms
(DeAngelis and Mooij, 2003), it may not only be able to reproduce
known patterns, but also be able to predict patterns, also referred to as

stylised facts, regularities, or signals, that were not considered, or not
even known, while the model was being constructed. There is thus no
risk that the model was adjusted via tuning of parameters and submodels
to look right. While such secondary or independent predictions of
models have been considered the ‘gold standard’ for model validation
(Augusiak et al., 2014; Grimm et al., 2005), they are, in fact, muchmore.

When a simulation model produces patterns or phenomena that have
not yet been observed or studied in the real world, these can be verified
through experimentation or new data exploration, and lead to what can
be called ‘emergent unknown questions’. Importantly, these questions
can direct new ventures in field or laboratory studies that have a greater
likelihood of success and a high payoff. In this way, models can be used
to guide researchers to identify deeper scientific research questions,
shifting the maximum of the Medawar zone to the right, i.e., to reveal
unknown unknowns and transition them to known unknowns.

However, to generate unknown patterns or phenomena that can be
empirically confirmed, models need to be realistic enough to capture the
key mechanisms underlying the internal organisation of a system. Re-
alism, however, poses a double-edged sword for models: increasing re-
alism enriches models with intricate structures and mechanisms
(DeAngelis and Mooij, 2003), thereby offering more opportunities to
compare model outputs with empirical data, but increased realism also
comes with considerable or even prohibitive costs in terms of increased
model complexity, which limits parameterisation, testing, and
understanding.

In the following sections, we first emphasise the importance of
achieving intermediate model complexity as the basis for optimal model
performance, i.e., optimal model payoffs such as usefulness, predictive
power, and impact. Next, we present a conceptualisation of the pattern-
oriented modelling (POM) strategy (Grimm et al., 1996, 2005; Grimm
and Railsback, 2012; Wang et al., 2018; Wiegand et al., 2003) that helps
guide research into the Medawar zone by steering model structure to-
wards intermediate complexity. Then, we demonstrate how intermedi-
ate complexity can be attained through POM, using several example
models from agri-ecological systems. Using two of these example models
with mid-level complexity, we further showcase the value of POM in
maximising the chances of investigating known unknowns, discovering
unknown unknowns, and transitioning from newly discovered unknown
unknowns to known unknowns. By following this conceptualisation of
the POM strategy, scientists can achieve high payoffs from their
research. Next, we describe the multidimensionality of the Medawar
zone in the context of modelling philosophy. Lastly, we discuss the
challenges and imperatives for achieving coherence in the modelling
discipline from the perspectives of both end-users and modellers.

2. Attainment of optimal model performance

Well-validated simulation models (Augusiak et al., 2014) with the
appropriate level of detail are likely to provide useful insights and to
make valuable predictions (Brooks and Tobias, 1996; Fulton et al., 2003;
Getz et al., 2018; Grimm and Railsback, 2012; Grimm et al., 2005;
Lawrie and Hearne, 2007; Van Nes and Scheffer, 2005), often with
practical applications. Yet, despite the broad use of simulation models in
many fields, there is an ongoing discussion regarding the appropriate
level of detail required for modelling studied systems (Bolliger et al.,
2005; Chwif et al., 2000; Evans et al., 2013; Hong et al., 2017; Kimmins
et al., 2008; Larsen et al., 2016; Paola and Leeder, 2011; Paudel and
Jawitz, 2012; Schwartz et al., 2017; Sivapalan, 2003; Sun et al., 2016).
This discussion is important because the answer impacts the ‘structural
realism’ of models, i.e., the likelihood that a model reproduces empirical
observations for the right reasons (Grimm and Railsback, 2012; Grimm
et al., 2005; Wiegand et al., 2003). Structural realism is achieved by
reproducing observable patterns, as seen in the natural system, through
selecting key factors, i.e., those which are the most significant drivers in
the system’s structure and dynamics. This selection is informed both by
data and by the development and testing of hypotheses related to the

Fig. 1. The difficulty of a scientific problem vs. the payoff for solving the
problem in terms of its impact and recognition. The ‘Medawar zone’, as
depicted by Loehle (1990), refers to the zone of problems or questions where
the highest benefit per unit of effort is achieved, striking a balance between
difficulty and payoff.
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research questions and systems under study (i.e., model purpose).
In terms of outcomes, modellers addressing real-world problems

should look for useful and testable predictions. For example, improve-
ments in pest management in agri-ecological systems largely rely on the
predictive power of models. Realistic model outputs can enable stake-
holders to make informed management decisions (Busi et al., 2020;
Koralewski et al., 2020; Parry et al., 2017; Wang et al., 2019; Wang
et al., 2021a, Wang et al., 2021b). However, realistic computational
models tend to be relatively complex (Evans et al., 2013; Grimm, 1999;
Janssen and Ostrom, 2006; Lorscheid and Meyer, 2016; Rounsevell
et al., 2012; Sun et al., 2016; Thiele and Grimm, 2015). When model
structure (entities, state variables, scales, and processes) becomes un-
necessarily complex for model purpose, then not only model construc-
tion but also model performance can suffer in terms of usefulness and
predictive power.

Grimm et al. (2005) therefore suggest that models should be neither
too simple nor too complex, which corresponds to both the trade-off
described in Fig. 1 and Einstein’s famous quote that ‘everything
should be made as simple as possible, but not simpler’. If a model is too
simple, it runs the risk of excluding essential elements of a real system,
resulting in unreliable predictions and a lack of insight into relevant
research questions. By contrast, an overly complex model will be diffi-
cult to parameterise and test, thereby suffering from reduced usability
and predictive power. Its analysis will become unmanageable due to
excessive unnecessary detail. For example, increased complexity in
model structure requires more information (e.g., new parameters and
submodels) that cannot often be determined from the currently avail-
able data sets. This leads instead to increased uncertainty and noise in
model outputs.

In addition, higher-complexity models are often designed to closely
mimic real-world systems, frequently relying on detailed imposed data
when the necessary data are unavailable or when mechanistic under-
standing is lacking. These models might overly restrict the studied sys-
tem’s potential behaviours to only those previously observed or
understood. As a result, these models could become ‘blind’ to unusual
events or unexpected shifts in behaviour that could occur in real-world
systems. In such cases, these higher-complexity models will be especially
difficult to interrogate for unknowns, due to the mismatch between
model outputs and experimental observations. Therefore, this limits the
model’s usefulness and impact in guiding decision-making and
advancing scientific understanding.

The relationship between model complexity and model payoff can be
understood in the context of the Medawar zone (Fig. 1) by relabelling
the x-axis to represent model complexity and the y-axis to represent
model payoff (e.g., model usefulness and predictive power, and model
impact) (Fig. 2). There is a trade-off between ‘realism’ and ‘tractability’
of a model versus its complexity. To optimise this trade-off, systematic
modelling strategies such as POM are needed.

3. A conceptualisation of POM leading to the Medawar zone

POM has been proposed to optimise the trade-off between realism
and tractability by finding the appropriate level of complexity for model
structure, targeting intermediate complexity, or as we are labelling it,
the Medawar zone in modelling (Fig. 2). POM is described as using
multiple patterns observed at different scales and organisational levels
of a real system to design, select, and parameterise models of complex
systems, thereby identifying the appropriate level of complexity and
capturing the mechanisms underlying the dynamics of the studied sys-
tem (Grimm and Railsback, 2012). POM is not a particular technique or
invention; rather, it encapsulates the collective experience from models
developed with consideration of multiple observed patterns. Although
many experienced modellers have employed this approach, they often
have done so implicitly. Thus, POM was established as an explicit,
coherent, and effective strategy for creating structurally realistic models
that strike a balance between being overly simple and overly complex.

Consequently, we propose a conceptualisation of POM that illustrates
how it can shape model structure towards mid-level complexity and
guide research into the Medawar zone (Fig. 3).

In this conceptualisation, there are two key elements: (1) POM leads
to mid-level model complexity, and (2) the resultant models with in-
termediate complexity generate reliable and robust multi-scale model
outputs, facilitating the exploration of known unknowns and the dis-
covery of unknown unknowns. As illustrated in Fig. 3, pattern-oriented
models are constructed to address specific questions and use a set of
multiple patterns at various scales as filters to quantify and select model
structure during the processes of model design, development, and
refinement (including verification and parameterisation). As a result,
these models tend to include the most essential entities, processes, and
scales for representing the systems being modelled with regard to the
specific questions, which typically leads to mid-level model complexity.

Following the scheme in Fig. 3, a model is first designed, developed,
and refined to reproduce the patterns that are intended to be reproduced
(Patterns 1 – n, Fig. 3), and is then analysed with sensitivity and
robustness analysis. After this ‘model output verification’ (Grimm et al.,
2014), further exploration of model outputs aims to identify additional
patterns (Patterns α – ω, Fig. 3), which were not used for model design,
development, or refinement, and ideally were not even known (to the
modellers) beforehand. If these independent or secondary predictions
are subsequently confirmed by data or observations, this is often
referred to as ‘validation’. However, since this term is ambiguous,
Augusiak et al. (2014) and Grimm et al. (2014) suggested calling it
‘model output corroboration’.

As an example of independent model predictions that matched pat-
terns subsequently confirmed by existing data or observations, we focus
on the beech forest model (BEFORE). BEFORE predicted that in natural
beech forests, the age difference between neighbouring canopy trees is
on average 60 years (Rademacher et al., 2001); this pattern was
confirmed by data from surveys carried out decades earlier. This is an
example of patterns that had been previously observed but not perceived
as containing important information, and hence not fully understood.
Thus, these patterns were known unknowns. In this case, the model had
the potential to disentangle mechanisms underlying these patterns

Fig. 2. The ‘Medawar zone’ in the context of modelling philosophy adapted
from Grimm et al. (2005) and Wiegand (2017): the trade-off between realism
(black solid curve) and tractability (black dash curve) of a model versus its
complexity determines payoff of the model (light grey curve). An increase in
model complexity leads to greater realism but reduced tractability. The light
grey shaded area is the zone of intermediate complexity, i.e., the area where
realism and tractability are balanced and hence the payoff is optimised.
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(known unknowns) observed in the real world and then turn them into
known knowns, as in Rademacher et al. (2001).

In contrast, it may be that the patterns identified as independent
predictions in model outputs cannot yet be confirmed by data or ob-
servations in the literature (e.g., Pattern χ, Fig. 3). Such new patterns can
be considered candidates for being unknown unknowns, which can
potentially be tested and confirmed empirically. This allows for the
allocation of time and resources to experiments and data exploration to
reveal unknown but potentially important mechanisms. These unknown
unknowns can thus subsequently be transformed into known unknowns
for further exploration.

Attaining mid-level complexity in model structure is essential for
generating reliable and robust model outputs. By exploring these model
outputs, it is likely to address known unknowns and discover emergent
unknown unknowns. Therefore, POM facilitates higher payoffs in
research by driving it towards the Medawar zone.

4. POM steering model structure towards intermediate
complexity: demonstrations with example models

To demonstrate the POM process, we first look at how POM directs
model structure towards the Medawar zone, i.e., towards intermediate
complexity, in terms of realism and tractability, using models of agri-
ecological systems (Table 1).

4.1. Modelling development of branching architecture in horticulture tree
crops

Growing avocado (Persea americana, cv. Hass) has global economic
significance (Bost et al., 2013). The growth of avocado trees has,
therefore, been studied in great detail (Thorp and Sedgley, 1993), which
provides the basis for constructing models aimed at understanding and
predicting the branching architecture of the trees and the determinants

Fig. 3. A conceptualisation of pattern-oriented modelling (POM) illustrating how it can drive research into the Medawar zone. The terms ‘model output verification’
and ‘model output corroboration’ are adopted from the TRACE document (Ayllón et al., 2021; Grimm et al., 2014; Schmolke et al., 2010). Model output verification
involves comparing model outputs to the patterns and data that a model was meant to reproduce. In contrast, model output corroboration refers to the identification
of patterns in the model that were not used during model design, development, or refinement (including verification and parameterisation); these patterns are thus
considered independent predictions. Corroboration of these patterns with existing or new data or experiments indicates a high level of realism and trustworthiness of
the model.
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of fruiting and yield. Incorporating key features such as space, hetero-
geneity, and stochasticity into mathematical or statistical models is
challenging due to the complex interactions between plant architecture
and the physical and biological processes driving plant growth at
different spatial and temporal scales. Therefore, two computational
models (i.e., functional-structural plant models: Avocado-S and

Avocado-M; Table 1) of the branching architecture of avocado (Wang
et al., 2016b, 2018) were constructed using POM to attempt to capture
the dynamic development of this branching architecture under changing
environmental conditions. These models were programmed with the
L+C modelling language (Karwowski and Prusinkiewicz, 2003; Pru-
sinkiewicz et al., 2007b) in L-studio (Karwowski and Prusinkiewicz,

Table 1
The description of the example models from agri-ecological systems in terms of realism, tractability and complexity.

Model name Description Realism Tractability Complexity Reference

Avocado-S The model was constructed in L-studio to simulate the dynamic development of avocado
branching architecture. Physiological parameters like thermal time (average degree days in a
day), phyllochron and the size of leaves or internodes were selected solely for visualisation,
and the growth rate of inflorescences, leaves and internodes was assumed to be linear.
To reproduce multiple observed patterns (e.g., the number of nodes for leaves and leaf bracts,
and the number of sylleptic and proleptic shoots) at various scales for model output
verification, several parameters were inversely determined through model parameterisation.
After model output corroboration, the model could only reproduce the architecture patterns
such as the number of nodes for leaves and leaf bracts and the proportions of sylleptic and
proleptic growth units, the occurrence of third-order growth axes, but it was not capable of
predicting the growth patterns such as shoot length and leaf area.

Low High Simple Wang et al.
(2016b)

Avocado-M The model was constructed in L-studio to simulate the dynamic development of avocado
branching architecture, incorporating photosynthesis and adaptive carbon allocation at the
organ level. Carbon allocation was modelled as being dependant on current organ biomass
and the sink strength of each organ type.
For model output verification, the model was parameterised using a set of observed patterns,
such as the number of sylleptic and proleptic shoots and growth units.
For model output corroboration, independent model predictions were compared with a
different set of empirical patterns from various field studies that were not used for
parameterisation and verification. These model predictions, such as the length of growth
flushes, leaf area, and vegetative flush durations, were consistent with the observed patterns
in the real world. The model successfully predicted these patterns for model output
corroboration. Therefore, the model reproduced and predicted not only the architecture but
also growth patterns that were observed empirically at various scales.

Medium Medium Intermediate Wang et al.
(2018)

Qfly-S The model was constructed in 3D NetLogo to simulate Qfly movement and distribution on
host plants, based on hypothesised behavioural rules associated with insect movement
choices.
The spatial unit in the model is based on ‘vegetation cubes’, which are relatively coarse. The
model was used to assess whether such coarse resolution is appropriate for simulating Qfly
movement and distribution on host plants, and to investigate which other types of research
questions it is best suited to address.
The model predicted the observed patterns (i.e., Qflies visited more in the mid to upper
canopy), which is consistent with the published literature. The model can be better used to
investigate research questions such as insect spatial population distribution on plant canopies
and how different tree architectures affect their behaviour.

Low High Simple Wang et al.
(2015)

Qfly-M The model was constructed in 3D NetLogo to simulate movement patterns and spatial
distributions (e.g., across canopy regions and trees) of Qfly visits on foliage and fruits within
fruiting plant canopies with different architectures. The model incorporated insect movement
decisions underlying host fruit-seeking behaviour.

Both qualitative and quantitative observed patterns, such as most visits occurring in the inner
part of the tree, most Qflies leaving the tree within 15 min, and the number of visits per Qfly
on tree foliage, were used for model output verification.
After model parameterisation and output verification, the model was used to run simulation
experiments for model output corroboration. The model successfully generated independent
predictions related to the behavioural ecology of Qflies in plant canopies (e.g., fewer Qflies
found in the lower canopy compared with the middle and upper canopy in closed-canopy
trees, and significant differences in movement patterns of Qflies among different types of tree
architecture: closed-canopy vs. vase-shaped), which matched the observations from the
literature. In addition, it predicted unknown patterns (e.g., Qflies visiting host fruit in total
more in vase-shaped canopies than in closed-canopies) that were later tested and confirmed
in the field. Such independent or secondary and testable predictions are strong indicators that
the model is structurally realistic for the system being studied.

Medium Medium Intermediate Wang et al.
(2016a)

Qfly-C The model was constructed in L-studio to simulate Qfly movement and distribution on host
plants, based on hypothesised behavioural rules associated with insect movement choices.
The model featured detailed plant architecture, with individual leaves and stem segments. It
was used to assess whether such fine resolution is appropriate for simulating Qfly movement
and distribution on host plants, and to investigate which other types of research questions it is
best suited to address.
The model predicted the observed patterns (i.e., Qflies visited more in the mid to upper
canopy), which is consistent with the published literature. However, the predictions were not
superior to those of Qfly-S. The model is better suited for examining how foliage density and
foliage position affect Qfly behaviour and for simulating landscape scales, such as orchards
with multiple trees. This is due to the fine resolution as well as the enhanced computational
capability and efficiency of L-studio.

High Low Complex Wang et al.
(2015)
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2004; Prusinkiewicz et al., 2000) using L-systems (Lindenmayer, 1968a,
b; Prusinkiewicz et al., 1997) to create a 3D ‘virtual plant’ representa-
tion (Hanan, 1997; Room et al., 1996) of this branching architecture.

The two models have different levels of complexity in the submodel
that represents the process of carbon allocation for plant growth.
Avocado-S (Wang et al., 2016b) had a simple submodel where the
growth rates of organ components were assumed to be linear. This
model could reproduce the architecture patterns, but was not capable of
predicting the growth patterns such as shoot length and leaf area, which
were crucial for addressing the research questions. In contrast, to
describe carbon allocation in plants, Avocado-M (Wang et al., 2018)
incorporated the sink regulation approach (Marcelis and Heuvelink,
2007), which was selected because it was less complex than a transport
resistance approach (Prusinkiewicz et al., 2007a). The latter requires
many difficult-to-measure parameters (Lacointe, 2000; Reynolds and
Thornley, 1982) for avocado trees, as well as significant time and re-
sources for data collection and implementation within the L+C model-
ling language.

Avocado-M can hence be considered a mid-level complexity model.
It successfully reproduced and predicted both the architecture and
growth patterns that were observed empirically at various scales. Thus,
instead of using the transport resistance approach, the sink regulation
approach did not make the model structure unnecessarily complex, and
made it more computationally tractable for the research questions being
studied. Specifically, it did not increase the number of parameters by
including unnecessarily difficult-to-measure ones. This helped avoid
adding significant uncertainty to the model, which could lead to unre-
liable model predictions.

4.2. Modelling movement patterns of pest insects in canopies of
horticulture tree crops

To maximise fruit yield, sound management practices require not
only a better understanding of tree growth but also knowledge of how to
reduce the occurrence of pest insects such as the Queensland fruit fly
(Qfly), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (Balagawi
et al., 2012; Clarke et al., 2011; Senior et al., 2017). Qfly is a major pest
that infests many varieties of commercial fruit and vegetable crops,
including avocado (Hancock et al., 2000, p. 39). This insect pest relies on
movement patterns to find fruit in which to lay eggs and successfully
reproduce, thereby ruining the fruit. To address this, three 3D spatially
explicit individual-based models (Qfly-S, Qfly-M, and Qfly-C; Table 1)
with different levels of detail and complexity have been developed using
POM to simulate Qfly behaviour and movement patterns on host plants.

The first two models, Qfly-S and Qfly-C, were built on different
software implementation platforms (Wang et al., 2015). Qfly-S was built
using NetLogo (Wilensky, 1999), where vegetation was represented as
cubes, while Qfly-C was built in L-studio using the L+C modelling lan-
guage and L-systems, which provided more detailed plant architecture
with individual leaves and stem segments. Qfly-S and Qfly-C were then
compared to determine the appropriate level of detail required for
modelling such a targeted system (Wang et al., 2015). In addition, Qfly-S
and Qfly-C used completely different submodels for representing the hop
behaviour of Qflies. Qfly-S used NetLogo’s built-in functions as simple
insect behavioural rules for this process, whereas a complex method
aiming for the better outcomes (i.e., a ray tracing algorithm from
computer science), was applied in Qfly-C to represent the sensory aspect
of Qfly hop behaviour.

Comparison of Qfly-S and Qfly-C showed that they had the same
output patterns regarding the spatial population distribution in the plant
canopy, indicating that neither is superior in terms of the model outputs.
Qfly-C, the more structurally complex model (i.e., more detailed plant
architecture with a complex submodel and additional parameters) did
not result in better alignment with the observed patterns when con-
trasted with the simple Qfly-S. In addition, the NetLogo model (Qfly-S)
was relatively easy to build with many built-in functions and user-

friendly graphical interfaces, which increased its computational tracta-
bility. In contrast, the L-studio model (Qfly-C) required a higher level of
computer science knowledge, especially computer graphics and pro-
gramming languages.

Therefore, Qfly-S was chosen to be further developed into a model
(Qfly-M) with a more detailed submodel representing host fruit-seeking
behaviour (Wang et al., 2016a). This makes the model moderately
complex, compared to the simple NetLogo model (Qfly-S), but less
complex than the L-studio model (Qfly-C).

5. POM directing research into the Medawar zone:
demonstrations with example models

The mid-level complexity models (Avocado-M and Qfly-M; Table 1)
produced reliable and robust outputs and demonstrated strong predic-
tive power (Wang et al., 2016a, 2018). This provided answers to known
unknowns and uncovered unknown unknowns, thereby driving research
towards the Medawar zone by shifting the maximum payoff to the right
through the use of intermediate complexity models to address
high-impact questions (Fig. 1).

5.1. Exploration of answers to known unknowns

The competition for carbon between developing fruitlets and
developing leaves on indeterminate floral shoots in avocado trees is a
key determinant of final fruit yields (Finazzo et al., 1994; Salazar-García
et al., 2013; Whiley, 1990). For this competition, a key point is the
so-called leaf sink–source transition, where the leaf ceases to be a con-
sumer and becomes a generator of resources. Understanding the timing
of this transition during a growing season allows the exploration of
methods for identifying horticultural practices that maximise fruit yield.
For example, if orchardists can remove leaves still acting as carbon sinks
and thus drawing resources away from fruit at some time during the
period of early fruit set, then final fruit yield should increase.
Avocado-M: the functional-structural plant model with intermediate
complexity (Wang et al., 2018), was used to investigate this known
unknown. Avocado-M was capable of predicting the timing of the leaf
sink–source transition successfully under changing environmental con-
ditions, which occurred at around 25 % leaf expansion. Hence,
computational modelling provided a suitable tool to move a significant
problem into the Medawar zone; in other words, to solve for a known
unknown.

A similar example addressed the widely used practice of orchardists
to prune tree canopies into different shapes to increase fruit yield and
reduce the occurrence of pests and diseases (Campbell et al., 1996;
Costes et al., 2013; Simon et al., 2007). Here too, a complex interaction
needs to be explored to compensate for limited knowledge regarding
how different types of tree architecture affect the movement patterns of
Qflies. To investigate how the flies find fruit and what can be done to
minimise their success, Qfly-M was used (Wang et al., 2016a). As an
output, this mid-level complexity model successfully predicted the
movement patterns of Qflies within plant canopies of different shapes.
So here again, a computational model served as a tool to move problems
into the Medawar zone and solve for known unknowns.

5.2. Discovery of emergence of unknown unknowns

A computer model that is sufficiently realistic can be considered a
‘virtual laboratory’, which can be manipulated via simulation experi-
ments more easily and quickly than experiments in the real world.
Therefore, previously unobserved interactions may be revealed,
providing researchers with important new directions for exploration:
towards unknown unknowns. While this potential of simulation models
is not new, in particular for discovering previously unknown Black Swan
events (Berner et al., 2017), the quest for unknown unknowns can be
conceptualised more explicitly, based on POM (Fig. 3). This allows us to
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focus more directly on the two axes of achievability and significant
outcomes (Figs. 1 and 2).

For example, the results generated from Qfly-M, led to outcomes that
refocused research within the discipline. Comparing different canopy
shapes, it turned out that female flies would spend more time on host
fruit in vase-shaped canopies. Then, for validation purposes, a field
study was designed and conducted as reported in Wang et al. (2016a),
and indeed, the observations from the field experiment were consistent
with the model predictions. The discovery that plant architecture plays a
significant role for insect behaviour in an insect for which most research
has concentrated on the olfactory and visual sensory systems, driven by
an intermediate level of complexity in the model, led to a significant
departure from the conventional research that aims at informing pest
management.

Once there was confidence in the ability of the model to uncover such
unknown unknowns, further predictive simulations were carried out.
The model predictions indicated that Qflies spend more time on host
fruit in the peripheral region of a closed-canopy, in contrast to those in
the central region; again, a finding related to an unknown unknown
within the discipline and a result that has the capacity to impact prac-
tices in horticulture.

For example, a potential outcome for orchardists from exploring a
high-density planting system for avocado orchards is to increase plant
yield, while at the same time reducing fruit loss from Qfly infestation.
Indeed, Menzel and Le Lagadec (2014), who reviewed decades of
research on the effects of orchard configurations on avocado yield, note
that despite the focus on the effect of light interception in different
canopy shapes, which is important for yield, orchard configuration is not
yet well enough understood for field-based recommendations to be
made, but that the use of high-density dwarf trees or flattened canopies
(espalier technique) looks promising.

An important feature of models developed following the POM
strategy (Fig. 3) is that they can be modified with limited effort to
answer related questions, or even be combined with other models. For
example, the beech forest model (BEFORE) did not keep track of dead
wood, but this was easily implemented with a few additional assump-
tions and parameters (Rademacher and Winter, 2003). In turn, this new
model version was used to explore how large and how frequently
available unmanaged ‘deadwood islands’ in managed forests would
have to be to ensure continuous availability of woody debris, which
provides habitat for a wide range of species (Jakoby et al., 2010).

For the models discussed here, Avocado-M could be modified to
explore light interception through manipulation of architecture (canopy
factors) and resultant yield in such configurations. In combination with
Qfly-M, a recommendation would be possible with regard to orchard
architecture. Since fruit flies prefer host plants with dense foliage that
provides them with resting sites and protection (Dalby-Ball and Meats,
2000, 2002; Hendrichs and Hendrichs, 1990; Kaspi and Yuval, 1999;
Raghu et al., 2004), an espalier (trellised) architecture canopy can be
hypothesised as reducing Qfly infestation. Such a flattened canopy has
the added benefit of removing the protection from winged predators,
which is afforded to fruit flies by the dense foliage of rounded canopies.
Such combined exploration of the effects of changing plant architecture
points toward recommendations for experimentation that should allow
confirmation by horticulturalists in the near future.

Qfly-M also suggests a new research focus regarding sensory
behaviour in pest management. Simulating the searching behaviour of
fruit flies involves specifying their detection radius (i.e., how close a fly
needs to be to a host fruit to respond to it). The importance of this
parameter was highlighted via this model, despite a lack of focus on this
topic for several decades of research. The model analysis also indicated
that the detection radius for fruit flies in plant canopies with the same
foliage density but different heights may vary significantly and is largely
associated with tree size. This agrees with the finding that animals tend
to optimise their movement strategies during foraging (Pyke, 1984).
This discovery shifts focus within the research discipline from a

previously unknown unknown to a now known unknown. As a result,
future research efforts should be able to achieve more rapid progress in
the theory of optimal foraging behaviour for pest fruit flies.

6. Multidimensionality of the Medawar zone in modelling

The shape and the location of the Medawar zone in the context of
modelling philosophy (Fig. 2) are bound by both realism and tracta-
bility. However, these two factors are not absolute, and consequently,
neither is the Medawar zone in modelling. The realism of a model needs
to be seen through comparison with the real world, and hence with what
we currently know about our system of interest and how precisely and
accurately we can describe it. Similarly, the tractability may vary with
the availability of resources. Therefore, the conceptual representation of
the Medawar zone (Fig. 2) can be expanded in various contextual di-
mensions to reflect the relative nature of the relationship between model
complexity and model payoff.

For example, a problem that was virtually intractable at the dawn of
the computer era may presently be trivial due to technological advances.
Thus, both the shape and the location of the Medawar zone in modelling
would differ between then and now. In addition to temporal aspects,
other dimensions could reflect crucial modelling considerations such as
model purposes, scales, spatial resolutions, computational time, and real
and model domains. One could represent the Medawar zone in a three-
(or higher-) dimensional coordinate system as a more complex ‘opti-
mality landscape’ with optimal peaks and suboptimal valleys (Fig. 4).
The multidimensionality of the Medawar zone in modelling suggests a
need for additional context-dependant optimality considerations.

7. Challenges and imperatives for coherence in the modelling
discipline

Modelling faces fundamental challenges in two main areas in terms
of disciplinary coherence. First, modelling provides services, so it must
ensure that models are capable of producing reliable outcomes for end-
users (Hamilton et al., 2022). For example, modelling enables biologists

Fig. 4. An example of a three-dimensional representation of the Medawar zone
in the context of modelling philosophy. The model payoff is determined by the
spatial resolution and the computational time. In this case, the Medawar zone in
modelling (i.e., the ideal mid-level complexity) refers to the two optimal peaks.
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to interact with their studied systems, generating insights and pre-
dictions that bring their research questions into the achievable (Med-
awar) zone (Loehle, 1990). This makes models more attractive as a tool.
However, only models with the right level of detail are likely to provide
answers to unusual research questions (known unknowns) or discover
unknown unknowns. Before model construction, the responsibility of
gathering suitable data often, for instance, lies with empirical re-
searchers in agri-ecological systems, which can result in the collection of
unnecessary data for modelling. With a clear understanding of the
required level of detail for model structure, modellers can guide
empirical researchers to gather targeted data, thereby avoiding wasted
time and effort. This can be facilitated by applying modelling strategies
such as POM for the formulation of assumptions and hypotheses on
model structure to refine the targeted data that need to be collected. This
highlights the importance of collaboration between end-users and
modellers in building reliable models and achieving disciplinary
coherence.

Second, just like any other discipline, modelling should function as a
coherent and unified whole, transcending individual practices. This re-
quires the adoption of a common or standard approach to modelling, i.
e., a systematic modelling strategy that modellers can rely on and that
allows modellers to gain confidence in their techniques and their ability
to develop reliable models (Jakeman et al., in press). In the long term,
such coherence helps move the discipline beyond the practice of ‘siloed
modelling’ (Grimm, 2023) and should facilitate the future development
of modelling strategies such as POM, which assists in finding model
structure with ideal mid-level complexity (Grimm and Railsback, 2012;
Grimm et al., 2005; Wiegand et al., 2003). This ideal mid-level
complexity offers the greatest likelihood of success in investigating
known unknowns and discovering unknown unknowns.

8. Conclusions

POM is a systematic modelling strategy that enables modellers to
identify the mechanisms underlying a studied system and thus deter-
mine the right level of complexity for model structure. When POM is
used for model design, development, and refinement, the resulting
model structure tends to be located in the Medawar zone in modelling.
This limitation of complexity associated with realism and tractability is
achieved through the use of multiple observed patterns at different
scales as filters (Grimm and Railsback, 2012; Wang et al., 2020). By
doing so, modelling can facilitate the investigation of known unknowns
and the discovery of unknown unknowns, ultimately transitioning them
to known unknowns. Therefore, such modelling holds significant po-
tential to drive research towards the Medawar zone in science, which
empowers researchers to make groundbreaking discoveries.
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charakterisiert Buchenurwälder? Untersuchungen der Altersstruktur des
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