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Abstract Genetic resistance to the parasitic root-
lesion nematode, Pratylenchus thornei, is one of 
the main management strategies cereal growers can 
use to minimise the impact of nematodes on winter 
cereal cropping. Screening of genotypes in the pres-
ence of P. thornei populations must provide reliable 
resistance measures that are realised under field con-
ditions. Adoption of the latest statistical methodolo-
gies can help to better differentiate between resistant 

and susceptible genotypes. In this study, post-harvest 
P. thornei population densities were measured from 
a collection of 17 field experiments, with varying 
starting P. thornei population densities, conducted 
between 2011 and 2018 in locations across the 
northern grain growing region of eastern Australia. 
The experiments primarily consisted of wheat geno-
types. The post-harvest P. thornei population densi-
ties were analysed across multiple environments in a 
linear mixed model framework, with a factor analytic 
structure used to model genotype by environment (G 
× E) interaction effects exclusively for wheat geno-
types. In general, genetic correlations between envi-
ronments were found to be high, indicating limited 
G × E interaction for resistance to P. thornei. Post-
processing of results using the factor analytic selec-
tion tools (FAST) method provided a measure of the 
overall performance for each wheat genotype, as well 
as a stability measure reflecting the consistency of 
the resistance status across environments. The FAST 
method quantified genotype resistance on a continu-
ous scale, better reflecting the nature of genetic resist-
ance based on a quantitative variable such as nema-
tode population density, and provided a statistically 
robust and informative means of aiding selection 
decisions for resistance to P. thornei.
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Abbreviations 
AIC  Akaike information criterion
CE  Controlled environment
eBLUP  Empirical best linear unbiased prediction
eBLUE  Empirical best linear unbiased estimate
FA  Factor analytic
FAST  Factor analytic selection tools
G × E  Genotype by environment
LMM  Linear mixed model
MET  Multi-environment trial
NVT  National Variety Trials
OP  Overall performance
qPCR  Quantitative polymerase chain reaction
RLN  Root-lesion nematode
RMSD  Root mean square deviation

Introduction

Root-lesion nematodes (RLNs) are soilborne migra-
tory endoparasites that penetrate plant roots and inter-
cept the flow of water and nutrients into the plant, 
causing a subsequent negative effect on plant health 
and grain yield (Trudgill 1991). In favourable con-
ditions, the ability of RLNs to reproduce more than 
once in a growing season allows population densities 
to rapidly increase (Reeves et  al. 2020). The rate at 
which RLN population densities increase differs sub-
stantially between plant hosts, depending on their 
susceptibility or resistance to the RLN species (Jones 
and Fosu-Nyarko 2014; Owen et al. 2014; Thompson 
et al. 2008; Vanstone et al. 2008).

Root-lesion nematodes are found across the grain 
growing regions of Australia (Thompson et al. 2008; 
Vanstone et  al. 2008). In the subtropical, northern 
grain growing region of eastern Australia (from lati-
tudes of approximately -23.53°N to approximately 
-32.25°N), the most common species of RLN is 
Pratylenchus thornei (Thompson et  al. 2010). The 
dominant winter cereal crops grown in the region 
include bread wheat (Triticum aestivum), durum 
wheat (Triticum durum) and barley (Hordeum vul-
gare), which are all known hosts of P. thornei.

Resistant genotypes of these crops are grown to 
control P. thornei population density increases (Fan-
ning et al. 2018; Owen et al. 2014). Genotypes toler-
ant to P. thornei will maintain grain yield despite the 
presence of potentially damaging population densi-
ties of the nematode in the soil, but may still allow 

population densities to increase (Fanning et al. 2020; 
Trudgill 1991). Genetic diversity for both resistance 
and tolerance is evident within the winter cereal crops 
grown in the region. Resistant genotypes offer an 
effective management option for controlling nema-
tode populations (Fanning et  al. 2018; Owen et  al. 
2014; Reeves et al. 2020; Robinson et al. 2019), while 
tolerant genotypes ensure continued crop production 
in the presence of higher population densities.

There are multiple rigorous and repeatable meth-
ods of quantifying P. thornei population densities 
from soil samples. Since the late 1990s, molecu-
lar polymerase chain reaction (PCR) based meth-
ods have been developed to quantify a wide range 
of soilborne pathogen populations more accurately 
and quickly (Seesao et  al. 2017). A method widely 
adopted in Australia is the PreDicta® B testing ser-
vice, which uses quantitative PCR (qPCR) to estimate 
the total amount of P. thornei DNA detected in a soil 
sample via a DNA extraction system (Ophel-Keller 
et al. 2008). The service is used routinely in research 
experiments to quantify levels of a pathogen/s follow-
ing the application of experimental treatments, and is 
particularly useful for resistance screening of geno-
types for soilborne pathogens such as P. thornei (Fan-
ning et al. 2018; Reeves et al. 2020). It is known that 
P. thornei resistance is fundamentally continuous in 
nature, due to the polygenic and subsequently quan-
titative nature of the trait (Trudgill 1991; Zwart et al. 
2004). As such, the measurement using qPCR (e.g. 
PreDicta® B) of a continuous trait such as P. thornei 
population densities is well suited to the investigation 
of the continuum of P. thornei resistance.

In a research setting, resistance testing of geno-
types to soilborne pathogens can be performed 
either in controlled environment (CE) experiments 
or in field experiments. In the case of RLNs, and in 
particular P. thornei, resistance testing under CE 
conditions is well developed (Sheedy et  al. 2015; 
Thompson et al. 2020). One advantage of controlled 
conditions is that a consistent number of P. thornei 
can be added to the soil (Sheedy et al. 2015; Thomp-
son et al. 1999), providing uniform P. thornei densi-
ties across all the experiment. However, it is also 
important to conduct resistance testing in the field, 
as the resistance status of genotypes must be realised 
under field conditions, where environmental factors 
may vary (Fanning et  al. 2018). While field experi-
ments provide natural growing conditions for both 
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the crop and the nematode populations, the pathogen 
populations in the soil cannot be managed to be as 
uniform as in CE experiments.

Currently, the routine screening of Australian com-
mercial and soon to be released bread wheat geno-
types for resistance to P. thornei is primarily under-
taken using CE experiments (Thompson et al. 2020). 
Nonetheless, multiple studies exploring the resist-
ance of genotypes to P. thornei have also been per-
formed using field-based experiments (Fanning et al. 
2018; Owen et al. 2014), while others have explored 
the consistency of genetic resistance between CE and 
field-based experiments (Rodda et  al. 2016; Thomp-
son et al. 2020).

In the field, it is important to quantify genetic 
resistance under different environmental conditions 
through a series of experiments conducted across dif-
ferent locations and years, where the combined exper-
iments form a multi-environment trial (MET) series. 
Statistical methods for the analysis of MET datasets 
are well-documented and are commonly formulated 
in a linear mixed model (LMM) framework (Smith 
et al. 2005). The LMM framework is powerful, as it 
enables the modelling of genotype by environment (G 
× E) interaction effects while allowing for appropriate 
modelling of experimental design effects and spatial 
effects for each experiment (Cullis et al. 2010; Smith 
et al. 2001). The factor analytic (FA) variance struc-
ture has been widely used to model GxE interaction 
and has been shown to provide accurate MET analy-
sis results for grain yield (Kelly et al. 2007), and more 
recently for RLN resistance (Fanning et  al. 2018; 
Thompson et al. 2020).

The development of the factor analytic selec-
tion tools (FAST) post-processing methodology has 
improved the interpretability of the FA model out-
puts. The FAST method summarises the G × E inter-
action pattern using the FA regression parameters 
to form measures of overall genotype performance 
and stability (Smith and Cullis 2018). To the best 
knowledge of the authors, there have been no pre-
vious reports of the FAST method being applied to 
MET datasets with the aim of determining genetic 
resistance to P. thornei, or RLNs in general; rather, 
this method is primarily designed for use within crop 
improvement programs (Cocks et  al. 2019; Harris 
et  al. 2019; Sjoberg et  al. 2021). The FAST method 
has the potential to provide two simple metrics for the 
quantification and selection of genetic resistance to P. 

thornei, which retain important information regarding 
the continuous nature of overall performance and sta-
bility of genotypes.

In previous P. thornei CE experiments, it has been 
found that resistance rankings of bread wheat geno-
types are quite stable across multiple experiments, 
due to a distinct lack of interaction in post-harvest P. 
thornei densities for genotypes across experiments 
(Sheedy et al. 2015; Thompson et al. 2011, 2020). In 
addition, minimal G × E interaction in P. thornei pop-
ulation densities was previously reported from a set 
of field experiments conducted in southern Australia 
(Fanning et al. 2018). Similar field-based results from 
the testing of post-harvest P. thornei densities, across 
multiple field experiments in differing locations and 
years, has not yet been reported in the subtropical 
northern grain growing region of eastern Australia.

This study presents results from a MET analysis of 
post-harvest P. thornei population densities to quan-
tify the  genetic resistance of bread wheat genotypes 
to P. thornei in the subtropical northern grain grow-
ing region of eastern Australia. The aims of this study 
are to (i) explore genetic resistance to P. thornei of 
a set of bread wheat genotypes tested across multiple 
field experiments in the target environment, and (ii) 
demonstrate the novel application of the FAST post-
processing methodology in the context of P. thornei 
resistance. The outputs from the FAST method aid 
genetic selection for resistance to P. thornei, provid-
ing metrics that respect the continuum of resistance. 
The analysis approach, coupled with the FAST post-
processing methodology presented in this research, 
can potentially be applied to any RLN and/or crop 
species.

Materials and methods

Characterisation of experimental sites

The MET data comprised 17 field experiments con-
ducted between 2011 and 2018, with experimen-
tal locations spread geographically from southern 
Queensland to central New South Wales. Characteris-
tics of each experiment including the soil type (Webb 
et al. 1997), sowing and harvest dates, annual rainfall 
for the year of the experiment and mean yield are 
shown in Table 1. Also presented are the mean pre-
sowing and post-harvest P. thornei population densi-
ties, which from this point on will be referred to as 
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‘initial’ and ‘final’ P. thornei population densities, 
respectively.

The original research aims of these experiments 
varied (Table  1). Eight experiments were conducted 
under the National Variety Trials (NVT) testing sys-
tem (https:// nvt. grdc. com. au/), which primarily aims 
to assess the yield potential of near to release and 
commercial genotypes of the major Australian grain 
crops in various agricultural regions across Australia. 
In all eight of these experiments, only bread wheat 
genotypes were tested and included in the MET anal-
ysis. A second subset of seven experiments aimed 
to test genetic variation in the tolerance of cereal 
genotypes to the soilborne disease crown rot, caused 
by the fungal pathogen Fusarium pseudogramine-
arum. In each of these experiments, genotypes were 
exposed to a high level of crown rot pathogen burden, 
via inoculation with the pathogen at sowing (Dodman 
and Wildermuth 1987; Forknall et  al. 2019), versus 
a control treatment with no applied inoculum. The 
aim in experiment NA13 was to test the impact of dif-
ferential times of sowing (TOS) on genotype perfor-
mance, with bread wheat and durum wheat genotypes 
sown at early, standard and late planting windows for 
the region in which the experiment was conducted. 
Another experiment, TU15, was designed to explore 
the impact of TOS on the genetic tolerance of cereal 
genotypes to crown rot, with genotypes exposed to 
a high level of crown rot pathogen burden, versus a 
control treatment, at two different planting times. A 
common characteristic of all experiments is the iden-
tification of significant initial P. thornei densities in 
bulk soil sampling prior to, or at sowing, as part of 
the site characterisation process, and the subsequent 
measurement of final P. thornei densities at the plot 
level, for assessing genetic resistance to P. thornei 
using qPCR (Table  1). The exception to this was 
experiment BE14, where P. thornei population den-
sity measurements were only conducted for the bread 
wheat genotypes and plots to which the control treat-
ment (no applied crown rot inoculum) was allocated.

Experimental designs

Details of the experimental dimensions and param-
eters are given in Table  2. The NVT experiments 
included in the MET dataset were arranged according 
to randomised complete block designs, with blocking 
in two directions often implemented using the design 

package DiGGer (Coombes 2019). Experiment 
NA13 was arranged according to a split plot design, 
with the TOS treatments randomly allocated to main 
plots within replicate blocks, and the genotypes ran-
domly allocated to sub plots within each main plot. 
The crown rot tolerance experiments (Table 1) were 
arranged according to randomised complete block 
designs, with the combinations of crown rot inocu-
lum treatments and genotypes randomly allocated to 
plots within replicate blocks. The TOS by crown rot 
experiment, TU15, was arranged according to a split 
plot design, with the TOS treatments randomly allo-
cated to main plots within replicate blocks, and the 
combinations of crown rot inoculum treatments and 
genotypes randomly allocated to sub plots within 
each main plot.

Experimental material

The genotypes tested were mostly bread wheats, with 
some additional barley and durum wheat genotypes 
included in approximately half of the experiments 
(Table  2). The investigation of G × E interaction 
effects for the barley and durum crop types was not a 
priority in this MET analysis. This was because there 
were relatively low numbers of barley and durum gen-
otypes tested in most experiments (with the exception 
of the 24 barley genotypes tested in TU15 (Table 2)), 
and there was low concurrence of genotypes belong-
ing to these crop types between experiments. The 
bread wheat genotype concurrence between experi-
ments is presented in Appendix  Table  6. The num-
ber of unique bread wheat genotypes present in each 
experiment (at least 12), as well as the concurrence of 
bread wheat genotypes between experiments (at least 
four, except between MN15E and MN15M), enabled 
a robust assessment of bread wheat G × E interaction 
effects for final P. thornei population densities.

Measurement of P. thornei populations

Initial P. thornei population densities were measured 
for each experiment as part of the site characterisa-
tion process. Between 20 and 30 soil cores (either 
0–15 cm or 0–30 cm soil depth) were taken per repli-
cate block, at sowing. Final P. thornei population den-
sities were measured within zero to 60 days post-har-
vest, depending on adequate soil moisture to allow for 
collection of field samples. Between eight and 20 soil 

https://nvt.grdc.com.au/


 Euphytica (2024) 220:141141 Page 6 of 26

Vol:. (1234567890)

cores were taken from each plot (either 0–15  cm or 
0–30 cm soil depth). The final soil samples were then 
combined within each plot to provide one sample per 
plot for testing. The PreDicta® B method was used 
to extract and quantify the concentration of P. thor-
nei DNA in the soil samples using qPCR. This con-
centration was converted to a population density of P. 

thornei (P. thornei/g soil) using a standard conversion 
based on soil type (Ophel-Keller et al. 2008).

Statistical methods

The final P. thornei population densities per gram of 
soil were analysed in a LMM framework. A square 
root transformation of the raw data was necessary 

Table 2  Summary of details regarding the experimental 
design and treatments for each of the 17 experiments in the 
multi-environment trial dataset used to study the resistance of 

bread wheat genotypes to Pratylenchus thornei, where treat-
ment combinations in the 17 experiments resulted in 28 differ-
ent environments for genotype assessment

† ExpID, the unique experiment identifier
‡ EnvID, the unique environment identifier, determined from ExpID and the applied crown rot and/or time of sowing treatments in 
each experiment
§ The trailing capital letters E and M indicate early and main sowing timing, respectively
# The trailing labels of TOS1, TOS2, etc. uniquely define environments within the experiment according to different times of sowing
¶ The trailing labels of -U and -I uniquely define environments within the experiment according to crown rot treatments (uninoculated 
and inoculated, respectively)
†† Times of sowing randomly allocated to main plots; genotypes randomly allocated to sub plots within main plots
‡‡ Times of sowing randomly allocated to main plots; combinations of crown rot inoculum and genotype randomly allocated to sub 
plots within main plots
§§ One or more of the bread wheat genotypes in these trials occurred twice per replicate, leading to an inflated number of total plots 
relative to the number of unique bread wheat genotypes

ExpID† EnvID‡ Experimental Design Type No. plots No. reps No. bread 
wheat geno-
types

No. barley 
genotypes

No. durum 
wheat 
genotypes

TR11 TR11 Randomised complete block 54 3 18 0 0
BU12 BU12 Randomised complete block 159 3 53 0 0
NS12 NS12 Randomised complete block 188 4 47 0 0
NA13 NA13TOS1

NA13TOS2
NA13TOS3#

Split plot design †† 216 3 17 0 7

WO13 WO13 Randomised complete block 126 3 38§§ 0 0
BE14 BE14-U¶ Randomised complete block 64 4 15 0 1
CO14 CO14 Randomised complete block 114 3 37§§ 0 0
WO14 WO14 Randomised complete block 102 3 34 0 0
MA15 MA15-U, MA15-I¶ Randomised complete block 96 3 13 2 1
MN15E§ MN15E Randomised complete block 96 4 24 0 0
MN15M§ MN15M Randomised complete block 144 4 36 0 0
TU15 TU15TOS1-U

TU15TOS1-I
TU15TOS2-U
TU15TOS2-I#,¶

Split plot design ‡‡ 576 3 19 24 5

WO15 WO15-U, WO15-I Randomised complete block 96 3 13 2 1
BU16 BU16-U, BU16-I Randomised complete block 120 3 13 4 3
WE16 WE16-U, WE16-I Randomised complete block 120 3 13 4 3
RO17 RO17-U, RO17-I Randomised complete block 120 3 12 4 4
WO18 WO18-U, WO18-I Randomised complete block 120 3 16 0 4
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to satisfy the model assumptions of normality and 
homogeneity of variance across the range of fitted 
values. Heterogeneity of variance was over-corrected 
by a natural logarithm transformation, thus the square 
root transformation was favoured (Welham et  al. 
2014).

In this study, the term ‘environment’ was defined 
as the unique condition under which multiple geno-
types were tested. The treatment levels for different 
times of sowing or different crown rot inoculum lev-
els were concatenated with experimental location to 
define a specific environment, resulting in 28 unique 
environments (see EnvID in Table 2). The LMM for 
the MET data included fixed effects for crop type, 
experiment and their interaction. Design effects were 
included as random effects in the model, and spatial 
effects were modelled on an experiment basis (see 
ExpID in Table 2), following the methods of Gilmour 
et al. (1997). Heterogeneity of residual variance was 
accounted for at an experiment level. The random G 
× E interaction effects were modelled on an environ-
ment basis, rather than on an experiment basis. Three 
variance structures were used to  separately model 
the genetic effects for each of the three different crop 
types across environments. Random terms for both 
barley and durum genotype effects were fitted, as well 
as corresponding terms for the interactions between 
these and the environments that they were tested in, 
using a simple variance component model (Patterson 
et al. 1977).

An FA model was fitted to the G × E interaction 
effects for bread wheat (Smith et  al. 2001). The FA 
model consists of an underlying regression frame-
work for the G × E interaction effects based on a 
multiplicative combination of (environment) load-
ings by (genotype) scores. The factor loadings were 
rotated according to a varimax rotation (Smith et al. 
2001). The percentage of repeatable G × E variance 
accounted for by each factor (or by the multiplicative 
part of the FA model) is denoted as %VAF.

The genetic variance models for the barley and 
durum crop types were kept relatively simple due 
to the low number of genotypes of these crop types 
appearing in some experiments, and low genotype 
concurrence between environments. A variance 
structure with homogeneous genetic variance across 
environments and homogeneous covariance between 
environments was found to be most parsimonious for 
these crop types. All further reference to outputs from 

the fitting of FA models and mention of genetic or G 
× E variation corresponds to that of the bread wheat 
crop type alone.

Factor analytic models of increasing order 
(denoted by FAk, where k corresponds to the order 
of model fitted) were iteratively fitted to the G × E 
interaction effects. The most appropriate order of 
FA model was selected based upon the agreement 
of both the residual maximum likelihood ratio test 
(Stram and Lee 1994) and the Akaike Information 
Criterion (AIC) (Akaike 1973), with a decision based 
on the AIC favoured when the selection criteria indi-
cated different models. Empirical best linear unbi-
ased predictions (eBLUPs) were generated from the 
final model for the random G × E interaction effects. 
Empirical best linear unbiased estimates (eBLUEs) 
were generated for the environment by crop type 
interaction (fixed) effects and variance components 
were estimated using residual maximum likelihood 
(Patterson and Thompson 1971). All models were fit-
ted using the ASReml-R package (Butler et al. 2018), 
in the R computing environment (R Core Team 
2020).

Outputs from the FA model can be complex and 
challenging to interpret without robust post-process-
ing tools. The FAST method (Smith and Cullis 2018) 
allows for the regression implicit in the FA model to 
be summarised with two key results, namely the over-
all performance (OP) and the stability of each geno-
type in its responses to differing environments. The 
OP of a genotype is calculated as the mean of the 
rotated estimated loadings for the first factor, mul-
tiplied by the rotated score, also for the first factor, 
for that genotype. The interpretation of this result as 
the overall, or average, performance of a genotype 
is predicated on the fact that (after factor rotation) 
the first factor of the FA model explains the major-
ity of the repeatable G × E variation. If all the envi-
ronmental loadings for the first factor are positive, 
then an assumption can be made that the first factor 
represents non-crossover G × E interaction variation 
(Smith and Cullis 2018). Often, this coincides with 
a relatively high correlation between the first factor 
loadings and the mean of the response variable for 
each environment (Smith et al. 2015).

Following from this interpretation of OP, subse-
quent factors capture the remaining repeatable G × 
E variation and are indicative of stability in the OP 
measure of a genotype. If a relatively large proportion 
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of the repeatable G × E variability for a genotype is 
accounted for by multiple factors, then its OP meas-
ure is likely to be less stable. The root mean square 
deviation (RMSD) of a genotype can be interpreted as 
its overall stability, with further details given in Smith 
and Cullis (2018). The FAST method therefore pro-
duces two meaningful measures, OP and RMSD, that 
can directly contribute to the quantification and selec-
tion of genotypes for resistance to P. thornei across 
multiple environments.

In the context of P. thornei resistance, the OP met-
ric can be used to provide a continuum of genetic 
resistance, along which genotypes that comprised 
the MET dataset can be individually ranked. This OP 
continuum allows for a relative comparison of the 
resistances of all genotypes. Additionally, it allows 
for head-to-head pairwise comparisons of genotypes 
through testing the null hypothesis of equal OPs to 
determine statistically significant differences in P. 
thornei resistance (Welham et  al. 2014). This head-
to-head testing requires standard errors of the OPs 
(square root of the prediction error variance), which 
can be estimated using the predict.asreml function of 
ASReml-R (Butler et al. 2018).

The extent of G × E interaction can be further 
investigated with a plot of the eBLUPs for a set of 
genotypes of interest at each of the environments 
(Smith et  al. 2015). This allows visualisation of 
consistency of eBLUP rankings between environ-
ments. Environments can be arranged according to 
an agglomerative hierarchical clustering process 
(Kaufman and Rousseeuw 2009) based on the genetic 
correlations, to improve identification of crossover 
trends between clusters of environments. Clustering 
was performed in this study using the agnes package 
(Maechler et al. 2019) in the R statistical computing 
environment (R Core Team 2020).

Comparison of MET analysis results with industry 
reporting guidelines

In Australia, information on the resistance of geno-
types to disease is delivered to industry using what 
are referred to as resistance ratings (https:// nvt. grdc. 
com. au/ nvt- disea se- ratin gs). This resistance rating 
system consists of nine discrete ordinal categories, 
with genotypes given a rating ranging from what is 
labelled as “resistant” to “very susceptible”. In the 
case of resistance information related to P. thornei, 

ratings are defined by the equidistant division of the 
range of predicted final P. thornei population densi-
ties for the genotypes, based on predictions from 
a MET analysis (Thompson et  al. 2020). Pratylen-
chus thornei resistance ratings for the genotypes that 
comprised the MET dataset are presented in Appen-
dix  Table  8, which have been collated from multi-
ple sources, including the NVT website (https:// nvt. 
grdc. com. au/ nvt- disea se- ratin gs), and regional crop 
variety sowing guides (Albatross Rural Consulting 
2019, 2020; Lush 2016; Matthews and McCaffery 
2019; Matthews et al. 2016, 2017, 2018, 2020, 2021), 
where data was retrieved on 13 January 2023. The 
results from the MET analysis were compared with 
the sourced resistance ratings for the genotypes that 
comprised the MET dataset.

Results

The iterative process of fitting FA variance models to 
the G × E interaction effects is outlined in Table 3. An 
FA model of order 4 (FA4) was selected as the most 
parsimonious model, as it was optimal according to 
both the residual maximum likelihood ratio test and 
the AIC (Table 3).

A summary of the parameters from the model fit-
ted to the MET dataset used to study the resistance 
of bread wheat genotypes to P. thornei is presented 
in Table  4. Three-quarters of the environments (21 
out of 28) had greater genetic variance than residual 
variance. All environments had positive loadings for 
the first factor (Table 4), and all except three environ-
ments had 100% of their genetic variance explained 
by all four factors (Appendix  Table  7). The overall 
%VAF by each factor was 79.39% for the first fac-
tor, 10.20% for the second factor, 7.33% for the third 
factor and 2.54% for the fourth factor, resulting in 
99.46% of the G × E interaction variation accounted 
for by the multiplicative, or repeatable, part of the FA 
model (Appendix Table 7). The correlation between 
the predicted final P. thornei densities for each envi-
ronment and the first factor loadings (Table  4) was 
0.85.

The genetic correlations between environments 
in the MET analysis are presented as a heatmap in 
Fig. 1. The environments included in the MET analy-
sis were generally highly correlated in terms of final 
P. thornei population densities, with almost 80% of 

https://nvt.grdc.com.au/nvt-disease-ratings
https://nvt.grdc.com.au/nvt-disease-ratings
https://nvt.grdc.com.au/nvt-disease-ratings
https://nvt.grdc.com.au/nvt-disease-ratings
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the pairwise genetic correlations between environ-
ments being greater than 0.5 (Fig. 1). The correlations 
ranged from a minimum of − 0.266 to a maximum of 
0.991. Both environments in the WO18 experiment 
displayed weak negative correlations with two other 
environments (BU12 and NA13-TOS2) ranging from 
− 0.198 to − 0.266. There were no other negative cor-
relations observed between any of the other pairs of 
environments.

The positive loadings for all environments for the 
first factor (Table  4) of the FA4 model fitted to the 
G × E interaction effects indicated that the first fac-
tor represented non-crossover G × E interaction. This 
enabled a comparison of individual genotypes using 
the metrics of OP and RMSD (Fig. 2; data for Fig. 2 
is supplied in Appendix Table 8).

The bread wheat genotype Strzelecki was the 
genotype with the largest positive OP (Fig.  2). This 
indicates that Strzelecki was the most susceptible 
genotype to P. thornei, resulting in the highest final 
P. thornei population density of the genotypes tested. 
Conversely, the genotype Suntop had the largest 
negative OP, meaning that it was the most resistant 
genotype in terms of final P. thornei population den-
sity in the set of bread wheat genotypes tested. Both 
Strzelecki and Suntop have moderately high RMSD 

values, with a higher RMSD than approximately 79 
and 66% of genotypes tested, respectively. These 
high RMSD values indicate that Strzelecki and Sun-
top show moderate instability in their genetic resist-
ance across environments. The genotype Mitch had 
the highest RMSD value of all the genotypes tested. 
Although its OP was higher than the average, its sus-
ceptibility was quite unstable, demonstrating sensitiv-
ity to varying environmental conditions.

The eBLUPs of final P. thornei population density 
for two selected subsets of genotypes are displayed for 
each environment (Fig. 3), where the two subsets con-
tained genotypes with higher and lower stability of 
resistance, respectively. Genotypes in the two subsets 
displayed a wide range of predicted OPs, from − 0.93 
to 0.99 for the stable genotypes, and from − 0.68 to 
1.28 for the unstable genotypes. The figure provides 
further insight into the stability of performance of 
particular genotypes across particular environments, 
where there was greater cross-over interaction for the 
unstable genotypes between environments.

The current NVT resistance ratings (https:// nvt. 
grdc. com. au/ resou rces/ disea se- rating- defin itions) are 
compared with the continuous OP resistance statuses 
obtained in this study (Fig.  4). The top facet of Fig.  4 
shows the OPs of the commercial genotypes tested in 
this MET dataset, where the bars have been coloured 
according to the P. thornei resistance rating assigned by 
the NVT resistance rating system (Appendix  Table  8). 
When genotypes are ordered in terms of their OP, there 
is only marginal correspondence between the OPs and 
the assigned NVT resistance ratings. The bottom facet of 
Fig. 4 shows a similar plot, where bars are instead col-
oured by the head-to-head comparisons of each genotype 
with a particular reference genotype, EGA Gregory. This 
genotype was chosen for comparison, as it was tested in 
the majority of environments and is also routinely used 
as a standard check for P. thornei resistance in the north-
ern grain growing region of Australia by industry. These 
comparisons allow quick identification of genotypes that 
are predicted to be significantly more or less resistant to 
P. thornei than the widely grown genotype EGA Greg-
ory, in terms of OP.

The key results of OP and RMSD can be condensed 
into a simple lookup table presenting the head-to-head 
comparisons of all commercial genotypes with three 
“check genotypes”, which span the range of resistance 
to P. thornei (Table 5). The genotypes used for compar-
ison for this MET dataset were Suntop (resistant), EGA 

Table 3  Summary of factor analytic (FA) models of increas-
ing order (denoted by FAk, where k corresponds to the order 
of model fitted) fitted to the random genotype by environment 
(G × E) effects for bread wheat, in the analysis of the multi-
environment trial dataset used to study the resistance of bread 
wheat genotypes to Pratylenchus thornei 

The most parsimonious model is indicated by an asterisk and 
related information is in bold text
† The number of variance components estimated, associated 
with the random genetic, design and spatial effects in the 
model
‡ AIC, Akaike Information Criterion (Akaike 1973)
§ Total %VAF, the percentage of repeatable G × E variance 
accounted for by all factors in the FA model fitted to the ran-
dom G × E effects for bread wheat

Random G 
× E effects 
model

No. variance 
 components†

Log-likeli-
hood

AIC‡ Total 
%VAF§

FA1 106 − 254.7 721 84
FA2 126 − 228.1 708 89
FA3 144 − 204.6 697 98
FA4* 165 − 182.5 695 99
FA5 186 − 167.4 707 100

https://nvt.grdc.com.au/resources/disease-rating-definitions
https://nvt.grdc.com.au/resources/disease-rating-definitions
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Gregory (average), and Strzelecki (susceptible). The 
results are coloured by RMSD to give an indication of 
stability of performance across environments. Table 5 
is presented in a similar way to the current NVT sowing 
guides, however with resistance ratings replaced with 

head-to-head comparisons to a set of check genotypes. 
The information presented in Table 5 is subjective, and 
the authors suggest careful consideration of check gen-
otypes, colour schemes, and other graphical tools when 

Table 4  Summary of the parameters from the factor analytic 
model of order 4 (FA4 model) fitted to the random genotype by 
environment (G × E) effects for bread wheat in the analysis of 

the multi-environment trial dataset used to study the resistance 
of bread wheat genotypes to Pratylenchus thornei 

† ExpID, the unique experiment identifier. EnvID, the unique environment identifier
‡ eBLUE, empirical best linear unbiased estimates. Pt, Pratylenchus thornei
§ ‘Genetic variance’ refers to the genetic variance of random G × E interaction effects for bread wheat
# %VAF, the percentage of repeatable genotype by environment (G × E) variance accounted for by a factor of the factor analytic 
model fitted to the random G × E effects for bread wheat
¶ The trailing capital letters E and M indicate early and main sowing times, respectively
†† The trailing labels of TOS1, TOS2, etc. uniquely define environments within the experiment according to different times of sowing
‡‡ The trailing labels of -U and -I uniquely define environments within the experiment according to crown rot treatments (uninocu-
lated and inoculated, respectively)

ExpID† EnvID† eBLUEs of sqrt-P. thornei final popu-
lation density (sqrt(Pt)/g of soil)‡

Genetic 
 variance§

Residual 
variance

Factor 1 
Loadings

Factor 1%VAF#

TR11 TR11 3.63 0.60 0.13 0.66 73.76
BU12 BU12 6.93 1.89 1.83 0.88 41.28
NS12 NS12 1.46 0.16 0.09 0.31 59.93
NA13 NA13-TOS1 2.16 0.15 0.17 0.35 79.10

NA13-TOS2 2.13 0.08 0.16 33.09
NA13-TOS3†† 2.19 0.06 0.17 45.30

WO13 WO13 3.30 1.12 0.50 0.91 73.59
BE14 BE14-U‡‡ 4.83 2.59 1.51 1.48 84.26
CO14 CO14 3.17 0.65 0.25 0.78 92.90
WO14 WO14 1.45 0.36 0.09 0.55 85.69
MA15 MA15-U 8.09 5.78 0.82 2.37 97.25

MA15-I‡‡ 7.66 5.64 2.29 93.00
MN15E¶ MN15E 3.45 0.85 0.41 0.74 64.10
MN15M¶ MN15M 4.13 0.92 0.52 0.85 77.80
TU15 TU15-TOS1-U 3.51 1.14 0.30 1.00 87.97

TU15-TOS1-I 3.03 0.52 0.63 76.31
TU15-TOS2-U 2.26 0.27 0.31 35.90
TU15-TOS2-I††,‡‡ 2.22 0.26 0.38 57.15

WO15 WO15-U 2.51 0.60 0.13 0.64 67.47
WO15-I 2.73 0.92 0.84 75.95

BU16 BU16-U 2.92 0.11 0.26 0.16 23.06
BU16-I 3.07 0.43 0.32 24.40

WE16 WE16-U 2.36 0.24 0.15 0.44 82.28
WE16-I 2.07 0.08 0.21 53.12

RO17 RO17-U 3.58 0.65 0.28 0.79 96.97
RO17-I 3.48 0.55 0.67 81.98

WO18 WO18-U 3.97 0.63 0.17 0.42 28.58
WO18-I 3.83 0.61 0.45 33.29
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Fig. 1  Heatmap of genetic correlations between each pair of 
environments (labelled “EnvID”, see Table  2 for details), for 
the bread wheat genotypes tested in the analysis of the multi-
environment trial dataset used to study the resistance of bread 
wheat genotypes to Pratylenchus thornei. Correlations range 
between − 1 and 1. A correlation of 1 between two environ-

ments indicates a perfect match of genotype rankings with 
respect to final P. thornei population densities; a correlation of 
− 1 indicates a complete reversal of genotype rankings, and a 
correlation of 0 indicates no relationship between the genotype 
rankings between environments
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deciding how best to present the key information from 
the MET analysis.

Discussion

Cereal growers aiming to identify genotypes resist-
ant to P. thornei require resistance information that 
is relevant under field conditions and is also straight-
forward to interpret. The application of the FAST 
method in this study has shown that it is an effective 
tool for quantifying genetic resistance to P. thornei 
in bread wheat genotypes through a MET analysis 
of final P. thornei population densities. The results 
provide a useful and practical summary of genetic 
resistance in terms of OP and RMSD, thereby provid-
ing cereal growers with the information they need to 

make informed bread wheat genotype selection deci-
sions with respect to P. thornei resistance.

Comparison of the outputs of this study with both the 
literature, and communications to industry

Genetic resistance to P. thornei is informed by final 
P. thornei population densities, which are measured 
on a continuous scale. Thus, it is proposed that com-
parisons and selections should be made between gen-
otypes on such a scale, rather than attempting to con-
vert resistances to a discrete rating scale. In the recent 
literature on P. thornei resistance, analysis methods 
employed in studies such as Sheedy et  al. (2015), 
Fanning et al. (2018) and Thompson et al. (2020) pro-
duced final P. thornei population densities predicted 
for each genotype at the average environment, on a 

Fig. 2  Overall performance (OP) for each of the 118 bread 
wheat genotypes, plotted against their respective root mean 
square deviation (RMSD), from the factor analytic selection 
tools post-processing of the results from the analysis of the 
multi-environment trial dataset used to study the resistance of 
bread wheat genotypes to Pratylenchus thornei. The OP val-
ues are indicative of the overall resistance to P. thornei of a 
genotype. Large positive values indicate increased susceptibil-

ity to P. thornei, while large negative values indicate increased 
resistance, compared to the average performance of all geno-
types tested in the dataset. The RMSD values indicate the sta-
bility of the predicted OP values; the higher the RMSD, the 
more unstable the resistance of a genotype. Genotypes of inter-
est have been labelled with grey text and indicated with grey 
dots
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continuous scale. Currently in Australia, through the 
NVT testing system, these predictions are then con-
verted to a discrete rating scale based on nine equal 
subranges (equidistant divisions) of the range of pre-
dictions, respective to each testing region of Australia 
(Thompson et  al. 2020). This conversion to discrete 

rating scales is consistent with other conventions of 
communicating genotype resistance information 
internationally (Agriculture and Horticulture Devel-
opment Board 2021; Onofre et al. 2021). In creating 
the discrete rating labels, the actual range of final 
P. thornei population densities is obscured from 

Fig. 3  Empirical best linear unbiased predictions (eBLUPs) of 
the bread wheat genotype by environment (G × E) interaction 
effects obtained from the analysis of post-harvest Pratylenchus 
thornei population density for two subsets of bread wheat gen-
otypes, in each environment (EnvID) considered in the analysis 
of the multi-environment trial dataset investigating the resist-
ance of bread wheat genotypes to P. thornei. The empirical 
best linear unbiased estimates (eBLUEs) of the post-harvest 
square root P. thornei population densities for each environ-
ment are given in parentheses following each EnvID label on 
the horizontal axis. Larger black dots indicate that a genotype 
was tested in that environment, while smaller grey dots indi-

cate that the genotype was not tested in that environment. The 
two subsets of genotypes were selected to separate genotypes 
with higher and lower stability of resistances, to enable visuali-
sation of this stability across environments. The eBLUPs of the 
G × E interaction effects are presented as positive or negative 
deviations from the mean for each environment. The horizontal 
dashed line at zero denotes the overall mean for each environ-
ment. The environments are ordered along the horizontal axis 
according to an agglomerative hierarchical clustering algo-
rithm (Kaufman and Rousseeuw 2009), such that environments 
that have more similar genotype rankings are clustered together
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interpretation. This might be taken to suggest that the 
discrete rating labels are relatable from one analysis 
to another, which is unlikely to be the case as both 
environmental conditions and the set of genotypes 
being tested are known to influence the range of final 
P. thornei population densities. Thus, the provision 
of resistance information on a continuous scale is 
vital to the interpretation of genetic resistance to P. 
thornei.

The FAST post-processing methodology was well 
suited in this study for summarising the important 
findings from the FA model on a continuous scale 
(Smith and Cullis 2018). Primarily, this was due to 
the relatively low level of crossover G × E interaction, 
along with the fact that all the loadings on the first 
factor of the FA model were positive (Table  4), the 
%VAF by the first factor was substantial (79.39%), 
and additionally, there was a strong positive correla-
tion (0.85) between the first factor loadings and the 

Fig. 4  Graph of the overall performance (OP) values for each 
of the commercial bread wheat genotypes considered in the 
analysis of the multi-environment trial dataset used to study 
the resistance of bread wheat genotypes to Pratylenchus thor-
nei. Error bars correspond to the standard error of the OPs. 
Genotypes have been ordered from lowest to highest OP, with 
a lower OP indicating greater resistance to P. thornei and a 
higher OP indicating greater susceptibility to P. thornei. In 
(a), the bars are coloured according to the P. thornei resistance 
ratings that have been assigned by the National Variety Trial 

(NVT) testing system (Appendix Table 8). Of the nine possi-
ble categorical resistance ratings assigned by NVT, only seven 
were observed in the set of genotypes considered. Resistance 
rating definitions can be found here https:// nvt. grdc. com. au/ 
resou rces/ disea se- rating- defin itions. In (b), the bars are col-
oured according to whether or not they result in a significantly 
different OP compared to a reference genotype, EGA Gregory. 
The vertical red dashed line indicates the position of EGA 
Gregory on the horizontal axis

https://nvt.grdc.com.au/resources/disease-rating-definitions
https://nvt.grdc.com.au/resources/disease-rating-definitions


Euphytica (2024) 220:141 Page 15 of 26 141

Vol.: (0123456789)

Table 5  Summary table 
condensing the overall out-
puts from the FAST post-
processing method for each 
of the commercial bread 
wheat genotypes considered 
in the analysis of the multi-
environment trial dataset 
used to study the resistance 
of bread wheat genotypes to 
Pratylenchus thornei, ena-
bling simple comparisons 
between genotypes
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eBLUEs of the square root final P. thornei population 
densities for each environment. The use of the FAST 
approach was an improvement over the post-process-
ing methods employed by Sheedy et al. (2015), Fan-
ning et  al. (2018) and Thompson et  al. (2020). This 
is due to the appropriate separation of the factor that 
accounts for non-crossover G × E interaction from 
the remaining factors, facilitating separate calcula-
tions of the metrics of overall genotype performance 
and stability (Smith and Cullis 2018). In this way, 
the metric of overall performance is not clouded by 
crossover G  × E interaction, however limited that 
crossover interaction may be, therefore more accu-
rately capturing the genotypes’ “inherent resistance”. 
Additionally, it provided a widely applicable set of 
metrics obtainable through the FAST method (OP 
and RMSD) for informing P. thornei resistance.

Genotypes with high RMSD values (indicating 
higher variability in performance across environ-
ments) can be investigated further, to provide infor-
mation on observed performance in individual envi-
ronments. This is necessary to give context to the OP 
for these genotypes and allow growers to make more 
informed decisions regarding genotype resistance 
within particular environments. Graphical displays 
where the zero-centred eBLUPs of the G × E inter-
action effects for each environment are plotted for 
selected genotypes (such as Fig. 3), provide an intui-
tive way to visualise this variability in performance 
(Smith et  al. 2015). This visualisation provides a 
practical tool by which to gauge the G × E interaction 
of interest, by involving only genotypes which are 
relevant to the decision being made. This approach 
is an improvement over both the use of overall geno-
type predictions averaged across environments, and 
the application of the discrete rating labels that are 
the current industry standard in Australia, due to their 

lack of information about variation in performance 
across environments.

In addition to overall inferences about P. thornei 
resistance, the method implemented in this study 
also facilitates specific genotype selections through 
head-to-head statistical comparisons of genotypes 
using their OPs. This is a key point of difference in 
the implementation of the FAST method in this study, 
compared to previous uses of the method where the 
main aim is genetic selection for subsequent progres-
sion within a crop improvement program. In the tradi-
tional setting for the FAST method, a plot such as that 
given in Fig.  2 provides all the necessary guidance 
to inform selection decisions. However, in this set-
ting, where the aim is two-fold: (i) understanding the 
resistance of genotypes in the population, and (ii) per-
forming head-to-head comparisons which determine 
statistical significance of a difference in resistance 
from one genotype to another, further exploration of 
the OPs is warranted using an approach such as that 
graphically illustrated by Fig. 4b.

This head-to-head comparison method is likely 
better suited to genotype selection in the context of 
commercial cropping, where selection for P. thornei 
resistance is likely not the only aim, and genotype 
selection may have already been narrowed to a hand-
ful of genotypes due to other selection criteria. The 
current industry standard of using discrete resist-
ance rating labels for genotypes does not provide any 
measure of uncertainty or variability, thereby render-
ing head-to-head comparisons using these discrete 
labels potentially misleading (as shown in Fig.  4a). 
In contrast, the head-to-head comparison method 
detailed in this study retains transparency around the 
confidence in the determination of the overall resist-
ance to P. thornei of any bread wheat genotype.

Using the head-to-head comparisons with check 
genotypes, a simple lookup table which condenses 

Each genotype’s overall performance (OP) is compared with three check genotypes (Suntop, EGA Greg-
ory and Strzelecki) using head-to-head comparisons; the check genotypes spanned the range of resist-
ance to P. thornei according to their OPs. The results of the head-to-head comparisons are stated as + R 
for “significantly more resistant”, + S for “significantly more susceptible” or ns for “not significantly dif-
ferent” to the check genotype. The results of the head-to-head comparisons are colour-coded to indicate 
the root mean square deviation (RMSD) of each genotype, where a darker RMSD indicates greater sta-
bility of performance across environments, and a lighter RMSD indicates lower stability of performance 
across environments

Table 5  (continued)
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the key results from the FAST post-processing 
methodology can be constructed (Table  5). In this 
way, P. thornei resistance, and the stability of resist-
ance across environments, can be communicated 
succinctly without having to rely on converting 
results to a discrete rating scale. Given that OP is 
a metric that is relative to the MET dataset under 
consideration, it is more appropriate to summarise 
resistance information by presenting key head-
to-head comparisons with check genotypes that 
have been chosen to span the range of resistances 
observed in the MET dataset. This reduces the ten-
dency for genotype resistance to be taken out of 
context of the MET analysis at hand. It also allows 
for uncertainty in cases where a particular genotype 
has not received sufficient testing; in that case, a 
genotype’s performance is more likely to be iden-
tified as not significantly different from that of the 
check genotypes. Additionally, the colour-coding 
of results based on RMSD indicates how reliable 
the result is expected to be across all environments. 
Lighter-coloured results suggest to the reader to be 
more cautious with their selection of that genotype, 
and perhaps investigate its resistance in particu-
lar environments further by using the information 
in Fig. 3, for example. It is envisaged that Table 5 
could be included in sowing guides, as an alterna-
tive to current resistance ratings.

Crown rot and time of sowing environmental 
conditions

The repurposing of the experiments in the dataset 
for the investigation of P. thornei resistance pro-
vided a valuable opportunity to investigate G × E 
interaction between different environmental con-
ditions of interest within some of the field experi-
ments, namely the different crown rot and time of 
sowing treatments (identified in Table  1). Most 
of the environments inoculated with crown rot 
recorded lower predicted mean final P. thornei 
population densities than their corresponding uni-
noculated environments (Table  4). Despite this, 
the ranking of bread wheat genotypes remained 

similar between crown rot treatments (with corre-
lations from 0.79 to 0.99, Fig.  1). Conversely, the 
differences in predicted mean final P. thornei pop-
ulation densities between different TOS changed 
in nature between the two experiments where they 
were tested (Table  4), and the genetic correlations 
between different TOS were lower, although still 
moderate (0.61–0.77, Fig.  1). This suggests that 
TOS may affect both P. thornei population densities 
and genetic resistance to P. thornei more than the 
presence or absence of crown rot. A potential expla-
nation for this is the longer growth time afforded 
to plants under the earlier TOS treatments, which 
would allow the P. thornei more time to infest the 
plant roots and multiply (Reeves et  al. 2020) but 
also result in different environmental conditions 
during crop growth due to planting earlier in the 
season (Hunt et al. 2019).

Recommendation for the comparison of resistance 
testing between controlled environment and field 
settings

Quantitative PCR testing can be used to meas-
ure P. thornei population densities in both field and 
CE experiments (Fanning et  al. 2018; Sheedy et  al. 
2015), making possible a comparison of genetic 
resistance statuses between both types of experi-
ments. For a robust comparison to be made, data 
from all experiments (both field and CE based) 
should be jointly analysed in an LMM framework. 
This was done appropriately in chickpeas (Cicer ari-
etinum) by Rodda et  al. (2016), however their study 
only included one CE experiment, limiting the con-
clusions that could be made about genetic resistance 
more broadly. A more substantial balance of both 
field and CE experiments was presented in the bread 
wheat P. thornei resistance study by Thompson et al. 
(2020), however their analysis approach only incorpo-
rated CE experiments in the LMM framework. Their 
subsequent post-hoc approach to compare results 
from the CE experiments with the field experiments 
failed to account for different sources of variability 
in the field, and to estimate robust genetic correla-
tions between the different environments. In order to 
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effectively validate resistance statuses generated from 
CE experiments with field results (or vice versa), a 
suitable number of both types of experiments should 
be conducted and the data combined together in the 
one MET analysis using a LMM framework.

Conclusions

The MET analysis of final P. thornei population density 
measurements from the replicated field experiments 
in the dataset considered, along with the application 
of the FAST post-processing methodology, respects 
the continuous nature of genetic resistance to P. thor-
nei in bread wheat. The high level of consistency in 
genotype performance observed across environments, 
in terms of P. thornei resistance, was evident from the 
relatively small proportion of crossover G × E interac-
tion detected, even between very different environmen-
tal conditions including TOS or background disease 
interactions. This limited amount of crossover GxE 
interaction lent itself to the application of the FAST 
post-processing methodology, enabling a purpose-built 
assessment of genotype performance which separates 
the genotypes’ inherent resistance from their potential 
interactions with different environmental conditions. In 
practice, the results from the application of this meth-
odology will allow growers to assess the robustness of 
their cereal genotype selections in the context of both 
OP and stability of P. thornei resistance across environ-
ments, and to make head-to-head comparisons between 
genotypes on a continuum of P. thornei resistance 
status.
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Appendix  Table 8  Overall performance (OP), standard 
errors of OP, and root mean square deviation (RMSD) relevant 
to Figs.  2 and 4, as well as additional information related to 

Fig.  4, for each of the commercial genotypes included in the 
analysis of the multi-environment trial dataset investigating the 
resistance of cereal genotypes to Pratylenchus thornei 

Genotype Predicted OP Std Err OP RMSD Probability 
of difference 
from Suntop

Probability 
of difference 
from EGA 
Gregory

Probability 
of differ-
ence from 
Strzelecki

NVT 
resistance 
rating

NVT resistance 
rating source

Suntop − 1.250 0.105 0.253 NA 0 0 MRMS NVT†

LRPB Gaunt-
let

− 0.934 0.109 0.446 0 0 0 MR Matthews et al. 
(2021)

LRPB Viking − 0.927 0.107 0.077 0 0 0 MS Lush (2016)
Sunmate − 0.831 0.110 0.344 0 0 0 MRMS NVT
LRPB Lancer − 0.772 0.106 0.440 0 0 0 MS NVT
B53 − 0.734 0.258 0.209 0.05 0.02 0 MS Matthews and 

McCaffery 
(2019)

RGT Accroc − 0.694 0.307 0.081 0.07 0.07 0 MSS NVT
Merinda − 0.685 0.396 0.190 0.16 0.17 0 MSS Matthews et al. 

(2017)
Beckom − 0.683 0.115 0.765 0 0 0 MSS NVT
Suntime − 0.635 0.158 0.583 0 0 0 MRMS NVT
Kiora − 0.588 0.304 0.113 0.03 0.14 0 MRMS Matthews et al. 

(2020)
Bolac − 0.583 0.403 0.146 0.1 0.28 0 MRMS Matthews et al. 

(2018)
Gascoigne − 0.580 0.219 0.259 0 0.04 0 No rating
Steel − 0.509 0.231 0.127 0 0.11 0 MS Matthews et al. 

(2017)
EGA Eagle-

hawk
− 0.497 0.243 0.300 0 0.14 0 MS Albatross Rural 

Consulting 
(2019)

Sunguard − 0.482 0.102 0.326 0 0 0 S Matthews et al. 
(2020)

Tenfour − 0.475 0.232 0.070 0 0.15 0 S Matthews et al. 
(2021)

LRPB Merlin − 0.466 0.457 0.137 0.09 0.48 0 MS Matthews et al. 
(2017)

EGA Wylie − 0.466 0.232 0.425 0 0.16 0 MSS Matthews et al. 
(2018)

Hartog − 0.462 0.404 0.105 0.05 0.43 0 MS Albatross Rural 
Consulting 
(2019)

Coolah − 0.422 0.121 0.343 0 0.01 0 MS NVT
SF Ovalo − 0.397 0.307 0.046 0.01 0.41 0 MS Matthews et al. 

(2016)
Cobalt − 0.384 0.233 0.352 0 0.3 0 No rating
LRPB Spitfire − 0.380 0.105 0.277 0 0.01 0 MS NVT
Livingston − 0.322 0.166 0.111 0 0.26 0 MS Matthews et al. 

(2020)
Sunzell − 0.322 0.272 0.025 0 0.51 0 MS Matthews and 

McCaffery 
(2019)
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Appendix Table 8  (continued)

Genotype Predicted OP Std Err OP RMSD Probability 
of difference 
from Suntop

Probability 
of difference 
from EGA 
Gregory

Probability 
of differ-
ence from 
Strzelecki

NVT 
resistance 
rating

NVT resistance 
rating source

Jade − 0.300 0.368 0.545 0.01 0.67 0 MS Matthews et al. 
(2018)

DS Faraday − 0.283 0.404 0.064 0.02 0.73 0 MSS NVT
Sunvale − 0.261 0.164 0.437 0 0.45 0 MSS Matthews et al. 

(2020)
LRPB Hellfire − 0.244 0.593 0.138 0.09 0.86 0 MSS NVT
Sunlamb − 0.233 0.168 0.284 0 0.56 0 MSS NVT
LRPB Flanker − 0.220 0.107 0.300 0 0.37 0 MSS NVT
Baxter − 0.216 0.231 0.478 0 0.74 0 MSS Albatross Rural 

Consulting 
(2019)

LRPB Dart − 0.180 0.155 0.273 0 0.79 0 MS Albatross Rural 
Consulting 
(2020)

Sunmax − 0.171 0.464 0.040 0.02 0.95 0 MS NVT
EGA Gregory − 0.140 0.101 0.245 0 NA 0 MSS NVT
Condo − 0.131 0.185 0.208 0 0.96 0 MS NVT
Wallup − 0.029 0.231 0.264 0 0.63 0 MRMS Matthews and 

McCaffery 
(2019)

Emu Rock − 0.018 0.584 0.010 0.04 0.84 0 S NVT
LRPB Reliant − 0.017 0.150 0.203 0 0.39 0 MSS NVT
Kennedy 0.052 0.404 0.012 0 0.64 0 S Albatross Rural 

Consulting 
(2020)

Sunco 0.067 0.256 0.115 0 0.42 0 S Lush (2016)
Ventura 0.172 0.231 0.408 0 0.18 0 MRMS Matthews et al. 

(2016)
EGA Kidman 0.223 0.404 0.051 0 0.37 0 MSS Albatross Rural 

Consulting 
(2020)

LRPB Orion 0.227 0.394 0.086 0 0.36 0 MSS NVT
Ellison 0.239 0.394 0.153 0 0.34 0 S Matthews and 

McCaffery 
(2019)

EGA Wedg-
etail

0.258 0.403 0.065 0 0.33 0 VS NVT

EGA Bounty 0.281 0.186 0.680 0 0.02 0 MSS Albatross Rural 
Consulting 
(2019)

Sunprime 0.313 0.594 0.186 0.01 0.45 0.01 S NVT
LRPB Oryx 0.373 0.594 0.222 0.01 0.39 0.01 MSS NVT
Sunvex 0.396 0.424 0.403 0 0.21 0 MSS Matthews et al. 

(2018)
Buchanan 0.429 0.404 0.097 0 0.16 0 MS Matthews and 

McCaffery 
(2019)
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Appendix Table 8  (continued)

Genotype Predicted OP Std Err OP RMSD Probability 
of difference 
from Suntop

Probability 
of difference 
from EGA 
Gregory

Probability 
of differ-
ence from 
Strzelecki

NVT 
resistance 
rating

NVT resistance 
rating source

Giles 0.451 0.465 0.107 0 0.21 0 MSS Matthews et al. 
(2016)

Yenda 0.519 0.586 0.275 0 0.27 0.02 MSS Matthews et al. 
(2020)

LRPB Mus-
tang

0.610 0.216 0.264 0 0 0 MSS NVT

QAL2000 0.676 0.391 0.117 0 0.04 0.01 MS Matthews et al. 
(2020)

LRPB Gazelle 0.678 0.391 0.186 0 0.04 0.01 S Matthews et al. 
(2021)

Axe 0.743 0.403 0.186 0 0.03 0.01 MS Matthews et al. 
(2016)

Clearfield Jnz 0.785 0.457 0.264 0 0.05 0.02 S Matthews et al. 
(2016)

Mitch 0.954 0.106 0.857 0 0 0 S NVT
LRPB Impala 0.992 0.192 0.103 0 0 0 S NVT
Janz 1.073 0.393 0.227 0 0 0.05 S Matthews and 

McCaffery 
(2019)

Lang 1.089 0.404 0.247 0 0 0.06 MSS Albatross Rural 
Consulting 
(2019)

Elmore CL 
Plus

1.230 0.168 0.467 0 0 0.02 S Matthews et al. 
(2021)

LRPB Lincoln 1.252 0.373 0.418 0 0 0.1 SVS Matthews et al. 
(2016)

QALBIS 1.259 0.403 0.371 0 0 0.12 S Matthews et al. 
(2020)

LRPB Cru-
sader

1.282 0.190 0.554 0 0 0.03 S Matthews and 
McCaffery 
(2019)

Strzelecki 2.070 0.333 0.318 0 0 NA SVS Matthews and 
McCaffery 
(2019)

Genotypes are ordered from lowest to highest OP. National Variety Trial (NVT) resistance rating definitions can be found here: 
https:// nvt. grdc. com. au/ resou rces/ disea se- rating- defin itions
† NVT, the resistance rating was sourced from https:// nvt. grdc. com. au/ nvt- disea se- ratin gs (data retrieved 13 January 2023)

http://creativecommons.org/licenses/by/4.0/
https://nvt.grdc.com.au/resources/disease-rating-definitions
https://nvt.grdc.com.au/nvt-disease-ratings
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