

Current status of insect resistance and Resistance Management Strategy

Dr Manoj Nayak Principal Research Scientist, Leader, Postharvest Commodity Protection Team Department of Agriculture and Fisheries Australian Grain Storage & Protection Conference, 5-6th June 2024, Docklands VIC

Talk outline

- GRDC National Resistance Monitoring Project (2022-25)
- Resistance Management Strategy
- Trends in phosphine resistance
- Update on sulfuryl fluoride monitoring
- Update on grain protectant monitoring
- Key findings
- Industry interactions
- Ongoing research and future direction

GRDC National Resistance Monitoring Project (2022-25)

- A major GRDC investment, supported by GrainCorp, CBH, Viterra, GrainFlow
- National Team Brisbane, Wagga Wagga, Perth
- Farms (100) (random survey), BHC samples sent directly
 - Five major species (LGB, RFB, RW, RGB, SGB)
 - Nationally agreed protocol
 - Fumigants (phosphine and sulfuryl fluoride)
 - Grain protectants (spinosad)

GRDC National Resistance Monitoring Project (2022-25)

Other RD&E aspects

- 'Safe venting period'
- 'Quick tests' phosphine resistance
- Sulfuryl fluoride resistance-testing protocol for LGB
- 'Best Management Practices for Phosphine'

Resistance Management Strategy – since 2006

Goal: "Ensure long-term sustainability of grain protection chemicals including fumigants and a range of grain protectants, through strategic adoption and implementation of commercially viable, practical, scientifically-based management strategies" Objective: "To maintain biological efficacy, cost-effectiveness, and useful life of all grain protection chemicals"

Resistance Management Strategy – core principles

Phosphine

- *Structural integrity* sealable (AS2628, pressure testing), re-circulation
- Follow label application rates, exposure period, venting
- Monitor gas concentration, pest population (resistance)
- *Destroy resistant populations* isolate and eradicate, monitor re-infestation
- *Reduce selection* limit numbers of re-treatment (2-3), hygiene, cooling, non-chemical (DEs, fabric treatments), rotate with other fumigants (SF)

Phosphine efficacy - sealed vs unsealed structures

Resistance Management Strategy – core principles

Sulfuryl fluoride (SF)

- *Structural integrity* sealable (AS2628, pressure testing)
- Follow label application rates, exposure period, venting
- Avoid short exposure periods minimum of 4 days
- *Recirculation* –quick and uniform distribution of gas
- Monitor gas concentration, pest population (resistance)
- Reduce selection Fumigate once, use as a 'phosphine resistance breaker'

Resistance Management Strategy – core principles

Grain protectants – long-term protection

- Ensure market acceptability before applying
- Apply on freshly harvested grain, never re-apply
- Follow label application rates (proper dilution)
- Use combined treatments (eg. Spinosad + S-methoprene + an OP) offers blanket control of major spp.
- *Monitor* pest population (resistance)
- Rotate with other treatments break 'resistance cycle'
- *Fumigate* in case of failure Not to re-treat with another protectant

Re

Trends in phosphine resistance (2023-24): Sampling

Region	Farm		BHC		
	Sites	Strains	Sites	Strains	
Southern	160	284	102	397	
Northern	104	248	48	98	
Western	110	178	28	99	

Breakdown of farm strains

Breakdown of BHC strains

RGB SGB

RW

Frequency (%) of strong resistance in Lesser grain borer

2020 2021 2022 2023 2024

Frequency (%) of strong resistance in Red flour beetle

2020 2021 2022 2023 2024

Frequency (%) of strong resistance in Rice weevil

2020 2021 2022 2023 2024

Frequency (%) of strong resistance in Rusty grain beetle

2020 2021 2022 2023 2024

Frequency (%) of strong resistance in Saw-toothed grain beetle^{*}

Frequency (%) of strong resistance to phosphine - 2024

Trend in strong resistance frequency (%) nationally

Update on monitoring for sulfuryl fluoride

- 13 RFB (*Tribolium castaneum*) field strains tested (0.85 mg/L over 48 hrs (42 g hm⁻³)
- All strains susceptible
- No resistance development

 New discriminating dose for LGB (*Rhyzopertha dominica*) - 0.4 mg/L over 48 hrs (20g hm⁻³)

Update on monitoring of grain protectants

- 36 farm strains and three BHC strains (covering three regions) of lesser grain borer (*R. dominica*) tested for resistance to spinosad
- Discriminating dose (1 ppm)
- Complete control (100%) of adults and progeny
- Combined treatment effective against field populations

Key findings

Problematic species

- Farms: LGB, RFB, RW and RGB
- BHCs: RGB (southern and northern), RW and RFB (Western)

Frequency of strong resistance to phosphine

- Data on BHCs biased samples from control failures
- National frequency steady increase doubled in one year **33%** all-time high

Resistance to SF and spinosad not yet detected in field populations

Industry interaction

- Face-to-face workshop with GrainCorp pest control managers and ground staff -Goondiwindi (April)
- Meeting farmers during sampling, advising them on 'best management practices'
- GRDC Grain storage update on-line (11th June)
- Controlled Atmosphere and Fumigation Conference (CAF-2024) Canada (Aug)
 - Manoj Keynote and Workshop Talk on 'Resistance Management'
 - Raj Talk on IPM for Northern Australia
 - Co-authored Book Chapter "Insect Resistance to Fumigants in Postharvest Commodity Protection - Monitoring and Management"

Ongoing research

- Establishing 'safe venting periods' for on-farm phosphine fumigation
- Development of a 'quick' test for detecting strong resistance in RFB
- Phosphine protocols for strongly resistant rusty grain beetle
- Best Management Practices for Phosphine

Future direction

Phosphine

- 'Safe venting periods' across commodities, storages, temperatures
- 'Quick tests' for other spp., protocols for strongly resistant rusty grain beetle
- Base-line response of other spp. (RGB most updated)
- RD&E on pests of oilseeds? (note: oil seeds can be highly sorptive)
- Developing protocols for exotic pests (eg. Khapra) International collaboration

Grain protectants

- Potential of SAS to manage resistant pests
- New data on fenitrothion (both as grain protectant and structural treatment)

Acknowledgements

- GRDC Dr Leigh Nelson
- Growers
- QDAF Brodie, Sudhan, Raj, Hervoika, Valerie, Kai, Emma, Sunil, Manjula, Brock
- NSWDPI: Jo Holloway and Team (Rachel Wood, Lily Tenhave, Andre Bannink)
- DPIRD: Mike Jones and Team (Ben Clarke, Sam Manning, Hannah Hughes, Georgia Keir-Uren)
- GrainCorp: Pat Wilson and Staff
- CBH: James Newman and Staff
- Viterra: Greg Hopkins and Staff
- Grainflow: Kain McGregor and Staff

For more information, please email manoj.nayak@daf.qld.gov.au

"Creativity is intelligence having fun" Albert Einstein