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Simple Summary: The last decade of intensive research on the role and importance of intestinal
microbial communities has brought abundant novel information and a high appreciation of micro-
biome contribution to medical and veterinary research that stretches beyond probiotic and pathogenic
effects. We can now investigate the complex microbial community inhabiting major host cavities and
colonising organs. In poultry research, it is common to collect cloacal swabs or faecal droppings for
non-invasive sample collection or caecum and other intestinal origins to investigate their specific
microbial communities. Litter samples are less frequently collected for microbial community inves-
tigation despite them being in close contact with birds and playing a significant role in microbiota
colonisation, development, and maturation. Here, we explored the microbiota of litter and compared
them with selected gut sections and bird health status.

Abstract: Probiotics provided from hatch have a major influence on microbiota development, and
together with environmental and bedding microbiota, shape the microbial community of the litter.
We investigated the influence of probiotic supplementation and a leaky gut challenge induced using
dexamethasone (DEX) on the litter microbial community and litter parameters. The probiotic product
was a mix of three Bacillus amyloliquefaciens strains. The litter microbiota were compared to the
microbial communities from other gut sections. The litter samples had higher microbial diversity
compared to the caecum, gizzard, jejunum, and jejunal mucosa. The high similarity between the
litter phylum-level microbiota and gizzard microbiota detected in our study could be a consequence
of ingested feed and litter passing through the gizzard. Moreover, the litter microbial community
is fundamentally distinct from the intestinal microbiota, as evidenced by the number of genera
present in the litter but absent from all the intestinal sections and vice versa. Furthermore, LEfSe
analysis identified distinct microbial taxa across different groups, with specific genera associated
with different treatments. In terms of litter quality, the birds in the DEX groups had a significantly
higher moisture content, indicating successful leaky gut challenge, while probiotic supplementation
did not significantly affect the moisture levels. These findings provide comprehensive insights into
the distinct microbiota characteristics of litter.

Keywords: litter; microbiota; probiotics; Bacillus; broiler; leaky gut

1. Introduction

The gastrointestinal tract (GIT) of poultry encounters exogenous microorganisms
immediately post-hatch, creating a conducive environment for a complex microbial com-
munity, including commensal, symbiotic, and pathogenic organisms [1]. The journey of
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bacterial succession and colonisation in domestic broilers may start with incubated eggs,
either through close contact with hens or via contact with commercial incubators within
21 days of embryonic development [2], and the environment shortly post-hatching [3]. The
early colonisation of exogenous microorganisms provides a baseline environment for creat-
ing a stable and diverse microbiota in poultry. Firstly, the gut of chickens is colonised by
facultative aerobes and substituted by anaerobes [4]. Then, prolific oxygen consumption by
aerobic bacteria promotes the conditions for subsequent colonisation by anaerobic bacteria
in the gut ecosystem [5]. The environmental influence in this stage is immense, with birds
in close contact with litter and faecal droppings, contributing to the microbiota’s sharing
and uniformity. The colonisation process is rapid, followed by maturation, which continues
throughout the short production cycle of commercial broilers at approximately 5–6 weeks,
while chickens should become sexually mature at 18 weeks. Thus, our insights into the
broiler intestinal microbiota are limited to the very early life stages, which are still essential
for broiler health and performance.

As the broiler host grows, the microbiota experience significant diversification while
the immune system gradually matures over two weeks [6] and stabilise into a steady yet
dynamically evolving state. Poultry have a short GIT and a short feed transit time (4–5 h
in 29-day-old broilers) [7]. This anatomical distinction selects specialised fast-growing
gut microbiota, characterised by extensive interactions among gut microbes and host and
dietary components. The interaction of large and complex communities of bacteria plays a
significant part in host health, nutrition and physiology [1], such as the production of short-
chain fatty acids (SCFAs), essential amino acids and vitamins. The microbial community
assists in immune system development and gut homeostasis, provides protection against
pathogens, and improves growth performance [8].

Studies in broiler gut microbiota examine the microbial composition of specific GIT
sections, such as the caecum and ileum, as well as in excreta, litter and poultry house
dust [7]. Previous molecular studies on litter microbiota for population-level surveillance
of bacteria, viruses, and protozoa in commercial broilers have shown that specific microor-
ganisms of significance can be detected in samples collected from broiler houses even when
they are present at low levels [9–11]. This indicates that such samples may serve as a viable
option for population-level pathogen monitoring programs and potentially for assessing
gut microbiota as well. Thus, litter sampling could contribute considerably to poultry
management and health status monitoring programs as molecular diagnostics become
more viable [12].

Throughout the broiler growth cycle, birds continuously practice coprophagy as well
as pecking, and ingest litter particles [13]. Litter generally comprises chicken excreta and
bedding material, which serves as bedding and a substrate for microbial activity and waste
absorption [14]. Overgrowth of microbial communities could occur because of excess
non-digested materials in the hindgut [4]. This disrupts the homeostasis of the gut micro-
biota and host, producing metabolic, pathogenic and other diseases [15]. The microbial
composition present in broiler litter greatly impacts the broiler gut microbiota because
of continuous ingestion and contact with microorganisms [16]. Litter accumulates and
harbours a complex microbial community partially originating from the gut microbiota,
potentially impacting litter reuse for several growth cycles, a common management practice
among some poultry producers aimed at cutting production costs and addressing the chal-
lenges associated with litter disposal [17]. This practice has implications for the microbial
community present in the litter, which can subsequently impact the broiler gut microbiota.
For example, a study by Cressman et al. (2010) observed a higher proportion of environ-
mental bacteria harboured in fresh litter, whereas reused litter contained more bacteria of
intestinal origin [18]. The same study also demonstrated that the ileal mucosa-associated
bacteria of broiler chickens reared on fresh litter were primarily composed of Lactobacillus
spp. In contrast, birds reared on reused litter were dominated by a group of unclassified
Clostridiales bacteria [18]. Moreover, the microorganisms present in the reused litter can act
as a competitive exclusion culture, delaying the colonisation of Clostridium perfringens in



Animals 2024, 14, 1758 3 of 15

the broiler ileal mucosa during the early post-hatch period [19]. However, reused litter may
also harbour pathogenic and opportunistic microorganisms from previous batches [20].

Poultry house dust could potentially serve as a non-invasive sample for monitoring
bird microbiota at the population level [7]. In poultry dust, most on-farm airborne partic-
ulate matter (PM) originates from feathers and manure, where manure contributes most
to coarse PM. Feed has a negligible contribution (<16%), and wood shavings contribute
<34% [21]. Based on a microbiota study by O’Brien et al. (2016), poultry dust is predomi-
nantly composed of bacteria (64–67%) and a minor portion of avian, human and feed DNA
(<2%) [22]. Moreover, a study by Yan et al. (2019) [23] pointed out ~99% of the operational
taxonomic units (OTUs) in caecal samples were present in excreta, and ~87% of the OTUs
in ileal samples were present in excreta, showing the succession patterns of gut microbiota
species. Another study also described a correlation between seasonal variations in the litter
microbiota and seasonal variations in chicken productivity [13]. This means a succession of
microorganisms is observed post-initial gut colonisation, and the population structure of
the microbiota increases as birds grow, as they eventually mature and stabilise. This process
is intensive in the first three weeks [3,24]. Recognising the physiochemical properties of lit-
ter (pH, moisture) is important, particularly with the high stocking densities of commercial
broiler houses. The moisture content of litter has been associated with microbial activity,
ammonia and odour emissions, as well as bird health and wellbeing [25]. For example,
changes in pH, moisture, and organic and inorganic content might impact both biotic and
abiotic environments and hence the microbiota [18]. PM is important and can compromise
bird and human health, as well as the environment. This correlation proves that a constant
exchange of microorganisms exists in the environment and the gut microbiota of broilers
and highlights the importance of litter as a reservoir of microbial diversity.

Probiotics, such as Lactobacillus spp. and Bacillus spp., have been suggested as promis-
ing alternatives to antibiotic growth promoters (AGPs) [26–28]. The present study investi-
gates the litter microbiota of broilers with and without a Bacillus-based probiotic product
containing a mix of B. amyloliquefaciens strains in a leaky gut model. As the litter microbiota
play a crucial role in shaping the structure and dynamics of the gut microbiota and subse-
quently influencing health and performance, it is important to study the litter microbiota,
which is often neglected in poultry microbiota studies. Moreover, good gut health promotes
digestibility and decreases the production of NH3 and other gases in the poultry housing
environment [29], which may pose a danger to farm workers and birds. The birds in the
present study were subjected to a gut barrier dysfunction model induced by dexamethasone
(DEX) to investigate the role of DEX challenge and Bacillus supplementation on litter quality
and microbial community.

2. Materials and Methods
2.1. Sample Collection

The Central Queensland University’s Animal Ethics Committee approved the present
study (approval number 0000023123). Two hundred and fifty-six day-old Ross 308 broiler
chicks hatched in the same research facility were randomly assigned to 32 pens with eight
birds per pen in a completely randomised 2 × 2 design. Each pen was covered with 70 L of
fresh wood shavings, 5 cm deep. The broiler house and the equipment, including the pens,
were comprehensively cleaned before the hatchlings were placed in the pens to minimise
the presence of microbes from previous studies. The supplemented probiotic (Natupro
NG, Bioproton, Acacia Ridge, Brisbane, Australia) was a combination of 6 × 108 CFU/g
Bacillus amyloliquefaciens strains (BPR-11, BPR-16, and BPR-17) supplemented at 500 g/t
of feed mixed into a commercially available antimicrobial-free chicken starter diet (Red
Hen, Laukee Mills, Australia), formulated to meet or exceed the National Research Council
guidelines for broiler chickens. The feed contained wheat, triticale, barley, oats, peas, lupins,
lentils, beans, soyabean, canola, sunflower, meat meal, fish meal, blood meal, fat, limestone,
di-calcium phosphate, potassium carbonate, sodium bicarbonate, salt, bentonite, lysine,
methionine, threonine, tryptophan, isoleucine and valine. Vitamins A, D3, E, K, B1, B2, B3,
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B5, B6, B7, B9 and B12, choline and the minerals calcium, phosphorus, potassium, sodium,
chloride, cobalt, copper, iodine, iron, manganese, molybdenum, selenium and zinc were
supplemented. The mixing of probiotic supplement was carried out using an electric mixer
to achieve homogeneous supplementation, as in Table 1. The feed was mixed weekly using
an electric mixer and stored in a cool, dry place (cold room).

Table 1. Probiotic strains and specification in CFU/g.

Probiotic Strains Specification

Bacillus amyloliquefaciens (BPR-11) 2 × 108 CFU/g
Bacillus amyloliquefaciens (BPR-16) 2 × 108 CFU/g
Bacillus amyloliquefaciens (BPR-17) 2 × 108 CFU/g

A commercial basal diet (BD) containing all the essential nutrients but free of antibiotics
or coccidiostat was provided, and depending on the probiotic and DEX supplementation,
was labelled as one of four treatments. We used the letter P for probiotic, D for DEX
and C for the unsupplemented control; thus, the abbreviation C = the BD only, the non-
supplemented control; CD = the BD with DEX supplementation; P = the BD supplemented
with the probiotic and PD was the BD containing the probiotic and DEX supplementation.
The probiotic was added in powder form to the BD from day one and was maintained
throughout the study period.

On days 28–35 (week 5), birds in the DEX groups were supplemented with DEX at a
concentration of 0.6 mg/kg, inducing gut barrier dysfunction [30]. The stock solution of
DEX was prepared daily by dissolving DEX (Sigma-Aldrich, St. Louis, MO, USA) in 1 mL
of 70% ethanol, which was diluted with 50 mL of water per 20 kg of feed. The DEX solution
was sprayed into the feed while mixing it in an electric feed mixer. The DEX-supplemented
feed was prepared daily. Feed and water were provided ad libitum.

Litter samples were collected on day 35 after the DEX leaky gut challenge. Litter
from each pen was sampled from five collection points, mixed and stored in sterile plastic
containers. The four samples were collected from the centre of each of the four quadrants,
and one sample was selected from the middle of the pen. The middle of the pen was near
the feeder, and one of the four quadrant samples was adjacent to the drinker. The sample
was taken as a 3 cm core, thus sampling only the top layer of litter in direct contact with
the birds. This process was carried out three times per pen, producing three replicates
per pen (n = 96 samples). The samples were stored at −80 ◦C before being used for DNA
sequencing and moisture content and pH evaluation.

In addition to the litter, the microbiota samples collected in this study included gizzard,
caecum, jejunum and jejunal swabs. The microbial communities of each gut section and
animal performance data have been published separately by Horyanto et al. [31].

2.2. DNA Extraction and Sequencing

Litter DNA (n = 96) was extracted using DNA mini spin columns (Enzymax LLC,
CAT# EZC101, Lexington, KY, USA) in accordance with the lysis protocol suggested by Yu
and Morrison (2004) [32]. The concentration of DNA was measured using a NanoDrop™
One Spectrophotometer (Thermo Fisher Scientific, Wilmington, NC, USA). Subsequently,
a DNA sequencing library was generated through amplification of the V3-V4 regions
of the 16S rRNA gene using the primer pairs pro341F (5′-CCTACGGGNBGCASCAG-3′)
and pro805R (5′-GACTACNVGGGTATCTAATCC-3′), incorporating index, heterogeneity
spacer, and Illumina sequencing linkers [33]. Library purification was performed using
AMPure XP Kits (Beckman Coulter, Brea, CA, USA) before sequencing on the Illumina
Miseq platform in paired-end configuration (2 × 250 bp).
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2.3. Litter Moisture Content and pH

The litter samples were defrosted, and a combination of 35–55 g of content from three
jars per pen was collected and homogenised, producing 32 experimental samples. The
samples were placed in an aluminium foil pan, dried at 65 ◦C for 48 h, and weighed as
described by Elias et al. (2020) [34]. Their moisture content was calculated as a percentage.
Ten grams of the litter sample was diluted with 100 mL of distilled water and placed in a
mechanical shaker for two hours. The supernatant was filtered, and the pH was measured
using an Orion 2 Star pH meter (Thermo Fisher Scientific, Wilmington, NC, USA) and the
manufacturer-recommended buffers.

2.4. Bioinformatics

Raw sequences were demultiplexed using Cutadapt [35], and better-quality reads
meeting a minimum Phred score of 25 across a 200 nt length were selected for analysis
using Quantitative Insights into Microbial Ecology 2 (QIIME2) [36]. Quality filtering,
denoising, and chimera exclusion were performed via the Dada2 [37] plugin, and taxonomic
assignments were made using the SILVA v 138.1 database [38]. Further downstream
statistical analysis and visualisation were completed by using various R (v4.2.2) packages,
including Phyloseq v1.42.0 [39], Phylosmith v1.0.7 [40], Vegan v2.6-4 [41] and Microeco
v1.3.0 [42].

3. Results
3.1. Animal Performance

The broiler performance data, including their body weight (BW), average daily gain
(ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) before and after
the DEX periods, are provided in Supplementary Figures S1 and S2 [31]. There was no
significant difference in the broiler BW, ADG, ADFI or FCRs between the control and
probiotic groups before DEX supplementation, except on day 21 (p < 0.05). During the DEX
period, a significant difference was observed in all the production parameters between the
non-DEX and DEX-challenged groups (p < 0.05). A similar performance was evident in
both the probiotic-supplemented and non-probiotic groups.

3.2. Litter Microbiota Richness and Diversity

The litter microbiota exhibited distinct characteristics compared to the intestinal mi-
crobiota samples (Figure 1). The microbiota richness in litter samples, as measured with
Observed Species, is significantly lowerthan that in the caecum and gizzard and signif-
icantly higher than the richness in the jejunal swab. However, the litter samples had
significantly higher diversity, measured using the Simpson index, than any other analysed
gut section microbiota.

No significant variations in the overall microbial richness or diversity were driven by
either the DEX or probiotic supplementation.

3.3. Litter Microbial Community

The phylum-level litter microbiota showed similarities with the gizzard regarding a
high abundance of Firmicutes and Proteobacteria (Figure 2), but it shared the same phylum-
level membership with the other gut sections. On the other hand, strong dissimilarities
between the litter and the other gut sections’ microbiota became apparent at the genus
level. Some dominant genera present in the litter samples detected using 16S amplicon se-
quencing included Sphingobacterium, Acinetobacter, Brachybacterium, Glutamicibacter, Staphy-
lococcus, Alcaligenes, Escherichia-Shigella and Brevibacterium. The known genera present
in the gut but not in the litter and conversely the known genera present only in the lit-
ter but not in any gut sections detected using 16S amplicon sequencing are shown in
Supplementary Tables S1 and S2, respectively.
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3.4. Beta Diversity

Overall, non-metric multidimensional scaling (NMDS), principal coordinate analysis
(PCoA) and stochastic neighbour embedding (t-SNE) plots showed a clear separation by
sample origin, as demonstrated using t-SNE in Figure 3. The litter microbiota samples were
highly uniform, clustered closely and separated from the other origins at the genus level,
but they were close to those from the gizzard at the phylum level, which agrees with the
data presented in Figure 2.
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PERMANOVA of the litter microbiota showed significant differences introduced by
the DEX challenge based on both the Unweighted (p = 0.001) and Weighted UniFrac
distances (p < 0.022). The treatments, including C, CD, P and PD, were only significant
using Unweighted UniFrac (p = 0.010) (Table 2). Moreover, paired MANOVA presented
significant differences between C and CD (p = 0.007), CD and P (p = 0.001) and P and PD
(p = 0.021) using the Unweighted UniFrac distances. However, no significant differences
were observed using the Weighted UniFrac distance (Table 3).

Table 2. PERMANOVA of litter by both Weighted and Unweighted UniFrac.

Groups R2 p-Value Distance

DEX 0.111564 0.001 * Unweighted UniFrac
Probiotic 0.032266 0.710 Unweighted UniFrac
Treatments 0.172054 0.010 * Unweighted UniFrac
DEX 0.119781 0.022 * Weighted UniFrac
Probiotic 0.010500 0.933 Weighted UniFrac
Treatments 0.140897 0.287 Weighted UniFrac

DEX × probiotic interactions were significant (p < 0.05) according to Unweighted and Weighted UniFrac.
Treatment PERMANOVA compared differences between four groups (C, CD, P and PD). * Statistically
significant = p < 0.05.

Table 3. Paired MANOVA between experimental groups in the litter. There was a significant
difference between groups, according to both Weighted and Unweighted UniFrac, each time when
comparing the DEX-challenged and unchallenged groups.

Groups R2 p (>F) Distance

C vs. CD 0.153235 0.007 * Unweighted UniFrac
C vs. P 0.079020 0.563 Unweighted UniFrac
C vs. PD 0.123330 0.069 Unweighted UniFrac
CD vs. P 0.168461 0.001 * Unweighted UniFrac
CD vs. PD 0.056801 0.849 Unweighted UniFrac
P vs. PD 0.137487 0.021 * Unweighted UniFrac
C vs. CD 0.118515 0.257 Weighted UniFrac
C vs. P 0.021170 0.943 Weighted UniFrac
C vs. PD 0.175991 0.078 Weighted UniFrac
CD vs. P 0.091673 0.289 Weighted UniFrac
CD vs. PD 0.026885 0.878 Weighted UniFrac
P vs. PD 0.142875 0.085 Weighted UniFrac

* Statistically significant = p < 0.05.
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Paired MANOVA performed between the gut sections and litter microbiota showed
highly significant (p < 0.001) differences in all the comparisons between gut sections
and between the litter and gut sections using either Weighted or Unweighted UniFrac,
as expected.

Further comparisons of the beta diversity within each sampled origin revealed highly
significant differences in the sample distribution using Unweighted UniFrac (Figure 4A)
and Weighted UniFrac (Figure 4B), indicating high within-group sample-to-sample mi-
crobiota differences based on microbiota membership and abundance. The gizzard and
jejunum had similar sample-to-sample distances based on weighted UniFrac.
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The litter samples were highly uniform (smaller sample-to-sample distance) compared
to the gizzard, jejunum and jejunal swabs samples based on both Weighted and Unweighted
UniFrac. The within-sample origin similarity (lower sample-to-sample distance) between
the litter samples was most comparable to that represented by the smaller distances (higher
similarities) between the caecum samples.

3.5. Effects of Treatment on Litter Microbial Taxa

The linear discriminant analysis (LDA) effect size (LEfSe) analysis in Figure 5 presents
the distinct microbial taxa across different groups. The litter microbiota were characterised
by a higher abundance of Moraxellaceae, Acinetobacter, Enterococcaceae and Enterococcus
in the C group and Aerococcaceae, Aerosphaera, Flavobacteriaceae, Flavobacteriales, Myroides,
Alphaproteobacteria, Cardiobacteriales, Wohlfahrtiimodaceae, Rhizobiales and Rhizobiaceae in
the CD group. The PD group was represented by Burkholderiales, Alcaligeceae, Alcaligenes,
Planococcaceae, Clostridia, Peptostreptococcales-Tissierellales, Capnocytophaga spp., Gottschalkia,
Flavobacterium and Tissierella (Figure 5). No genera were associated with the P group. The
genera associated with the supplementation of DEX and the probiotic according to the
LEfSe analysis (LDA > 3.5) are presented in Supplementary Figures S3 and S4.

3.6. Litter Quality

The moisture content is presented in Figure 6. The litter in the DEX groups had a
significantly higher moisture content than that in the non-challenged groups, indicating
that the diarrhea leaky gut challenge was successful (p < 0.05). Moreover, there were no
significant differences in the moisture levels due to probiotic supplementation (p > 0.05).
There were no significant differences in the litter pH between the four treatments (p > 0.05)
(Supplementary Figure S5: Litter pH in C, CD, P and PD groups).
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4. Discussion

As expected, the moisture content was significantly higher in the leaky gut DEX-
challenged groups (CD and PD, p < 0.05). The glucocorticoid DEX induces gut inflamma-
tion and promotes significant alterations in the intestinal structure, stimulating a condition
known as leaky gut, as documented by previous studies [43,44]. This disruption in the
gut barrier contributes to decreased digestibility, water loss, and diarrhea, consequently
increasing the moisture levels in the litter [45]. Moreover, a leaky gut is associated with
the movement of gut bacteria, microbial compounds and/or antigens, prompting a sys-
temic immune response. The systemic inflammation generated by DEX demands energy,
decreasing bird production performance [46].
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The poultry GIT harbours complex microbiota, and the 16S amplicon methodology
exclusively investigates a major portion of the bacterial community, which can profoundly
impact broiler performance. The absence of significant variations in the alpha diversity
indices (Figure 1) suggests DEX and probiotic supplementation exert minimal impacts on
overall microbial diversity. A more prominent distinction is seen in beta diversity. The
litter in the t-SNE plots is closely clustered and separated from the other sample origins at
the genus level but is proximate to the gizzard at the phylum level. The phylum-level litter
microbiota showed a high abundance of Firmicutes and Proteobacteria. This could be a result
of ingested feed and litter microbiota passing through the gizzard. The observed variations
in microbial diversity between the litter and intestinal samples highlight the importance
of considering environmental context [47]. The litter microbial profile is influenced by
factors such as the substrate composition and environmental conditions, which exhibit
distinct microbial dynamics compared to the gut, which is mainly shaped by environment
(moisture content, pH), host physiology and diet [48].

Litter containing 43–67% moisture has a greater bacterial abundance compared to that
with 10–25% moisture content [49]. This confirms our observation in Figure 1, where higher
moisture leads to higher diversity in the litter samples as measured using the Simpson
diversity index. A litter moisture content surpassing 40% has been associated with poor
digestion and changes in digesta viscosity and protein levels [50] and is often an indicator
of diarrhea. The high moisture content, approaching 60%, in the DEX groups provides ideal
conditions for anaerobes, such as Clostridia and Peptostreptococcales-Tissierellales, whereas
a ~40% moisture content in the non-DEX groups may have been slightly aerobic, which
is ideal for aerobes, such as Moraxellaceae and Acinetobacter. Another study observed
something similar, where Clostridia is predominant in fresh litter and ileal mucosa micro-
biota [18]. Hence, a high moisture content or “wet litter” is a safe haven for pathogens (C.
perfringens, Escherichia coli), which can increase the incidence of necrotic enteritis (NE) and
secondary health problems, such as footpad dermatitis, ammonia proliferation and poor
overall welfare and performance in broilers [49].

No genera were significantly associated with probiotic supplementation, according
to the LEfSe analysis, when observing all four treatments. The litter microbiota in the
DEX groups were characterised by Acinetobacter, Enterococcaceae, Enterococcus, Myroides,
Burkholderiales, Alcaligeceae, Alcaligenes, Clostridia, Peptostreptococcales-Tissierellales, Capnocy-
tophaga spp., Gottschalkia, Flavobacterium and Tissierella. These bacteria can cause chronic
diseases in poultry. Enterococcus faecium is deemed a member of the gut microbiota in both
humans and poultry. Acinetobacter, part of the Moraxellaceae family, is a strictly aerobic
microorganism that mostly occurs in spoiled meats and is considered a mild spoiler of meat
and dairy products because of its poor proteolytic activity but good lipolytic activity [51].

Members of the Myroides genus associated with the CD group originate from the family
Flavobacteriaceae and are considered opportunistic pathogens in poultry. Moreover, some
species of the genus Flavobacterium associated with the PD group are related to poultry
diseases and respiratory infections [52]. The order Burkholderiales includes a diverse group
of bacteria, but a study by Campos et al. (2022) [53] pointed out that Burkholderiales is more
abundant in birds infected by Eimeria tenella.

Some species of Alcaligeceae like Bordetella avium are often present in soil and water
environments and are considered zoonotic, contagious and a common cause of a disease
called bordetellosis in birds [9,54]. Some clostridia are considered very important agents
of enteric disease in poultry. For example, the incidence of C. perfringens-associated NE
in poultry has increased significantly in countries discontinuing the use of AGPs [55].
The growth, survival and spread of both clinical and subclinical NE, a major disease
in the broiler industry, is promoted by a high moisture content in the litter [49]. These
anaerobic microorganisms are also involved in cattle disease pathogenesis and act as
secondary opportunistic pathogens [56]. Capnocytophaga spp. are commonly seen in the
oral cavities of dogs and cats [57], whereas Gottschalkia are pathogens and were also present
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in layer manure samples from different-scale farms in a study conducted by Wang and
Chai (2022) [58].

Planococcaceae, which are selected as characteristic of PD birds, are common inhabitants
of poultry GITs. A study by Abdel-Kafy et al. (2022) identified Planococcaceae in the
mucosa of high-weight birds [59]. Moreover, Mon et al. (2020) stated Planococcaceae and
Lactobacillaceae are often highly co-abundant [60]. Aerococcaceae were also present in ileal
and caecal content samples in a study by Bindari et al. (2021) [7]. Alphaproteobacteria, a
class of Proteobacteria, was seen in the CD birds. Proteobacteria is a phylum commonly
present in younger birds before the microbial succession moves towards high domination
by Firmicutes [4]. Another study stated that the highly pathogenic phylum Proteobacteria
is a predominant phylum in cloacae because of its oxygen tolerance [61]. The order
Cardiobacteriales is closely correlated with Wohlfahrtiimonas [62]. Wohlfahrtiimonas is isolated
from parasitic fly larvae, Wohlfahrtia magnifica [63], and could be present in litter via insect
vectors. Finally, Rhizobiales commonly colonise plants and live in symbiosis, promoting
N-cycling. There is minimal information on the family of Rhizobiaceae in poultry. One study
mentioned that Rhizobiaceae were abundant on eggshell surfaces post-hatching [64], but
another study correlated Rhizobiaceae and a decrease in the FCR [65].

While poultry litter contains microbiota originating from excreta, its microbial com-
munity cannot be considered similar to the microbiota from poultry gut sections based
on their shared intestinal taxa. Considering that the methodology we use in microbiota
studies detects taxa based on the DNA extracted from the source, this methodology cannot
distinguish between DNA from live and dead bacteria. It is improbable that strict anaer-
obes from the intestine would survive and thrive in the aerobic environment of the litter.
However, dead excreta bacteria could represent a rich source for the growth of different
environmental bacteria. A high level of pathogenic Proteobacteria genera in cloacal swabs is
likely influenced by litter exposure and Proteobacteria’s ability to tolerate oxygen, leading
to the overgrowth of poultry pathogens in the litter. At the same time, some of the most
beneficial intestinal microbiota used as next-generation probiotics, like Akkermania and
Faecalibacterium, are strict anaerobes. The top layer of the litter (we sampled the top 3 cm
core) is exposed to the environment, oxygen, insects and bedding, feed, water and soil
microbiota. Thus, controlling the microbial load and moisture content of the litter should
be considered in broiler house monitoring programs.

Controlling environmental microbial counts is a complex process. Most commercial
broiler houses have management programs in place, such as providing effective ventilation
to simultaneously dry litter and reduce air dustiness [66], as well as using antimicrobial and
anti-biofilm agents. Proper ventilation is important, as studies on broiler litter have shown
a water activity (AW) of <0.84 is suggested as a successful control measure in minimising
Salmonella populations [67] and microbial activity [25]. This study provides a passive
sampling and analysis protocol proposal to assess microbial contamination in litter samples.
The litter microbiota also mature and alter with time, and ongoing monitoring may be
useful for providing an early warning of potential disease outbreaks.

Co-infection in commercial poultry flocks is likely to occur due to the close interactions
between birds and the litter. This is important, as we know birds continuously practice
coprophagy and are exposed to the microbiota present in the bedding particles, where
pathogens are commonly present [16]. For example, poultry infected by Histomonas me-
leagridis and E. coli experienced more severe pathogenesis, a sudden shift in the caecal
mucosa-associated microbiota and the colonisation of pathogenic bacteria [68]. Moreover,
increased pathogens post-infection or changes in the environmental conditions could de-
crease the population of beneficial bacteria such as Lactobacillus. A study by Oh et al. (2017)
observed stabilised and improved gut microbiota post-supplementation of Bacillus subtilis
against Salmonella in hens, which is very positive [69].
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As mentioned above, hatchlings can be infected vertically (via hens) or horizontally
(via the environment). The ban on AGPs and vaccines whose success depends on specific
serovar and host species could alter the microbiota colonisation of mucosal surfaces in
young birds [70]. Thus, strategies like proper ventilation and in-feed supplementation of
probiotic spores may be successful in minimising water activity and producing competi-
tive exclusion against pathogens [71], modulating the gut microbiota and decreasing the
shedding of pathogens, such as Salmonella, into broiler environments and meat [70].

5. Conclusions

In conclusion, the dexamethasone leaky gut challenge introduced a significant increase
in diarrhea, evident from a significant increase in the litter moisture, and resulted in
significant shifts in the litter microbiota, more prominent in influencing the presence and
absence of species (Unweighted) than their abundance and dominance (Weighted UniFrac).
Probiotic supplementation did not alter the litter microbiota.

Litter samples have very high microbial diversity, significantly higher than that of
any other gut origin, including the caecum. However, the litter does not have the highest
microbial richness, in this study being slightly behind the caecum and gizzard. Compared
to those from the gut sections, the litter microbial samples (sample-to-sample distance)
were highly similar to one another. This uniformity can be utilised for both diagnostic
and therapeutic purposes. The use of shotgun metagenomic sequencing of the litter could
suggest novel biomarkers and open new directions in using litter to improve bird health.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ani14121758/s1. Figure S1: Broiler performance metrics, including
body weight (BW), average daily gain (ADG), average daily feed intake (ADFI) and feed conversion
ratio (FCR), measured before the supplementation of DEX; Figure S2: Broiler performance metrics,
including body weight (BW), average daily gain (ADG), average daily feed intake (ADFI) and feed
conversion ratio (FCR), between days 28 and 35 after the DEX period; Figure S3: Genera associated
with dexamethasone supplementation according to LEfSe analysis (LDA > 3.5); Figure S4: Genera
associated with probiotic supplementation according to LEfSe analysis (LDA > 3.5); Figure S5: Litter
pH in C, CD, P and PD groups. No statistically significant differences were observed between the
groups (p > 0.05); Table S1: Known genera present in the gut but not in the litter detected using 16S
amplicon sequencing; Table S2: Known genera present only in the litter but not in any gut sections
detected via 16S amplicon sequencing.
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