QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES DIVISION OF PLANT INDUSTRY BULLETIN No. 591

TESTS OF SUBTROPICAL PASTURE SPECIES UNDER IRRIGATION IN CENTRAL QUEENSLAND

By D. G. CAMERON, B.Sc.Agr.

SUMMARY

In simple grass/legume mixtures, subtropical pasture legumes have shown no value for irrigated pastures in areas of subcoastal Central Queensland where mild to heavy frosts are experienced over winter. The limited range of grasses tested were better adapted. Further testing of these and a wider range of cultivars is warranted, both in pure grass swards with nitrogen fertilizer and in combination with temperate pasture species.

I. INTRODUCTION

In discussing the need for and role of irrigated pastures in Central Queensland, Cameron (1967) indicated that a range of subtropical species were to be studied. Four small experiments have now been completed and the results are reported here.

II. MATERIALS AND METHODS

Two of the experiments were located at Theodore Research Station on flood-irrigated, heavy grey clays and were grazed by sheep. The other two were at Biloela Research Station under spray irrigation and grazing by dairy cattle and on lighter grey brown, clay loams. Details of each experiment, together with the cultivars planted, are shown in Table 1.

"Queensland Journal of Agricultural and Animal Sciences", Vol. 28, 1971

TABLE 1

DETAILS OF INDIVIDUAL EXPERIMENTS AND CULTIVARS PLANTED

Expt.	Location	Date Planted	Design	Plot Size	Planting Rate (lb/ac)		Samplin	g Areas	Cultivars Planted		
No.					Grass	Legume	Population	Dry Matter	Grasses*	Legumes†	
1	Theodore	26.ii.65	3 x 5 x 3 RB	30 ft x 15 ft	6	6	_	3 ft x 16 ft	B, C, F	1, 2, 4, 5, 9	
2	Biloela	8.xii.65	2 x 8 x 3 RB	40 lk x 30 lk	6	4	Six 5 lk x 2 lk	3 ft x 16 ft	B, F	1, 2, 4, 5, 6, 7, 10, 11	
3	Theodore	23.ii.67	3 x 4 x 3 RB	60 lk x 50 lk	3	4	Ten 5 lk x 2 lk	3 ft x 16 ft	B, D, F	2, 3, 4, 10	
4	Biloela	1.iii.68	3 x 5 x 3 RB	40 lk x 30 lk	4	6	Forty 1 lk x 1 lk	3 ft x 16 ft	A, E, F	2, 4, 7, 8, 10	

*GRASSES

- A *Festuca arundinacea* cv. Demeter (Demeter fescue)
- B Panicum coloratum var, makarikariense cv. Bambatsi (Bambatsi grass)
- C Panicum maximum var. trichoglume cv. Petrie (Petrie green panic)
- D Phalaris arundinacea x tuberosa (C4 polycross Ronpha)
- E Setaria sphacelata cv. Kazungula (Kazungula grass)
 F Setaria sphacelata cv. Nandi (Nandi setaria)

†LEGUMES

- 1 Desmodium intortum cv. Greenleaf (Greenleaf desmodium)
- 2 Desmodium uncinatum cv. Silverleaf (Silverleaf desmodium)
- Glycine wightii cv. Clarence (Clarence glycine) Glycine wightii cv. Cooper (Cooper glycine) Glycine wightii cv. Tinaroo (Tinaroo glycine) Glycine wightii cv. CPI 23411 Lotononis bainesii cv. Miles (Miles lotononis) 3
- 4
- 5
- 6
- 7
- 8 Medicago sativa cv. Hunter River (Hunter River lucerne)
- Phaseolus atropurpureus cv. Siratro (Siratro) 9
- Trifolium repens cv. Ladino (Ladino white clover) 10
- Vigna luteola cv. Dalrymple (Dalrymple vigna) 11

Simple legume/grass mixtures were used. After the establishment phase they were regularly grazed at intervals of 4–6 weeks. Residues were removed after each grazing by slashing at 6–9 in. height. Dry-matter harvests were carried out at irregular intervals prior to grazing.

III. RESULTS

Results of main effects of grass cultivar on grass dry-matter yields and legume cultivar on legume dry-matter yields at various harvests are shown in Tables 2 and 3.

Expt. No.	Date Harvested	Demeter Fescue	Bambatsi Grass	Petrie Green Panic	C4 Ronpha Grass	Kazungula	Nandi Setaria	L.S.D. 5%
1	24.v.66 15.xii.66 29.iii.67		2,270 1,260 2,640	1,210 60 0			0 3 0	738
	Total		6,180	1,270			3	
2	30.v.67		360				1,630	315
3	8.xi.67 27.v.68 11.xii.68 3.ii.69 19.iii.69 8.i.70 19.v.70		1,680 1,250 2,665 2,400 1,150 1,310 180		280 70 240 15 20 0 0		2,720 4,145 1,670 1,580 1,170 830 450	630 495 510 420 280 330 150
	Total		10,630		620		12,570	
4	3.x.68 23.xii.68 13.iii.69 10.vi.69 16.ix.69 9.i.70 31.iii.70 2.vii.70 14.x.70 13.i.71	240 580 230 170 260 40 20 10 40 10				90 955 2,140 120 190 830 1,360 40 115 1,010	80 1,240 1,920 200 270 690 1,240 70 43 750	106 320 490 70 350 290 10 50 260
	Total	1,600				6,840	6,510	

TABLE 2

MAIN EFFECTS OF GRASS CULTIVARS ON GRASS DRY-MATTER YIELD (lb/ac)

Individual experiments may be summarized as follows:----

Experiment 1.—Initially Petrie green panic was the best species but it disappeared rapidly. Bambatsi grass established and persisted well but yield was not outstanding. The Nandi setaria seed sample proved to be faulty. Initially Cooper and Tinaroo glycines established best, but they did not retain an adequate stand. Siratro performance fluctuated. Silverleaf desmodium was the most persistent legume. Greenleaf desmodium performed poorly.

Expt. No.	Date H	arvested		Greenleaf Des- modium	Silverleaf Des- modium	Clarence Glycine	Cooper Glycine	Tinaroo Glycine	CPI 23411 (Glycine)	Miles Lotononis	Hunter River Lucerne	Siratro	Ladino White Clover	Dalrymple Vigna	L.S.D 5%
1	24.v.66 15.xii.66 29.iii.67	•••	••• ••	440 320 390	1,220 500 535		3,130 700 310	2,350 30 70				1,670 150 830			1,170 390 330
	Total	••	••	1,150	2,250		4,155	2,450				2,650			
2	30.v.67	••	••	40	260		960	230	230	30			90	0	350
3	8.xi.67 27.v.68 11.xii.68 3.ii.69 19.iii.69 8.i.70	· · · · · · ·	· · · · · · · · · · ·		390 740 970 460 250 433	130 760 380 410 390 410	70 840 100 90 110 50						700 0 30 2 20 0		330 560 440 290 250 300
	Total	•••	••		3,240	2,490	1,270						750		
4	3.x.68 23.xii.68 13.iii.69 10.vi.69 16.ix.69 9.i.70 31.iii.70 2.vii.70 4.x.70 13.i.71	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		30 460 270 25 * 2 4 * *		30 575 660 40 * 30 30 * *			0 10 0 * 0 * * *	980 2,360 1,880 885 2,150 2,370 1,110 1,800 2,000 1,470		390 90 90 240 1,730 360 10 10 800 190		210 350 350 140 260 400 230 280
	Total				790		1,360			10	17,015		3,910		

TABLE 3

MAIN EFFECT OF LEGUME CULTIVAR ON LEGUME DRY-MATTER YIELDS (1b/ac)

* Negligible yield and not calculated.

D. G. CAMERON

214

Experiment 2.—Summer weedy grasses such as *Echinochloa crus-galli* (barnyard millet) severely hampered legume establishment but the grasses established well. Nandi setaria was the outstanding grass. The stand of silverleaf desmodium (0.23 plants/lk²) was the best 10 months after planting but Cooper glycine (0.04 plants/lk²) had given the best dry-matter yield at 6 months. In the absence of adequate legumes the grasses rapidly showed intense nitrogen deficiency.

Experiment 3.—Despite some weed problems all but fertile C4 Ronpha grass and Ladino white clover established adequately. Legume stands declined slowly but the grasses persisted better.

		periment 3 per sq lk							
Cultivar	Date of Assessment								
Cultivar	29.iii.67	16.x.68	17.x.69	12.x.70 0.3 0 0.5					
Nandi setaria Ronpha (C4 polycross) Bambatsi grass	0.1	0.14 0.03 0.33	0·2 0 0·4						
Cooper glycine	0.4 0.6 3.2	0.02 0.13 0.24 0.17	$ \begin{array}{c} 0.01 \\ 0.1 \\ 0.23 \\ 0 \end{array} $	$0.01 \\ 0.05 \\ 0.05 \\ 0.23$					

 TABLE 4

 Main Effects of Grass Cultivar on Grass Stand and Legume Cultivar on Legume

Nandi setaria was the best grass and Clarence glycine and silverleaf desmodium the best legumes. *Chloris gayana* (Rhodes grass) invasion of the area was severe by the third year. Severe drought conditions from June 1968 onwards led to an exhaustion of water supplies from March to October 1969.

Experiment 4.—*Trianthema portulacastrum* (black pigweed) interfered with establishment, but except for Miles lotononis, final stands were adequate. Kazungula setaria and Demeter fescue stands were borderline. In the first autumn Nandi setaria and Cooper glycine were the outstanding plants. Subsequently Hunter River lucerne has been by far the best line. The subtropical legumes have gradually disappeared. Despite its poorer initial stand, Kazungula grass has given similar yields to Nandi setaria.

IV. DISCUSSION

In these experiments the legumes tested proved difficult to establish unless extremely clean seedbeds were available. When adequate stands were achieved they proved non-persistent. Silverleaf desmodium was the most persistent of the subtropical species planted.

In all cases in which it was sown Ladino white clover failed to establish adequately despite its known adaptation to the area (Grof 1961; Cameron 1967). These sowings were all made in midsummer; the clover is usually planted in autumn in this area. It is noted that Jones *et al.* (1968) also had to replant it in autumn following failure of the initial January planting at Samford, in south-eastern Queensland. In the present experiments it has tended to develop in paddocks that previously carried temperate species pastures, such as in experiment 4, where it has invaded all but the lucerne plots.

The limited range of grasses planted all established adequately where good seed was used. Petrie green panic had previously shown very poor persistence under frequent irrigation (Cameron 1967) and behaved this way again. The remainder persisted well but in the absence of adequate legume stands soon exhibited intense nitrogen deficiency.

These grasses and a number as yet untested appear likely to be able to perform either of two roles. These are, firstly, as pure grass swards heavily fertilized with nitrogen; this would particularly apply to *Digitaria decumbens* (pangola grass), which has yet to be tested. The second role is that used by Jones *et al.* (1968) as summer-growing components of temperate species pastures to reduce the risk of summer weed invasion. *Setaria sphacelata* cv. Narok, as yet untested, and Nandi setaria in particular appear likely to be able to fulfil this role. The basic temperate species for the area would be Ladino white clover and *Bromus unioloides* cv. Priebe. These pastures would require intensive year-round irrigation.

One possible method of utilization of the subtropical species that was considered was as autumn-saved feed. This is was hoped would supplement normal irrigated pastures, such as the low winter-producing paspalum/white clover stands at Theodore, over winter. The failure to achieve strong and persistent legume stands has frustrated this possibility. The grasses alone rapidly became mature and of low quality, with little likely value in this regard. Sufficient was seen of the legumes, however, to realize that they also had little likely value. Once frosted, the legume foliage rapidly became quite dry and brittle and rapidly powdered to dust when grazing commenced. It appeared that effective utilization would have been quite inadequate for them to have value as standover winter feed.

Unless frost-tolerant cultivars are developed there appears little value in further testing subtropical legumes under irrigation in the subcoastal sections of Central Queensland. The range of grass cultivars available, however, warrants further study and could well provide a most effective component of irrigated pastures.

V. ACKNOWLEDGEMENTS

The assistance of various officers of the Department of Primary Industries who have been associated with these experiments is gratefully acknowledged, especially that of Mr J. D. Mullaly and Mr H. S. Gresham. Statistical analysis was carried out by the Biometry Branch of the Department, and the financial assistance of the Australian Meat Research Committee is also gratefully acknowledged.

REFERENCES

CAMERON, D. G. (1967).—A summary and review of fifteen years' investigations with irrigated pastures. Biloela Research Station 1950-1964. Tech. Rep. Qd Dep. Prim. Industr. Agric. Br. No. 2.

GROF, B. (1961).-Irrigated pasture mixtures for central Queensland. Qd agric. J. 87:599.

JONES, R. J., DAVIES, J. G., WAITE, R. B., and FERGUS, I. F. (1968).—The production and persistence of grazed irrigated pasture mixtures in south-eastern Queensland. *Aust. J. exp. Agric. Anim. Husb.* 8:177.

(Received for publication April 28, 1971)

The author is an officer of Agriculture Branch, Queensland Department of Primary Industries, previously stationed at Biloela Research Station but now at Brisbane.