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Abstract

The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single
country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and
lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the
factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of
the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and
aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the
eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In
a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items
(chaetognaths, salps, and krill). Chaetognaths were consumed in 2–8 times higher numbers than the other prey, and the
rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of
the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic
oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths
over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in
overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic,
management and aquaculture research for this economically and ecologically valuable species.
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Introduction

Effects of environmental variability on fisheries are of primary

concern to management of these important resources. For

meroplanktonic species, identifying oceanographic processes

influencing larvae during their planktonic period is of critical

importance to understanding the recruitment processes that could

underpin fluctuations in the adult population [1]. Due to

increasing pressures on marine resources worldwide, unraveling

environmental mechanisms influencing recruitment of commer-

cially important species is essential to fisheries management.

Spiny lobsters (Decapoda, Palinuridae) form the basis of some of

the most commercially valuable fisheries worldwide [2]. The

Western Rocklobster (Panulirus cygnus) is Australia’s largest single

species fishery, valued at AUD $200 million a year [3,4]. The

annual commercial catch has varied between 5,500 and 14,500 t

over the last 30 years largely due to fluctuations in recruitment [4].

In 2000, and again in 2006, the fishery was certified by the

international Marine Stewardship Council (http://www.msc.org/)

as sustainable and well managed. For 40 years the effective

management of this fishery has been aided by strong positive

associations between the Southern Oscillation Index (SOI),

strength of the Leeuwin Current, return of juveniles and

abundance of the adult population [5,6]. The strength of the

Leeuwin Current is influenced by the El Niño/La Niña Southern

Oscillation (ENSO) [7], and is a major factor in regional primary
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production along the southwest coast of Australia [8]. However,

mechanisms driving the correlation between oceanography and

recruitment remain unknown. Due to a significant downturn in

recruitment to the fishery, and the apparent failure of the

correlation between Leeuwin Current strength and larval

settlement [9,10], there is now significant interest in the

environmental factors influencing the planktonic stages of P. cygnus.

The planktotrophic phyllosoma of P. cygnus have a pelagic larval

duration of 9–11 months, during which time they metamorphose

through 15 instars comprising 9 developmental stages [11].

Phyllosoma actively feed [12], amassing enough energy reserves

to metamorphose to the non-feeding puerulus stage and then

survive a weeklong migration to the coast where they settle as

juveniles in benthic habitats [13]. The quality and abundance of

food available to phyllosoma could therefore influence the

numbers of larvae surviving the planktotrophic larval period

[14] and metamorphosing to non-feeding pueruli, and the

condition of pueruli settling at the coast [15,16]. Settlement of

pueruli is strongly linked to recruitment to the fishery 3–4 years

later [6,17].

The natural diet of spiny lobster phyllosoma has been the

subject of significant debate (reviewed in [18,19]) and has posed

a challenge to researchers due to the cryptic morphology,

behaviour, and relatively low abundance of phyllosoma in the

pelagic environment [18]. Early oceanographic cruises reported

that late stage P. cygnus phyllosoma larvae that were held in

onboard aquaria fed on euphausiids [20]. However, quantitative

studies at sea have not previously been reported due to the

significant logistic issues surrounding experimentation at sea,

including successful capture of patchy, rare and delicate larvae and

live natural prey, adequate aquarium facilities, prohibitive costs

and limited time associated with ship-based oceanographic

research.

Studies of feeding behavior have typically been conducted in

aquaculture facilities, or inferences of feeding made through

indirect means from specimens sampled at sea. For example, fatty

acid profiles [15,21,22,23], nitrogen isotope composition [24], and

molecular techniques [25,26] have been used on various rock-

lobster species to suggest that phyllosoma are opportunistic feeders

and that soft prey including cnidarian jellies and salps may be

important contributors to the diet. Similarly, studies of mouthpart

and gut morphology of phyllosoma have suggested that the larvae

might be better suited for feeding on soft foods, such as salps

[18,27]. Experimentally reared larvae consume a wide variety of

prey items [28,29,30], and in aquaculture the phyllosoma of many

Rocklobster species are typically fed on Artemia spp. in combina-

tion with mussel gonad [31]. In culture, the survival through to

late stages of P. cygnus has typically been poor, generating interest

in identifying the nutritional requirements and natural prey of

phyllosoma. Despite the fact that the Western Rocklobster

represent 20% of the value of Australian wild fisheries [4], there

has been relatively little research on the ecology of P. cygnus larvae

compared to other spiny lobster species, such as Panulirus ornatus,

and their wild prey preference remains unknown.

The overall objective of this study was to identify wild prey of

mid-late-stage phyllosoma of the Western Rocklobster P. cygnus.

Shipboard feeding experiments were conducted during two survey

programs designed to sample linkages between oceanographic

processes, food webs, and distribution and abundance of P. cygnus

larvae in the eastern Indian Ocean, off the coast of Western

Australia (110u–155uE) between 28.0–32.5uS. Rates of consump-

tion of selected prey items by mid-late stage P. cygnus phyllosoma

were quantified in aquaria under various conditions (single prey

type, choice of prey, and varying concentration of prey). Using this

experimental framework two hypotheses were tested: 1) that

phyllosoma demonstrate prey preference through variations in

rate of prey consumption; and 2) that phyllosoma fed their

‘‘preferred’’ prey improved condition relative to phyllosoma fed

other types of prey and to starved control. Condition was

estimated by measuring the total lipid and fatty acid content of

phyllosoma. This study provides the first evidence that phyllosoma

of P. cygnus demonstrate marked prey preference, and that when

fed this prey there are changes in their fatty acid profile and

a tendency to accumulate greater amounts of lipid – results that

could have implications for fisheries management and aquaculture

of this commercially important species.

Materials and Methods

Experimental conditions and specimen collection
Sampling and experiments were conducted onboard the

Australian National Marine Facility R.V. Southern Surveyor from

Figure 1. Study location. Sampling stations in the Eastern Indian Ocean occupied by the R. V. Southern Surveyor in A) July 2010 and B) August–
September 2011, during oceanographic cruises designed to study the feeding ecology of phyllosoma larvae of the Western Rocklobster Panulirus
cygnus.
doi:10.1371/journal.pone.0036580.g001

Prey Preference of Western Rocklobster Larvae
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6–27 July 2010 (SS2010-v05) and 25 August–13 September 2011

(SS2011-v04), during surveys designed to sample the distributions,

abundances, and trophic dynamics of P. cygnus phyllosoma and

their prey field. The ship occupied 47 and 36 oceanographic

stations in 2010 and 2011, respectively, from the coast (115uE)
westwards to 110uE, and between 28.0–32.5uS (Fig. 1). Sea surface

temperature during the cruises ranged from 17–22uC, and sea

surface salinity was 34 to 36 PSU. Specimen collection was

conducted under Murdoch University permit number R2338/10

and experiments were conducted under University of Western

Australia ethics approval # AEC – RA/3/100/969.

Panulirus cygnus phyllosoma and prey for feeding experiments

(see below) were collected at night (typically from 21:00–03:00) to

maximize capture rates of phyllosoma [32], using a surface net

with 1 m2 opening, 1 mm mesh, and 355 mm mesh hard cod end.

The net was towed at 0–5 m depth at approximately 1 m s21 for

a nominal duration of 15 minutes. Upon retrieval of the net, the

cod end was quickly removed and contents transferred into sorting

trays. Mid-late stage P. cygnus phyllosoma were identified

according to Brain et al. [11], and immediately placed into 15-L

round aquaria with flow-through seawater at ambient tempera-

tures without food, where they were monitored for 24–48 hours

prior to inclusion in feeding experiments. In 2010, flow-through

seawater was obtained from ,5 m depth through the ship’s

firehose intake, and passed through a 5 mm inline cartridge filter

(XStream Water). In 2011, a change in the ship’s intake hose

system necessitated inclusion of an inline degassing system to

prevent gas supersaturation of the seawater. Feeding experiments

were conducted in 4-L kreisel aquaria made of clear plexiglass with

flow-through water, with 100% seawater exchange every 15 min-

utes.

Three potential prey types were selected for use in experiments:

krill (primarily Euphausia recurva, E. mutica, and E. gibba), salps

(primarily Ihlea magalhanica), and chaetognaths (primarily Flaccisa-

gitta enflata) (15.463.8 mm; 11.463.1 mm; 20.363.0 mm, mean

body length 6 SD for each prey type, respectively, n = 50). These

three potential prey types were selected based on: 1) published

reports of potential prey of larvae of lobster species

[15,18,19,20,21,22,23,24,25,26,27,29,30,33]; 2) a pilot study

where phyllosoma were presented various planktonic items and

their behavioral response observed; and 3) the relative availability

of similarly sized prey in plankton tows during the survey (potential

prey within the appropriate size ranges abundant at all sampling

locations). The longer body length of chaetognaths compared to

krill or salps was off-set by their narrow morphology, such that

body volume of the three prey species was similar.

In all experiments (see below), a known number of individuals of

live potential prey were added to aquaria within 15 minutes of

collection of the prey items. Phyllosoma and prey were maintained

in aquaria for a period of 24 hrs, at which point the unconsumed

prey were enumerated. Prey was quantified as ‘‘consumed’’ if

individuals were absent or if there were clear signs of predation

(e.g., for krill, obvious bite marks on the soft tissue). After every

24 hr period unconsumed prey and any dead phyllosoma were

removed from aquaria.

Prey choice experiment. Consumption rate of the prey

species was quantified when all three species were available to the

phyllosoma. In both 2010 and 2011, thirty individual prey items,

comprised of 10 individuals from each of the 3 prey species, were

provided to phyllosoma in each of 5 replicate aquaria (n = 4 or 3

phyllosoma in 2010 and 2011, respectively). In addition to the

number of prey remaining after each 24 hr period, the prey

species first captured by a phyllosoma, defined as the observation

of prey being held in the maxilla, was observed for 60 minutes

immediately following the addition of new prey.

To assess preference by phyllosoma for a particular prey, the

Ivlev electivity index (E) [34] was calculated for each tank:

Ei~(ri{Pi)=(rizPi) ð1Þ

where ri is the relative abundance of prey (i) in the diet and Pi is the

prey’s relative abundance in the environment (tank). Differences in

electivity of prey consumed in each year (2010, 2011) were tested

using Generalized Least Squares (GLS), with electivity as a fixed

factor (3 levels), and a term to account for heterogeneous variance

as detected by examination of diagnostic plots. Homogeneous

subsets were identified by visual inspection of means +/2 S.E. of

coefficients.

Single prey experiment. In 2010, experiments were set up

to compare the consumption rate of each of the three potential

prey by phyllosoma; 10 individuals of each prey type were

introduced into 5 replicate aquaria per prey (15 tanks total) each

containing 4 phyllosoma predators over 6 consecutive 24 hr

periods. After the 6 day study period the mid-late stage phyllosoma

used in these single prey feeding experiments were placed in

individual glass vials and frozen at 220uC for later analysis of the

fatty acid content (see below). As a control, phyllosoma freshly

captured (T= 0), and phyllosoma maintained in aquaria for 6 days

in the absence of food (control) were also analysed for fatty acid

content. In addition, to characterize the fatty acid content of

potential prey, aggregate samples containing 3–5 individual salps,

krill or chaetognaths (n = 2–3 samples per prey species) were

analyzed.

The effect of time and prey type on proportion of prey

consumed was tested using a generalized linear model assuming

a binomial distribution and using a logit-link function. Prey

species, day and tank were included as a categorical fixed factor (3

levels), continuous fixed factor, and random factor, respectively.

This approach was used to account for reductions in the number

Figure 2. Consumption rate of 3 species of prey by Panulirus
cygnus larvae in Prey Choice experiments. Consumption rate of 3
prey types (salps, krill, chaetognaths) by mid-late-stage phyllosoma of
the Western Rocklobster Panulirus cygnus in ship-board feeding trials
conducted in the eastern Indian Ocean in July 2010 and September
2011. In the prey choice experiment, 10 individuals of each of the 3 prey
species were included in 4-L aquaria containing either 4 (2010) or 3
(2011) phyllosoma fed over 24 hours. n = 5 aquaria, mean+SD.
doi:10.1371/journal.pone.0036580.g002

Prey Preference of Western Rocklobster Larvae

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36580



of phyllosoma in particular tanks through time due to mortality.

The number of phyllosoma surviving in each tank on each day was

used to offset the modeled proportion consumed. The model was

fitted using the Laplace approximation with the lme4 package in

R.

Prey encounter experiment. Given that P. cygnus

phyllosoma are encounter feeders and both prey size and prey

behavior will affect prey consumption rates, in 2011 the encounter

rate (without predation) with each of the 3 prey species was

quantified when all three species were available to the phyllosoma.

Fifteen individual prey items, comprised of 5 individuals from each

of the 3 prey species, were provided to 4 phyllosoma in each of 4

aquaria. A prey–phyllosoma encounter was defined as contact by

prey with the ventral surface of a phyllosoma. When an encounter

occurred, prey items were gently removed from the ventral surface

of each phyllosoma to prevent consumption. The prey-phyllosoma

encounters were counted for 10 minutes. Differences between the

expected and observed number of encounters between phyllosoma

and prey were tested using a Chi-square test.

Prey concentration experiment. To examine the effect of

prey abundance on consumption rate, single prey diets consisting

of 1, 5, 10, 20 and 30 chaetognaths per aquarium were provided to

phyllosoma (4 phyllosoma per aquaria; 3 aquaria per prey

concentration treatment, 5 treatments, for a total of 15 aquaria)

and the number consumed per aquaria in a 24-hr period was

quantified. The effect of concentration of prey on the proportion

of prey consumed was tested using a generalized linear model

assuming a binomial distribution and using a logit-link function.

Characterization of prey field. Plankton samples for

surveying the prey field in 2010 were taken with a depth

stratified opening and closing EZ net, fitted with 10 nets of

335 mm mesh (mouth area 1.0 m2). A flowmeter positioned in

front of the net was used to calculate the volume of seawater

sampled by each net during each tow. The net was towed at a ship

speed of ,1 m s21 during both day and night. Plankton were

collected from 4 depths (1–50, 50–100, 100–150, and 150–200 m)

at 5–7 stations along each transect. Plankton samples for the prey

field survey were fixed in 10% buffered formaldehyde, and later

sorted with the aid of a dissecting microscope. Quantitative counts

of potential prey items for P. cygnus phyllosoma (see above) were

determined on whole sample aliquots. Where samples contained

a very large number of prey items, they were split using a Folsom

splitter, and a fraction of the samples were counted. The counts of

prey items were standardised to the volume of seawater sampled,

and for the purposes of this study are reported as individuals m23

(mean +/2 SD) for each transect with the data pooled across

depths and stations.

The effect of latitude on the abundance of prey was tested using

the non-parametric Kruskal-Wallis test, with homogeneous subsets

tested using the Mann-Whitney U-test. Differences in the

abundance of chaetognaths compared to krill and salps (2010

data, pooled among transects) were tested using non-parametric

Mann-Whitney U-tests.

Fatty acid laboratory analysis. Phyllosoma samples were

defrosted, removed from the glass storage jars, blotted on tissue

paper and then weighed. They were then extracted quantitatively

by sonicating (3610 mL) in glass tubes with a modified one-phase

DCM-MeOH-Milli Q water Bligh and Dyer solvent mixture [35].

The extracts were transferred to a separating funnel (left for

4 hours) and after phase separation, the lipids were recovered in

the lower DCM layer (solvents were removed in vacuo) and were

made up to a known volume and stored, sealed in vials under

nitrogen at 220uC.
The total neutral fraction containing sterols, phytol, n-alkanols

and other compounds were obtained by alkaline saponification of

an aliquot of the total lipids. Sterols, phytol and alcohols were

converted to their corresponding O-TMSi ethers by treatment

with bis(trimethylsilyl)trifluoroacetamide (BSTFA, 100 mL, 60uC,
60 min) and then stored in vials at 220uC.
The fatty acid fraction was treated with MeOH:HCl:DCM

(10:1:1 v/v/v) at 80uC for 2 hours and the resulting Fatty Acid

Methyl Esters (FAME) were extracted into hexane: DCM (4:1, v/

v). This fraction was also stored sealed in vials under nitrogen at

220uC ready for analysis using gas chromatography. Capillary

Gas Chromatographic (GC) analyses were undertaken using

a Varian 3800 GC fitted with a Flame Ionisation Detector

(FID). 5a(H)-Cholestan-24-ol and 23:0 FAME were used as

internal standards for quantification of the neutral lipids and fatty

acid methyl esters respectively. The GC was equipped with

a 50 m60.32 mm i.d.60.17 mm film thickness cross-linked 5%

phenyl-methyl silicone (HP5 Ultra2) fused-silica capillary column.

Helium was used as the carrier gas. Peak identifications were based

on comparison of retention time data with data obtained for

authentic and laboratory standards. Peak areas were quantified

using Varian Galaxie chromatography software.

The identity of individual compounds was confirmed by gas

chromatographic-mass spectrometric analysis (GC-MS) on a Ther-

moquest/Finnigan DSQ Trace benchtop mass spectrometer fitted

with a direct capillary inlet and an on-column injector. Data were

acquired in scan acquisition or selective ion monitoring and

processed using Xcalibur software supplied with the instrument.

The nonpolar column (HP5 Ultra) and operating conditions were

similar to that described above for GC-FID analyses.

The effect of prey type (5 levels) on mean proportion of total

lipids and individual fatty acids present in individual phyllosoma

were examined using one-way ANOVA with prey-type as a fixed

factor. Treatment levels included larvae freshly wild caught larvae

Figure 3. Consumption rate of 3 prey types by Panulirus cygnus
larvae in Single Prey experiments. Consumption rate of 3 prey
types (salps, krill, chaetognaths) by mid-late-stage phyllosoma of the
Western Rocklobster Panulirus cygnus in ship-board feeding trials in the
eastern Indian Ocean in July 2010, in Single prey experiments (10
individual prey per 4 L aquaria containing 2–4 phyllosoma, remaining
prey removed and replaced every day for 6 days). n = 5 aquaria,
mean+SD.
doi:10.1371/journal.pone.0036580.g003
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(T = 0); larvae fed chaetognaths, krill or salps; and starved controls.

The effect of prey species on particular fatty acids was tested using

one-way ANOVA with prey species (3 levels) as a fixed factor.

Where significant differences among treatments were identified,

differences between pairs of treatment means were resolved using

Tukey’s test.

Statistical analyses were conducted using R 2.13.1 and SPSS 19.

Results

Prey consumption rate
When presented with a choice of prey in mixed prey diets,

phyllosoma consumed more chaetognaths than either salps or krill

[Electivity Index (mean 6 SD) and results from GLS analysis.

2010: Chaetognaths = 0.4060.09; Krill =20.7460.24;

Salps =20.4760.40; t = 9.6, p,0.001; 2011: Chaetog-

naths = 0.3660.08; Krill =20.5960.42; Salps =20.3560.20;

t = 10.56, p,0.001] (Fig. 2). In 2010, the phyllosoma in the

experiments were observed for the first 60 minutes of the 24 hr

trial, and in all cases (n = 20 phyllosoma) the first species observed

to be preyed upon was a chaetognath. The first predation occurred

within 5 seconds to 45 minutes of provision of prey. No salps and

krill were observed to be preyed upon within the first 60 min

observation period, however, they were occasionally observed

being held by pereiopods of phyllosoma over the following 23 hrs.

Similarly to the prey choice experiments, when phyllosoma

were presented with single prey types there was higher

consumption of chaetognaths compared to both krill and salps

(for each p,0.001) (Figure 3). The proportion of prey consumed

increased with time (p = 0.002), a result likely driven by an increase

in the consumption rate of chaetognaths, but not of the other prey,

over the week of experimentation (Figure 3).

Phyllosoma were observed to encounter chaetognaths more

frequently than the other prey species [4.561.3 and 1.860.3 times

(mean 6 SD) more frequently than krill and salps, respectively].

Out of 207 observed encounters, there was a significant difference

between the observed number of encounters between phyllosoma

and the 3 prey species compared to a null model of equal

probability of encounter (X2 = 27.0, df = 2, p,0.001), with

phyllosoma encountering chaetognaths about 1.6 times more

frequently than expected.

There was a linear increase in the number of prey consumed

over a 24 hr period with increasing concentration of prey

(Figure 4). There was no indication that the relationship saturated

with single prey diets consisting of 1, 5, 10, 20 and 30 chaetognaths

per aquarium. There was no effect of the concentration of prey on

the proportion of prey consumed (df = 14, p= 0.32). Phyllosoma

consumed approximately 46% of available chaetognaths (slope of

the GLM 0.4660.04) regardless of concentration, indicating that

proportional consumption of prey in the aquaria was independent

of the concentration of prey, and that consumption increased with

encounter probability.

Prey abundance
The concentration of potential wild prey items in 2010 (krill,

chaetognaths and salps) pooled from all depths and transects

ranged from 0.8 to 27.3 prey m23 (Figure 5). The abundance of

krill, chaetognaths and salps varied with latitude (p,0.001), with

highest prey abundance on the northern transects (latitude 28 and

29uS). Overall, throughout the 2010 survey, abundance of

chaetognaths was variable, but consistently outnumbered abun-

dance of krill and salps (U=256, p = 0.004 and U=164, p,0.001,

respectively). The abundance of other soft-bodied potential prey

items, such as siphonophores (1.2–4.4 m23), heteropods (0.002–

0.012 m23), medusa (0.005–0.025 m23), squid larvae (0.01–

0.06 m23) and fish larvae (0.2–2.2 m23) were generally recorded

at much lower abundances. Including all the potential prey items

that we enumerated, chaetognaths comprised up to 49% of the

potential prey field.

Figure 4. Effect of prey concentration on consumption by
Panulirus cygnus larvae. Consumption rate of chaetognaths by mid-
late stage phyllosoma of Panulirus cygnus as a function of prey
concentration. Wild caught phyllosoma (4 individuals per 4 L aquarium)
were fed varying concentrations of chaetognaths in ship-board feeding
trials in the eastern Indian Ocean off the coast of Western Australia
during a research cruise in July 2010. Data points indicate results from
individual tanks (n = 15; some points overlapping). Black lines indicate
the modeled relationship between proportion of prey consumed and
concentration of prey (+/2 S.E.).
doi:10.1371/journal.pone.0036580.g004

Figure 5. Distribution and concentration of planktonic prey of
Panulirus cygnus larvae. Concentration of potential prey of Western
Rocklobster phyllosoma in the Eastern Indian Ocean during a cruise
conducted in July 2010. Samples were collected in depth-stratified tows
between 0–200 m depth, using an opening-closing EZ net with
335 micron mesh size. Bars indicate mean 6 SD counts per m23 from
depth stratified tows (pooled) at 5–7 stations along each transect.
doi:10.1371/journal.pone.0036580.g005

Prey Preference of Western Rocklobster Larvae
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Fatty acid composition
Freshly caught mid-late stage phyllosoma displayed large

variability in their lipid content and fatty acid composition. For

freshly caught phyllosoma (T= 0) the total lipid content of

phyllosoma ranged from 8.0 to 45.0 mg g21 of wet mass. The

dominant fatty acids among the T= 0 sample were 16:0, 22:6(n-3)

(DHA), 18:1(n-9), 16:1(n-7), 20:5(n-3) (EPA) with means of

4.9660.78 S.E., 2.9060.45, 2.6560.47, 1.9660.30 and

1.9460.30 mg g21 of wet mass, respectively. The mid-late stage

phyllosoma held in aquaria and fed single species diets for 6 days

(T= 6) showed no significant changes in their total lipid content

relative to both T= 0 and starved controls (F4,30 = 0.90; p,0.48).

However, the phyllosomas experimentally fed chaetognaths

tended towards higher mean total lipid (T= 0: 20.463.0 S.E.

mg g21; Starved: 23.163.4; Krill: 21.863.0; Salp: 20.562.3;

Chaetognath: 28.664.6) and most individual fatty acids as

a proportion of their wet mass compared to all other feeding

treatments, including starved controls (Figure 6), although the

results were not statistically significant. ANOVA could detect

significant differences among feeding treatments for the proportion

of some minor fatty acids present in phyllosoma, with means for

i16:00 (F4,30 = 4.62; p,0.005), 15:01 (F4,30 = 3.17; p,0.03), 16:04

(F4,30 = 5.33; p,0.005), C24:1 (F4,30 = 6.89; p,0.0005) signifi-

cantly elevated, and the mean for 16:03 significantly (F4,30 = 4.33;

p,0.007) depressed in the chaetognath feeding treatment. These

changes in the phyllosoma that had been fed chaetognaths

reflected the relative mean abundances of these specific minor

fatty acids that were present within the sample of analysed

chaetognaths.

After 6 days the control starved phyllosoma showed no

significant differences in mean total lipid content, lipid saturation

groups (poly-, mono- and unsaturates) or individual fatty acids

compared to phyllosoma at T=0 (for each test p.0.05) (Figure 6).

Prey had markedly different overall lipid content with krill

having significantly more lipid than both chaetognaths and salps

(F(2,7) = 22.1, p,0.003, 7.1960.64, 3.4660.70, 1.5360.33 mean

6 S.E., lipid mg g21 wet mass, for krill, chaetognaths and salps

respectively). Overall, the fatty acid profiles of these three potential

prey species were broadly similar, although chaetognaths tended

to have a greater proportion of their lipid as monosaturated fatty

acids (especially 18:1(n-9) and 16:1(n-7)), than krill and salps,

which tended to have a greater proportion of their lipid as

polyunsaturated fatty acids (especially DHA – 22:6(n-3) and EPA –

20:5(n-3)).

Discussion

This study provides the first direct documentation of preferen-

tial feeding behaviour of wild caught phyllosoma of the Western

Rocklobster P. cygnus. In ship-board feeding trials mid-late-stage

phyllosoma of P. cygnus consumed more chaetognaths than two

other types of abundant potential prey items, both in single prey as

well as in prey choice experiments. Chaetognaths were the first

prey consumed when provided a selection of different prey items,

and the time until first capture of chaetognaths ranged from

seconds to 45 min. In contrast, krill and salps were consumed in

low numbers within 24 hours, and they were never consumed

within the first 1 h of experimental observation. Although

chaetognaths were more likely than salps and krill to be

encountered by phyllosoma in the encounter rate experiment

(1.8–4.5 times more frequently than the other prey, respectively), it

was insufficient to explain the marked feeding preference (2–8

times more) for chaetognaths demonstrated by the phyllosoma.

Although consumption of chaetognaths by other species of

Palinuridae and Scyllaridae lobsters has previously been observed

in laboratory settings [28,36,37], such a pronounced preference by

P. cygnus phyllosoma for a particular prey has not previously been

documented. Mitchell [28] conducted laboratory feeding trials by

offering wild plankton to larvae of the California spiny lobster

Panulirus interruptus, which demonstrated preference for medusae,

ctenophores, chaetognaths, and other soft-bodied food. In

laboratory studies, diets of chaetognaths provided adequate

nutrition for instar 5 of the Japanese spiny lobster, Panulirus

japonicus [36], and for instar 1 of the California spiny lobster

Panulirus interruptus [37]. In contrast, Suzuki and colleagues [25]

examined DNA in the hepatopancreas of wild caught Panulirus

japonicus phyllosoma in the Ryukyu Archipelago, Japan, but were

surprised to not find evidence of consumption of chaetognaths.

DNA from chaetognaths was subsequently detected in wild caught

P. japonicus [38].

Inferences of prey consumption by P. cygnus phyllosoma have

been previously made through indirect means such as fatty acid

analyses (e.g. [15,22]). Based on fatty acid analyses, Phleger et al.

[21] suggested that a significant composition of the diet of

phyllosoma of the Southern Rocklobster, Jasus edwardsii, was large

gelatinous zooplankton, such as cnidarian jellies or salps. More

recently, based on nitrogen isotope composition and fatty acid

profiles of wild caught P. cygnus phyllosoma and pueruli, it was

suggested that they consume grazers of diatoms produced in

a ‘classic’ nitrate-based food chain [23,24]. However, work by

Phillips et al. [15] suggested that diatoms were relatively

unimportant in the phyllosoma diet, and that the microbial food

web and gelatinous zooplankton such as salps were more likely to

be important food sources. Jeffs et al. [22] used fatty acid profiles

to identify the mixed prey of Jasus edwardsii, suggesting opportu-

Figure 6. Proportional abundance of dominant fatty acids in
Panulirus cygnus larvae fed various diets. Proportional abundance
(mean 6 SE) of the five most dominant fatty acids present in P. cygnus
phyllosoma used in ship-board feeding trials in the eastern Indian
Ocean in July 2010. There was a non-statistically significant trend
towards higher proportion lipid of wet mass for each particular fatty
acid in phyllosoma fed chaetognaths, compared to phyllosoma fed
salps or krill, freshly caught (T = 0), or starved (control) [16:0,
F(4,30) = 0.84, p = 0.51; 22:6(n-3) (DHA), F(4,30) = 1.12, p = 0.37; 18:1(n-9),
F(4,30) = 1.05, p = 0.40; 16:1(n-7), F(4,30) = 1.60, p = 0.20; 20:5(n-3) (EPA),
F(4,30) = 0.47, p = 0.76].
doi:10.1371/journal.pone.0036580.g006
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nistic feeding; however, they also suggested that the use of fatty

acids and sterols to identify prey of phyllosoma had major

limitations. Suzuki et al. [26] and Chow et al. [38] used molecular

techniques to examine the gut contents of the phyllosoma of

several palinurid and scyllarid lobster species and commonly

detected DNA material from cnidarians and urochordates,

although a signal matching chaetognaths (Sagitta sp.) was also

detected.

In the current study the rate of consumption of chaetognaths

increased with prey concentration, a finding that is consistent with

studies using Artemia as prey [39]. Plankton, including P. cygnus

phyllosoma and their potential prey, are distributed unevenly in

the ocean and their patchiness is driven by both biological and

physical processes. The concentration of chaetognaths quantified

in the field survey was similar to those in the same region in 1992–

1993 [40]. Chaetognaths comprised a relatively large fraction, up

to 49%, of the macro-zooplankton sampled during this cruise,

suggesting that they are a non-trivial component of the pelagic

food web. The abundance of chaetognaths varies seasonally [41],

with highest abundance occurring in the autumn/winter, the

season during which this study occurred. The concentrations of

prey provided in the feeding study were 2–3 orders of magnitude

higher than those occurring naturally in the field (0.25–7.5 L21,

vs. 0.003 L21), yet consumption did not plateau with increasing

prey concentration, suggesting that food could be limiting to P.

cygnus phyllosoma in the wild. Thus, patchiness of prey distribution

in the ocean could potentially influence condition of wild

phyllosoma and their ultimate recruitment to the fishery.

There are several limitations to our study. Firstly, obtaining

intact phyllosoma from the surface plankton net was difficult, and

indeed some of the specimens used in this study lacked 2–6

pereiopods. However, phyllosoma successfully captured actively

swimming chaetognaths preferentially over the more slowly

moving salps, suggesting that pereiopod loss did not affect their

choice of prey. Secondly, for logistical purposes, the number of

individual prey was quantified rather than the mass or energetic

content of prey consumed. Such measurements would be more

amenable to laboratory studies than to ship-board feeding trials.

Thirdly, it is likely that phyllosoma in the wild consume species

that we did not include in this study, however, logistical constraints

(insufficiently abundant prey, tank space) prevented the inclusion

of additional prey types in these experiments. In a pilot study P.

cygnus phyllosoma were presented with various other food types,

including cnidarian jelly fish, ctenophores, copepods, pteropods,

radiolarians, heteropods, cephalopods, and amphipods, and did

not observe a clear feeding response similar to that of the response

to chaetognaths. Lastly, feeding experiments in aquaria are

influenced by artifacts inherent in this type of behavioural

research, such as unrealistic current velocities, higher concentra-

tions of prey, and the presence of walls; direct inferences to open-

ocean feeding behavior should consider these experimental

limitations.

The total lipid content and fatty acid composition of wild caught

mid-late stage phyllosoma was highly variable, a common feature

of the phyllosoma of a range of spiny lobster species, and is

probably a reflection of their recent feeding history, especially due

to the limited availability of lipid-rich prey in oligotrophic waters

[15,21,22]. The profile of the dominant fatty acids in wild mid-late

stage phyllosoma (i.e., 16:0, 22:6(n-3) (DHA), 18:1(n-9), 16:1(n-7),

20:5(n-3) (EPA)) were consistent with those previously identified

for this species [15], and similar to those reported for J. edwardsii

larvae and pueruli, and Sagmariasus verreauxi pueruli [21,22,42].

Commonly used diatom fatty acid indicator ratios

[14:0+16:1+C16PUFA/16:0=mean of 0.6%), [16:1(n–7)/

16:0 =mean of 0.4%], (C16 FA/C18 FA=mean of 1.4%),

(16:1/18:1 =mean of 0.7%), and (C16PUFA/C18PUFA=mean

of 0.6%) were low to moderate in the mid-late stage larvae,

indicating that diatoms were not a major contributor to their food

chain [43,44,45]. The dinoflagellate markers [18:4(n–3) =mean of

1.2%, 18:1(n–9) =mean of 12.7%, 22:6(n–3) =mean of 14.1%]

[45,46] were also relatively low to medium. Both the general

flagellate (autotrophs and heterotrophs) marker (C18 FA=mean

of 26.3%) and the bacterial marker ([15:0+i15:0+a15:0+17:0+i17:
0+a17:0+18:1(n–7)] =mean of 5.6%) were high [43,45,47]. The

general lack of the copepod signature 20:1(n–9)c (mean of 0%) and

22:1(n–11) (mean of 0%) would indicate that copepods are not

a significant contributor to the food chain of P. cygnus larvae [15].

The absence of copepod biomarkers in chaetognaths, indicates

that despite this taxon primarily being associated with copepod

predation [48], that in these waters chaetognaths are potentially

adopting a different role in the food chain in the absence of

primary production to support sufficient copepod biomass.

Overall, these results indicate that mid-late stage P. cygnus larvae

are feeding in waters with low primary productivity and elevated

bacterial production. Under such oligotrophic conditions, the

greater reliance on microbial grazing becomes an important basis

to the food web which is known as a ‘microbial loop’ [49].

When fed chaetognaths for one week, the phyllosoma tended to

accumulate higher mean total lipid and most individual fatty acids

as a proportion of their wet mass compared to phyllosoma starved

or fed salps or krill. However, the high natural variability in the

lipid composition of phyllosoma prevented any major differences

in lipid composition of phyllosoma being detected among the

experimental treatments. Significant differences were detected for

the mean proportion of some minor fatty acids present in

phyllosoma in the chaetognath feeding treatment (i.e., i16:00,

15:01, 16:04, 16:0, C24:1) which appeared to directly reflect

specific and marked differences in the fatty acid profile of

chaetognaths compared with krill and salps. The fatty acid profiles

of phyllosoma are known to be strongly influenced by differences

in their dietary intake. This has been confirmed experimentally by

feeding cultured phyllosoma with brine shrimp (Artemia) enriched

with different fatty acid profiles [50,51,52,53]. Phyllosoma larvae

are also known to have a high requirement for dietary sources of

22:6(n-3) DHA [21,53,54,55], for which chaetognaths are clearly

a rich source for P. cygnus phyllosoma (i.e., on average 21.9% of

fatty acids in chaetognaths). Phyllosoma starved for 6 days showed

little sign of change in their lipid content. This may be due to

phyllosoma mostly using protein to meet their metabolic needs

and conserving lipid, especially during periods of starvation

[56,57]. This may be a strategy by mid-late stage phyllosoma to

protect valuable accumulated lipid energy stores which are known

to be required to fuel the subsequent non-feeding puerulus stage

[15,23,58].

The three prey items provided to phyllosoma experimentally

had significantly different potential lipid yields, with krill offering

about double the total lipid content of chaetognaths and salps for

the same amount of wet mass consumed, on average 7.19 mg g21

versus 3.46 mg g21 and 1.53 mg g21 respectively. In addition,

krill tended to contain a higher proportion of polyunsaturated fatty

acids especially, DHA and EPA, which are both important fatty

acids for phyllosoma [23]. While krill may offer higher lipid

nutritional reward as prey for phyllosoma, they may not be

targeted because they are more difficult to consume because of the

need to remove the carapace from the krill [18]. Therefore, any

differences in potential lipid yield among the prey types would be

compensated by the increased overall consumption of greater total

wet mass of chaetognaths.

Prey Preference of Western Rocklobster Larvae

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e36580



The results of this study contribute towards understanding the

natural diet and nutrition of this commercially valuable species

during its planktonic phase, and will provide a basis for future

studies of Rocklobster feeding behaviour, population dynamics,

fisheries, and aquaculture. Future studies should include: 1)

identifying oceanographic mechanisms driving prey distribution

and abundance; 2) examining sensory mechanisms influencing

phyllosoma response to various prey types; 3) investigating

nutritional characteristics of prey to inform aquaculture. In-

creasing consumption of prey with increasing concentration and

rate of encounter suggests that phyllosoma are prey limited in the

oligotrophic ocean, and that variations in ocean production could

have a relatively strong impact on this commercially important

species. Given the recent decoupling between the predictive model

of sea level height in Fremantle and puerulus settlement,

a mechanistic examination of the oceanographic features that

contribute to phyllosoma success, including production and food

availability, is clearly warranted.
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