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Abstract. Using peanuts as an example, a generic methodology is presented to forward-estimate
regional crop production and associated climatic risks based on phases of the Southern Oscillation Index
(SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut
processing and marketing bodies. The industry could profitably use forecasts of likely production to
adjust their operations strategically. Significant, physically based lag-relationships exist between an
index of ocean/atmosphere El Niño/Southern Oscillation phenomenon and future rainfall in Australia
and elsewhere. Combining knowledge of SOI phases in November and December with output from a
dynamic simulation model allows the derivation of yield probability distributions based on historic
rainfall data. This information is available shortly after planting a crop and at least 3–5 months prior
to harvest. The study shows that in years when the November–December SOI phase is positive there is
an 80% chance of exceeding average district yields. Conversely, in years when the November–December
SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district
yields, but a 95% chance of below average yields. This information allows the industry to adjust
strategically for the expected volume of production. The study shows that simulation models can
enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging
rainfall events. The methodology can be applied to other industries and regions.

Additional keywords: crop model, simulation, climate forecast.

Introduction
High rainfall variability is the major source of

dryland yield fluctuations in north-eastern Australia
(Hammer et al. 1987). In peanuts, yield depressions
occur either due to a lack of rain (i.e. drought)
or due to excessive rain at harvest (Meinke et al.
1996). These year-to-year yield fluctuations result in
great income uncertainty and are of major concern
to producers. To remain economically viable they
must devise management options that can produce
long-term, sustainable profits in such a variable envi-
ronment. This requires some knowledge of likely
climatic conditions for the season ahead. Significant,
physically based lag-relationships exist between phases
of the ocean/atmosphere El Niño/Southern Oscillation
phenomenon and future rainfall in eastern Australia
and, in fact, many other areas across the globe (Stone

et al. 1996). Use of phases of the Southern Oscillation
Index (SOI; Stone and Auliciems, 1992) in conjunction
with a dynamic peanut simulation model (Hammer
et al. 1995) allows better quantification of climatic
risk prior to sowing a crop. Based on an analysis of
historic weather records, Meinke et al. (1996) showed
that probability distributions for potential yield and
for harvest losses caused by rain differed strongly
among SOI phases. This gives individual producers
some scope to assess the production potential of the
forthcoming season and associated climatic risks to
production prior to sowing a peanut crop.

Climatically induced production uncertainties also
cause concern post-farm gate. In particular, processing
and marketing bodies require information that enables
them to plan strategically for the season ahead. Such
estimates cannot be derived using the method described
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by Meinke et al. (1996). Whereas producers require
information targeted to their specific field conditions,
processing and marketing bodies generally require esti-
mates of likely district yield data for their operational
planning. Compared with individual field data or out-
put from a point-source model, the variability of district
data is dampened by averaging across factors such
as planting dates, soil types, management practices,
cultivars, and regional climatic variability. Meinke and
Hammer (1995a) have demonstrated how output from
a point-source model can be used to estimate such
district data. However, they did not include long-range
rainfall forecasting in their approach.

Hence, in this paper we show for the Kingaroy
region in north-eastern Australia how a point-source
model can be used to forward-estimate production
likelihood of district peanut yields based on the SOI
phase in November–December. Although this type of
information is generally not available prior to sowing,
it is known shortly after the crop is planted and
approximately 3–5 months before harvest. This should
aid the industry in their strategic planning. Although
this case study is industry and location specific (i.e.
peanuts at Kingaroy), the methodology described is
generic and has considerable potential to aid other
industries at other locations (Stone et al. 1996).

Methods

The basic methodology used has been described in detail by
Hammer et al. (1995), Meinke and Hammer (1995a, 1995b),
Meinke et al. (1996), and Stone et al. (1996). Thus, we limit
this section to a brief outline.

SOI phases

The forecast method used is based on knowledge of SOI
phases in November and December. Generally, peanuts are
planted in the district between mid October and the end of
December. Thus, any information based on this knowledge is
available at the end of the ‘sowing window’. Using principal
components analysis and cluster analysis to categorise monthly
average SOI values resulted in 5 SOI phases or ‘types’ (Stone
and Auliciems 1992; Stone et al. 1996). These are termed here
(i) consistently negative (cons −ve), (ii) consistently positive
(cons +ve), (iii) rapidly falling (rapid fall), (iv) rapidly rising
(rapid rise), and (v) near zero. Historic SOI values combined
with rainfall records going back to 1905 can then be grouped
into the 5 categories based on the phase analysis.

Simulation procedures

The peanut simulation model estimates paddock yields (i.e.
point source data) from given soil moisture characteristics,
estimated planting dates, and climatic conditions (Hammer
et al. 1995). It requires daily meteorological data (i.e. minimum
and maximum temperature, solar radiation, and rainfall) as
inputs. The model was run for successive years for a peanut
monoculture followed by a winter fallow. A simulated peanut
crop was ‘sown’ between 15 October and 31 December if a
minimum of 30 mm of rain fell within 5 days and if a minimum

of 35 mm of plant-available soil moisture was stored in the
soil profile. All of these rules were derived in accordance with
local practices and knowledge. Up to 4 successive planting
opportunities were considered. Losses due to rain at harvest
were estimated. Such losses occur due to fungal attacks of
pods associated with wet conditions causing delays in harvest.
No harvest losses were predicted if the total crop was harvested
within 15 days after reaching maturity. Thereafter, harvest
losses were incurred at a rate of 5% per day, resulting in a
total crop loss after 35 days (Meinke and Hammer 1995a).

Comparison of district and simulated yields

District yields represent the average for a geographically
diverse region but simulated yields represent the average for one
particular location. Hence, district and simulated yields will
always differ in their mean and standard deviation. To assess
year-to-year yield variability, we removed this characteristic
of the data by calculating normalised district and simulated
yields:

yn = (yi − y)/s.d.

where yn is the normalised yield, yi is the yield achieved for
a season, y is the average yield for all seasons, and s.d. is the
standard deviation. To obtain estimates of district rather than
paddock yields, results were averaged across simulated planting
dates and expressed as standard deviations from the mean
rather than as absolute yields. Meinke and Hammer (1995a)
demonstrated how this procedure results in fair estimates of
district yield variation.

Model yields were converted to number of standard deviations
from the mean. These estimates were stratified according to
SOI category, and cumulative distribution functions (CDFs) of
simulated peanut yield fluctuations were calculated and tested
for significant differences applying the Kolmorogov–Smirnov
test (Conover 1971). Simulation results for the years for which
district yield data are available (post 1953; period of rapid
industry expansion) are indicated separately (closed symbols,
Fig. 1).

Results and discussion

Rainfall amount and temporal distribution over
north-eastern Australia are strongly influenced by the
El Niño/Southern Oscillation phenomenon (McBride
and Nicholls 1983; Stone et al. 1996). This, in turn,
influences crop growth and yield to varying degrees,
depending on severity and timing of water limitation
and/or crop damage caused by excess rain. This makes
the usefulness of rainfall events difficult to assess in
terms of their contribution to crop production. How-
ever, physiologically based simulation models can be
used as ‘filters’ to assess the value of rainfall over
a growing season. For individual peanut producers,
Meinke et al. (1996) showed that higher harvestable
peanut yields (i.e. yields adjusted for estimated harvest
losses due to rain) are generally associated with a
consistently positive SOI phase in August–September.

When we processed their point-source data according
to methods outlined by Meinke and Hammer (1995a)
to produce district yield estimates, we found no such
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relationship due to the ‘averaging’ effect of district-type
data (data not presented). However, using November–
December phases instead of August–September phases
resulted in a highly significant segregation of har-
vestable yield CDFs by SOI phase (Fig. 1). These
CDFs, expressed as standard deviations from the mean,
were tested for significant difference among SOI phases.
Phases that did not differ significantly were combined.
This resulted in 3 distinct categories whereby phases
‘cons −ve’ and ‘rapid fall’ formed a group of low-
yielding years, phase ‘cons +ve’ a group of high-yielding
years, and phases ‘near zero’ and ‘rapid rise’ were
representative of the ‘all years’ case. We found that
under positive SOI conditions, above-average district
yields can be expected in 80% of years, whereas under
either negative or rapidly falling SOI conditions only
5% of years were above the mean, but 95% of years
resulted in below-average yields (Fig. 1).

Solid symbols on the CDFs in Fig. 1 indicate the
years for which district yield data are available and
during which the industry expanded rapidly. It shows
a strong bias towards higher yields regardless of SOI
phase, but particularly under ‘cons +ve’ conditions.
This is related to below-average harvest losses during
that period (Meinke and Hammer 1995a). It demon-
strates the value of using simulation models to extend
the period of local experience by simulating production

for the entire climate record. Meinke and Hammer
(1995a) found that average simulated yields for the
period 1962–82 were 44% higher than for the overall
period. This was caused by more frequent and reliable
summer rain and less rain during the harvest period
in autumn.

The value of using models as ‘filters’ to discrimi-
nate between useful and damaging rainfall events is
further demonstrated in Fig. 2. When accumulated
rainfall from 1 January to 31 May was segregated
into November–December SOI phases and the resulting
CDFs were tested for significance, only the combined
phases ‘cons −ve’ and ‘rapid fall’ differed significantly
from the other CDFs. Even then, there was little
difference in 70% of years and only the highest 30%
of years of phases ‘cons −ve’ and ‘rapid fall’ had
approximately 100 mm less rain than the other dis-
tributions. This type of rainfall analysis does not
discriminate between positive and negative rain effects
on crop growth, indicating the need to pursue the
analysis through to effects on the production system.

We stress that the current peanut simulation model
does not account for effects of waterlogging, pests, or
diseases on production (Hammer et al. 1995). Including
such factors in the model would likely improve our
current forecasting capabilities but requires further
research.

Fig. 1. Probability of exceeding simulated district peanut yields (expressed as number of standard
deviations from the mean) by SOI phase. Solid symbols represent the years after 1953, i.e. the period of
industry expansion. The all-years case contains all 5 phases and does not differ significantly from the
combined near zero and rapid rise case.
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Fig. 2. Probability of exceeding accumulated rainfall (1 January to 31 May) by SOI phases.

The ‘forecasting’ method applied in this study is
based on using historic climate patterns as analogues
of future climate. It assumes that the variability of
future climate will be similar to that of the historic
record and that the existing historic climate records
are an adequate representation of the true climatic
variability. Although both assumptions are frequently
challenged by climatologists (e.g. Meehl and Washing-
ton 1996; Nicholls 1996), potential errors are unlikely
to be substantial considering the time-frame of the
forecast (up to 5 months) and that of the historic
record (starting in 1905).

Conclusions

The study showed that there is considerable scope
to combine district yield estimates derived from point-
source models with SOI phase information to gain
a prior knowledge of regional production potential.
Although this example only investigated one summer
crop (peanuts) in one region of Australia (Kingaroy),
similar types of analyses can be conducted for other
crops and in other regions. The study shows that
simulation models can act as filters to assess the true
value of rainfall to production and so enhance SOI
signals contained in rainfall distributions by discrim-
inating between useful and damaging rainfall events.
Specifically, we found that using November–December
SOI phases to estimate likely regional peanut yields
showed an 80% chance of exceeding the average district

yield when the SOI phase was consistently positive,
but only a 5% chance of exceeding the average district
yield when the phase was either negative or rapidly
falling. Combining this information with estimates of
total area planted results in an estimate of the total
production volume for a region. This information is
available 3–5 months prior to harvest and thus gives
the industry a reasonable lead-time to adjust their
operations or marketing strategies. The methodology
can be extended to include other crops and other
regions.
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