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ABSTRACT

Context. Rainfed crop-growing environments are known for their high yield variability, especially in
the subtropics and tropics. Improving the resilience of crops to such environments could be
enhanced with breeding and agronomy research focusing on groups of similar environments.
Aim. This study presents a framework for developing these groups using the Agricultural Production
Systems Simulator (APSIM, ver. 7.10) model.Methods. As a case study, the framework was applied
for pigeonpea (Cajanus cajan L. Millsp.) as a potential new pulse crop for the Australian northern grains
region. The model was first validated and then used to simulate yield, compute heat and drought stress
events and analyse their frequencies for 45 locations over 62 seasons from1960 to 2021.Keyresults. The
model performed satisfactorily compared to field trial data for several sowing dates and locations.
The simulated yield varied greatly across locations and seasons, with heat-stress events (maximum
temperature ≥35°C) and rainfall showing highly significant associations with this variability. The
study identified seven groups of locations after converting the simulated yield into percentiles,
followed by clustering. Drought-and-heat stress patterns varied across these groups but less so
within each group. Yield percentiles significantly declined over the seasons in three of the seven
groups, likely due to changing climate. Conclusions. The framework helped identify pigeonpea’s
key production agroecological regions and the drought and heat constraints within each region.
Implications. The framework can be applied to other crops and regions to determine environmental
similarity.

Keywords: APSIM, Cajanus cajan L. Millsp, environmental characterisation, envirotyping, high
temperature, pigeonpea, water deficit, water stress.

Introduction

Approximately a third of the variability in global crop yields can be attributed to climatic 
variability (Ray et al. 2015). Solar radiation, temperature and rainfall are the main factors 
of this variability that affect crop growth and grain yield. Hence, high variability in these 
factors could have profound implications for crop production (Meinke and Stone 2005). 
Climatic variability is likely to increase with climate change (Vázquez et al. 2017; Abram 
et al. 2021), with an impact projected to be more severe in subtropical and tropical dryland 
regions of Australia receiving <750 mm annual rainfall and characterised by high evapora-
tive demand during the main cropping period (Thornton et al. 2014; Ray et al. 2015). As a 
result, to ensure enduring profitability and food availability to the community in these 
regions, farmers will likely need to cultivate crops that: (1) diversify their farming systems; 
and (2) endure future warmer climates, including increased variability. At the same time, 
increase crop resilience to such variability with breeding and agronomic practices will 
become increasingly challenging. 

Increased climatic variability in rainfed and dryland regions is expected to intensify the 
severity and frequency of abiotic stresses in many areas, including drought, heat and cold. 
Given the difficulty of getting accurate predictions of the timing and severity of abiotic 
stresses, evaluating major types and frequencies of key stresses using historical datasets 
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can be informative. To achieve this, environment characterisa-
tion, or envirotyping, is becoming increasingly popular. 
Characterisation of the nature and frequencies of principal 
abiotic stresses in each production region can help set 
breeding and agronomy objectives but has been attempted 
only for a few regions and crops (Chapman 2008; Chauhan 
and Rachaputi 2014; Chenu 2015; Chauhan et al. 2017; 
Rahimi-Moghaddam et al. 2023). We can further extend such 
characterisation to understand the homogeneity of environ-
ments across different growing regions. The identified sub-
regions with greater climatic similarity can be specifically 
used to breed for improved germplasm. Such a strategy is 
expected to reduce genotype × environment (G × E) 
interactions and can also assist in understanding the bases 
of remaining G × E interactions to exploit them better. 

Identifying homogeneous or similar environments has 
been a major goal in many breeding programs. However, 
without knowledge of relevant ecological attributes and 
their implications for crop production, it has commonly been 
addressed empirically. For example, plant breeders have 
conventionally used observed variation in yield in multi-
location trials to classify presumably similar environments 
(Cooper et al. 1993; Cooper and Messina 2021). Since the 
1980s, the quest for identifying environment similarity has 
led to defining mega-environments based on biotic and abiotic 
stresses, cropping system requirements, consumer preferences 
and, for convenience, production volume. After superimposing 
different climatic characteristics such as annual or seasonal 
rainfall and temperatures, mega-environments have typically 
been defined as tropical, temperate, humid tropical, etc. 
(Rajaram et al. 1993; Gauch and Zobel 1997). Mega-environments 
have often been based on average climatic data, thus 
characterising environments in a relatively static manner 
(Hodson and White 2007). 

Agro-ecologocial regions (AER) are geographical areas 
with similar climatic conditions, landform, soils and land 
cover. AERs typically have specific potentials and constraints 
in terms of land use. Experts commonly define AERs based on 
their understanding of climate, soil, crop and agronomy 
characteristics and uncertainties (White et al. 2001). However, 
this classification is uncertain and may not accurately capture 
temporal and spatial variability. To address this issue, crop 
models can be used with long-term weather data from diverse 
locations to evaluate spatial and temporal variability and their 
impact on crops. Such AERs are valuable information for 
breeding programs as they typically focus on improving 
adaptation across locations or regions more than across 
seasons. Crop models are increasingly being applied to develop 
scenarios for past and future climates (Chapman et al. 2000, 
2008; Chenu et al. 2011, 2013; Chauhan and Rachaputi 2014; 
Harrison et al. 2014; Chenu 2015; Cooper and Messina 2021). 
Although crop models perform point-based (i.e. location-
based) simulations, they are increasingly being used at the 
regional, national and global scale. 

The present investigation aims to characterise the growing 
environments of pigeonpea (Cajanus cajan L. Millsp.) as a new 
grain crop in Australia using a crop modelling approach. 
Pigeonpea is an ideal crop to diversify Australian summer 
dominant rainfall environments where other tropical legumes 
do not grow well. However, traditional photoperiod-sensitive 
landraces of pigeonpea being tall and very long duration do 
not fit the mechanised production systems of this country. 
Previous efforts to introduce pigeonpea into Australia were 
unsuccessful due to the lack of well-adapted cultivars and 
suitable agronomy. Development of super-short duration 
pigeonpea cultivars in the past two decades have raised hopes 
due to their short stature, their ability to escape droughts and 
their likely suitability for mechanised production (Chauhan 
et al. 2002, 2022; Vales et al. 2012; Saxena et al. 2019). 
The objective of this investigation was to characterise the 
regional potential of these new short-duration types as part 
of local efforts to resurrect the pigeonpea industry. 

Materials and methods

Experiments for model parametrisation and
testing

The APSIM pigeonpea model (classic version 7.10; Holzworth 
et al. 2014) was used in this study. The model was first 
validated for its ability to stimulate growth and yield of: (1) 
determinate super-short duration (SSD) cultivars maturing 
in approximately 100 days; and (2) extra-short duration (ESD) 
pigeonpea cultivars growing in approximately 115 days. For 
this purpose, seeds of super-short and extra-short duration 
cultivars obtained from the Australian Grains Gene Bank, 
Horsham, were grown at three locations: (1) Toowoomba 
(27.5°S 151.9°E); (2) Kingaroy (26.6°S, 151.8°E); and (3) 
Emerald (23.5°S, 148.2°E) in Queensland. The soils of the 
experimental locations were Ferrosols at Kingaroy and 
Toowoomba, and Vertosol at Emerald. The long-term average 
summer season rainfall is 411 mm at Kingaroy, 391 mm at 
Toowoomba and 276 mm at Emerald. The details of the 
various experiments conducted in the study are presented 
in Table 1. 

Model verification and long-term simulations

The model was tested for its ability to simulate flowering, 
maturity, biomass, and yield of extra-short and super-short 
duration cultivars. A few cultivar-specific parameters were 
calibrated (see Supplementary Tables S1 and S2). We modified 
these parameters to enable the matching of observations on 
time to 50% flowering (i.e. date when 50% of the plants 
had at least one flower), above-ground biomass and yield 
at maturity for different sowings. The radiation use 
efficiency (RUE) was increased from 0.9 g/MJ to 1.20 g/MJ 
and transpiration efficiency was increased from 0.005 
to 0.006 kpa/g carbohydrate per m2/mm. The same set of 
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Table 1. Characteristics of the experiments conducted to validate the APSIM pigeonpea model, including the location, sowing date, soil type,
cultivar type, row spacing and plant density of each trial.

Location Sowing date Soil Cultivars Row spacing (cm) Target plant density (#/m2)

Emerald 13 December 2019 Vertosol SSD, ESD 50 33

Emerald 15 January 2020 Vertosol SSD, ESD 50 33

Emerald 19 February 2020 Vertosol SSD, ESD 50 33

Emerald 10 December 2020 Vertosol SSD, ESD 50 33

Emerald 20 January 2021 Vertosol SSD, ESD 50 33

Emerald 19 February 2021 Vertosol SSD, ESD 50 33

Kingaroy 27 November 2020 Ferrosol SSD, ESD 50 33

Kingaroy 18 December 2020 Ferrosol SSD, ESD 50 33

Kingaroy 15 January 2021 Ferrosol SSD, ESD 50 33

Toowoomba 10 December 2019 Ferrosol SSD 50 33

Toowoomba 7 January 2020 Ferrosol SSD 50 33

Toowoomba 4 February 2020 Ferrosol SSD 50 33

SSD, super-short duration pigeonpea cultivar; ESD, extra-short duration pigeonpea cultivar.

parameters were used in all simulations. The simulated data 
of 50% flowering, maturity, biomass and yield were plotted 
against the observed data of these traits to evaluate the 
model’s performance. 

The predicted values of sowing to 50% flowering and to 
80% maturity were then tested using data collected in 2021–22 
and 2022–23. Once the model was found to perform satisfac-
torily, it was applied with the calibrated cultivar parameters 
to simulate various crop attributes, including flowering and 
maturity at 45 locations in Australia’s northern grains region 
(NGR) (Table 2). 

Location-specific soils were chosen from the APSOIL 
database (Holzworth et al. 2014). Climatic data from 1961 
to 2021 were obtained from www.longpaddock.qld.gov.au 
(Jeffrey et al. 2001). The sowing window chosen was from 
15 October to 15 December for all locations, as most pigeonpea 
crops were likely to be sown in this window. This sowing 
window corresponds to the perceived need to fit the crop 
into a favourable summer cropping window and ensure that 
the crop grows: (1) in a moderately frost-free period; and (2) 
finishes early enough to allow summer rainfall to increase 
soil water storage for the following winter crop. Within this 
planting window, farmers may opt for pigeonpea instead of 
mungbean (Vigna radiata). Mungbean is usually cultivated 
between January and March to avoid high temperatures that 
can negatively impact its reproductive growth (Geetika 
et al. 2022). 

In the simulations, the starting soil water content at each 
location was reset to 20% on 1 April of each season, assuming 
this amount of water unusable by previous summer crops and 
fallowed during winter. We also included input of a basal dose 
of 18 kg N/ha in the model which is a common agronomic 
practice with short-duration pigeonpea. Within the sowing 
window, the actual sowing date was set to occur when 

more than 30 mm of rainfall occurred within three 
consecutive days and plant-available soil water was at least 
50 mm. Growers in the region commonly adopt this as a rule 
for successfully establishing summer crops. If this criterion 
was not met during the sowing window, sowing was done 
on the last day so that germination could be initiated within 
a month after the next rainfall. Dry sowing of pigeonpea is a 
common practice in many regions. Late germinating crops 
were likely to be frosted during the reproductive period in 
some environments. Only four sowings did not allow crop 
established out of the 2790 simulations performed across 
45 locations and 62 seasons. 

The output variables were yield, water supply–demand 
ratio (SDR), in-season rain, daily maximum and minimum 
temperatures, ‘wet’ yield (12% moisture) and time to flowering 
and maturity. The model did not consider any biotic stress or 
nutrient deficiencies. 

Delineation of agro-ecological regions

The database of simulated outputs from 1960 to 2021 was 
used to determine yield distribution across 45 locations. 
Simulated yields from all the simulations were first used to 
determine the yield distribution and the extent of variability 
in yield at all locations. As the model did not simulate biotic 
constraints, most of the variation in simulated grain yield 
was assumed to result from variations in flowering time, 
atmospheric temperature, soil water availability and the 
crop demand for soil water. 

The simulated yield was then used to define agroecological 
regions and determine drought (DEC) and maximum-
temperature (MTEC) environment classes using k-means 
clustering (Everitt and Hothorn 2011). The number of optimal 
solutions for water stress and maximum temperature patterns 
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Table 2. Characteristics of the 45 locations studied in the
simulations, with their abbreviated names (‘Abb.’), latitude (lat.) and
longitude (long.), plant available water holding capacity (PAWC) of
the associated soils, average in-season rainfall and the coefficient of
variation (CV) in rainfall between 1960 and 2021.

Location Abb. State Lat. °S Long. °E PAWC Rain CV
(mm) (mm) rain

(%)

Banana Bana Qld −24.5 150.1 237 288 30.5

Baralaba Bara Qld −24.2 149.8 156 309 30.1

Billa Billa Bill Qld −28.2 150.3 183 227 29.7

Biloela Bilo Qld −24.4 150.5 185 284 30.3

Breeza Bree NSW −31.3 150.5 204 287 31.1

Brookstead Broo Qld −27.8 151.5 287 308 29.9

Bungunya Bung Qld −28.4 149.7 156 221 30.5

Capella Cape Qld −23.1 148.0 145 256 32.6

Cecil plains Ceci Qld −27.5 151.2 168 303 29.9

Clermont Cler Qld −22.8 147.6 200 287 32.0

Condamine Cond Qld −26.9 150.1 285 263 30.6

Condamineplains ConP Qld −27.7 151.3 234 322 30.2

Coonamble Coon NSW −31.0 148.4 181 199 31.9

Dalby Dalb Qld −27.2 151.3 200 281 30.3

Duaringa Duar Qld −23.7 149.7 287 312 31.4

Emerald Emer Qld −23.5 148.1 287 268 32.2

Gayndah Gayn Qld −25.6 151.6 213 311 29.6

Gindie Gind Qld −23.7 149.1 140 265 31.2

Goondiwindi Goon Qld −28.5 150.3 174 245 30.7

Gunnedah Gunn NSW −30.9 150.2 207 269 32.3

Hermitage Herm Qld −28.2 152.1 216 367 29.4

Jimbour Jimb Qld −27.0 151.2 254 294 30.1

Kingaroy King Qld −26.5 151.8 119 401 30.1

Kumbia Kumb Qld −26.7 151.7 119 422 30.4

Meandarra Mean Qld −27.3 149.9 186 245 29.7

Miles Mile Qld −26.7 150.2 285 288 31.1

Moree More NSW −29.5 149.8 210 244 30.2

Moura Mour Qld −24.6 150.0 137 279 30.8

Mungindi Mung Qld −29.0 149.0 206 229 31.2

Narrabri Narr NSW −30.3 149.8 227 261 31.3

Orion Orio Qld −24.3 148.4 137 300 31.9

Quirindi Quir NSW −31.5 150.7 245 302 31.4

Rolleston Roll Qld −24.5 148.6 137 273 31.6

Roma Roma Qld −26.5 148.8 119 261 31.5

Springsure Spri Qld −24.1 148.1 200 330 30.9

St.George Stge Qld −28 148.6 191 211 31.6

Tamworth Tamw NSW −31.1 150.9 204 296 31.6

Thallon Thal Qld −28.6 148.9 186 215 31.2

Theodore Theo Qld −24.9 150.1 186 283 30.5

Tulloona Tull Qld −28.9 150.1 203 253 29.7

Walgett Walg NSW −30.0 148.1 239 190 33.4

(Continued on next column)

Table 2. (Continued).

Location Abb. State Lat. °S Long. °E PAWC
(mm)

Rain
(mm)

CV
rain
(%)

Warra Warr Qld −26.9 150.9 207 286 30.4

Warwick Warw Qld −28.2 152.0 245 335 29.5

WeeWaa Weew NSW −30.1 149.3 194 253 31.3

Wellington Well NSW −32.2 148.6 101 255 31.2

were determined using the scree test described by Cattell 
(1966). 

We applied two approaches to define agroecological 
regions. In the first approach, we converted seasonal varia-
tions in yield at each location into percentile ranks using the 
‘ecdf’ function of the R program as described by Chauhan and 
Rachaputi (2014). These ranks indicated how the crop 
performed in different seasons without being biased by the 
weight of individual values. The 45 locations were grouped 
based on the similarities of their yield percentile trends using 
K-means that change cohesively were grouped together. 
Locations within each cluster constituted an agroecological 
region (AER). Individual AERs were named based on popular 
identities for their respective areas; i.e. Southern Downs (SD), 
Darling Downs (DD), Western Downs (WD), Central Queensland 
Highlands (CQH), Dawson Callide (DC), Burnett District (BD) 
and Northern New South Wales (NNSW). 

A regression line was drawn to visualise the temporal 
trends in the average percentile of each agroecological region 
to more clearly understand how these percentile ranks were 
tracked over time. If ranks were increasing with time, as 
indicated by an upward trend, this demonstrated improvement 
in crop performance. Conversely, a declining trend showed 
decreased yield performance over the studied 1960–2021 
period. The significance of these trends was tested by comparing 
t-values. 

In the second approach, clustering was performed without 
transforming yield into percentiles, as is usually done in plant 
breeding trials. The dataset used for this approach was the 
same as for the percentile method. Another set of agroecological 
regions was defined with clusters identified in this second 
approach. 

Environmental characterisation

Maximum temperature environment
classes (MTECs)

Daily maximum temperature during the 62 seasons (1960– 
2021) at the 45 studied locations were averaged every 100°Cd 
and centred at flowering (i.e. 0°Cd) from 500°Cd before 
flowering to 500°Cd after flowering. Thermal time (°Cd), 
rather than calendar days or weeks, permitted normalisation 
of time in terms of heat units experienced by the crop at differ-
ent locations. These were then clustered using k-means 
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clustering (Everitt and Hothorn 2011). The scree test defined 
the optimum number of clusters for temperature patterns 
referred to as the ‘maximum temperature environment’ (MTEC) 
for the northern grains region. The individual patterns plotted 
were centred around flowering. 

Drought environment classes (DRECs)
The model simulated a daily soil water deficit index called 

the supply–demand ratio (SDR). The index indicated the 
extent to which potential water supply from the volume of 
soil explored by roots could match the simulated transpiration 
demand (Chenu et al. 2013). SDR was calculated by dividing 
the soil water supply (Ws) by the plant water demand (Wd). 
When SDR was 1, the water supply fully met crop water 
demand; an SDR of 0 indicated no water supply for the crop. 
SDR was capped at 1 when Ws adequately met the Wd. Ws 
largely depends on rainfall, soil characteristics (including the 
porosity of the soil layers), and the root growth simulated by 
the model. Ws was calculated as the sum of Ws for each soil 
layer where pigeonpea roots were present using the following 
equation: 

X X
WsðlayerÞ = ðswðlayerÞ − llðlayerÞ × klðlayerÞÞ (1) 

where sw was the volumetric soil water content (mm/mm), 
ll was the volumetric water content at the crop’s lower limit 
and kl was the water extraction rate (mm per day). 

Wd (in mm), water demand corresponded to the potential 
daily amount of water that the crop transpired without soil-
water limitation. It was related to the amount needed for 
the daily crop growth rate (CGR in g/d/mm water) and the 
atmospheric water vapour pressure deficit (VPD in kPa). 

Wd = CGR × VPD=Te (2) 

Te was a crop-specific transpiration efficiency parameter in 
the model, which was set to 0.006 g/m2/mm/kPa for the 
current atmospheric concentration of carbon dioxide of 
420 ppm in the APSIM model ver. 7.10. 

SDR was averaged for each 100°Cd and centred at 
flowering for maximum temperature patterns. Individual 
drought patterns for 45 locations in 61 seasons were clustered 
using k-means clustering (Everitt and Hothorn 2011). The 
scree test enabled the optimum number of clusters for 
drought patterns referred to as ‘drought environments’ (DECs) 
for the northern grains region. The frequencies of occurrence 
of these DECs were also calculated at each location. 

Frequencies and principal component analysis
Frequencies of MTECs and DECs were computed for each 

location. These frequencies were used to analyse factor 
loadings and identify dominant types across locations that 
defined AERs. The drought and heat stress frequencies during 
crop development were computed as the daily stress events 
after flowering. When both stresses were present, days were 
referred to as ‘heat and drought’ days. The association between 

these events and yield were computed across seasons and 
locations using Pearson Product movement computed using 
Data Desk statistical program. 

Geographic plots
The locations were plotted on a geographic scale using a 

separate symbol for each cluster on the northern grains 
region of Australia comprising parts of Queensland and New 
South Wales using the R program (R Core Team 2014). For 
yield-based clustering, the regions were numbered as regions 
1 to 7.  

Relationship of simulated yield with heat and
drought event frequencies

The relationship between simulated yield and the frequency 
of heat, drought, and both heat and drought events occurring 
together, as well as rainfall across seasons and locations was 
examined using a regression approach. ‘Drought days’ were 
defined as days with a supply-demand ratio of ≤0.3, while 
‘heat stress days’ were days with a maximum temperature 
of ≥35°C. 

Results

Model evaluation

The performance of the APSIM pigeonpea model (ver. 7.10) 
was validated using flowering, maturity, yield and total dry 
matter data collected from agronomy experiments conducted 
for one super-short and one extra-short duration cultivar at 
three locations (Kingaroy, Toowoomba and Emerald) over 
two seasons. In these experiments, the number of days to 
50% flowering ranged between 48 and 71 days, the number 
of days from sowing to maturity ranged from 71 and 142 days 
(Fig. 1), grain yield ranged from 0.4 to 3.3 t/ha and total dry 
matter from 2.75 t/ha to 10.06 t/ha (Fig. 2). The model’s 
performance appeared satisfactory, with an R2 of over 57% 
for time to flowering and maturity and an NRMSE of approxi-
mately 10% (Fig. 1). The NRMSE of yield and total dry matter 
was slightly more. R2 of simulated yield was 91% and 72% for 
the total dry matter at maturity. The model performance was 
further verified using independent data (not used for the 
calibration) collected in 2023 and appeared reasonably 
satisfactory, especially for yield (Fig. 3). 

Though slightly higher, the simulated values of dry matter 
cut at different stages of super-short duration cultivars were 
within the acceptable range and flowering time could be 
predicted with high accuracy. 

Spatial and temporal variation in yield and
environmental similarity

The model simulated a wide range of yields when applied to 
simulate 45 locations in the Australian northern grains region. 
The long-term average yields for the different locations varied 
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Fig. 1. Comparison of observed and predicted number of days from sowing to flowering (a) and from sowing to
maturity (b) at three locations (site), Kingaroy (K), Emerald (E) and Toowoomba (T), using super-short duration
(SSD) and extra-short duration (ESD) cultivars (var) in the 2019–20 (19–20) and 2020–21 (20–21) seasons (sea).
Maturity was not recorded at Toowoomba. The dashed line corresponds to a fitted linear relationship for each
graph, while the solid line represents the 1:1 line.

Fig. 2. Comparison of observed and predicted grain yield (a) and dry aboveground biomass (b) at maturity of
super-short duration (SSD) and extra-short duration (ESD) cultivars at Kingaroy (K) in the 2020–21 season and
Emerald (E) in the 2019–20 and 2020–21 seasons (sea). The dotted line corresponds to a linear relationship for
each graph, while the solid line is the 1:1 line.

between 1.1 t/ha for Walgett in NSW and 2.9 t/ha at 
Hermitage in Southeast Queensland, both being located at 
nearly similar latitudes but different longitudes (Fig. 4). The 
average coefficient of variation (CV) in yield across locations 
was between 28.9% for Emerald in Central Queensland and 
57.2% for Walgett in New South Wales. The average CV 
was between 24.1 and 60.8% across seasons, with 2018 
being the most variable season. At each location, the CV% 

for yield was negatively related to long-term average yield 
and average rainfall, while it was positively associated with 
the number of heat events. 

Variation in average in-season rainfall across locations 
accounted for a smaller part (51%) of the variation across 
location-average yield (P < 0.01) but a larger part (71%) of 
the variation in seasonal yield (Fig. 5a, c). On average, an 
additional mm of in-season rainfall contributed to a 4.2 kg/ha 
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Fig. 3. Observed and simulated data for (a) yield and (b) total dry
matter (TDM) over time (days after sowing) at Kingaroy in 2023.

increase in seasonal grain yield. The frequency of heat events 
(i.e. days with a maximum temperature >35°C) across 
locations varied between 2 and 20 days and accounted for 
nearly 73% (P ≤ 0.01) of the yield variation (Fig. 5b). 
However, across seasons, heat frequencies only accounted 
for 46% of the variation in yield (Fig. 5d). The frequency of 
combined heat-and-drought events (defined as the number of 
days with SDR of ≤0.3 and maximum temperature of ≥35°C) 
explained only slightly more variation (79%) in location-
average yield than heat events alone. Each additional heat 
event contributed to an average yield loss of 2.9%. 

The number of in-season heat events and combined heat-
and-drought events during the crop cycle were negatively 
associated with yield (r ≤ −0.86) and with longitude but had 
no substantial relationship with latitude (Table 3). Rainfall 
was significantly related to longitude (r = 0.56, P < 0.01). 
Individual drought events were strongly related to both 
latitude and longitude. 

The location similarity analysis performed after transform-
ing yield into percentiles to overcome the high magnitude 
effect in yield between locations (Fig. 6) showed no optimal 
number of clusters (data not shown). Based on expert 
knowledge, seven clusters were considered for this study, 
defining AERs. The grouping of locations across the seven 
AER was well represented in a dendrogram (Fig. 6) and 
geographically (Fig. 7). Approximately 60% of similarity in 
the yield percentile patterns could be captured within the 
seven AER (Fig. 6). To consider a larger level of similarity 
(i.e. more clusters), locations such as Dalby, Jimbour and 

Fig. 4. Box plots of simulated yield of a super-short duration pigeonpea cultivar over 62 seasons in 45 locations
across the Australia’s northern grains region. The locations were ranked based on median yield. For the boxplots,
themiddle line of the box represents themedian, the upper and lower edges represent the 75th and 25th percentiles,
the whiskers the 10th and 90th percentiles; and the dots outside the whiskers represent individual values outside
this range.
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Fig. 5. Relationships between average yield and cumulated rainfall (a, c) and the number of heat events (b, d) averaged in (a, b) over
62 seasons (i.e. the average of all seasons for each specific location) or averaged in (c, d) across 45 locations (i.e. the average of all
locations for a specific season). A heat eventwas defined as a daywhere themaximum temperaturewas equal to or greater than 35°C.

Warra in the Darling Downs could be grouped together, and 
Brookstead, Cecil Plains and Condamine Plain could be 
grouped in separate clusters. 

When temporal changes in yield without transformation 
into percentile were clustered, non-contiguous locations were 
clustered together, e.g. in cluster R6 (Fig. 7a). Also, locations 
from the Darling Downs were clustered in one cluster using 
the percentile criteria, whereas they were in three clusters 
using the yield criteria. Similarly, the yield-cluster equivalent 
of the Dawson Callide yield-percentile cluster (i.e. R6) 
extended up to the Burnett District. 

In contrast, the clustering of seasonal changes in yield 
percentiles resulted in a more compact grouping of locations 
(Fig. 7b). With this method, locations within each AER were 
more contiguous. 

Further, when plotted over time, yield percentiles changed 
cohesively for the different locations of each cluster compared 
to across clusters (Fig. 8). A declining trend in yield-percentile 
over 1960–2021 was observed for all AERs, with significant 
change detected in Dawson Callide, Southern Downs and 
Northern New South Wales AERs (Fig. 8). 

Drought and heat environments classes and their
frequencies across agroecological regions

Heat and drought stress commonly affect yield differently 
depending upon the phenological stage when they occur. 
As these stresses can be responsible for substantial spatial and 
temporal variations in grain yield of pigeonpea in the studied 
region, their patterns and their frequencies of occurrence 
were characterised. A cluster analysis was performed for both 
(1) water SDR as an indicator of drought and (2) maximum 
temperatures as an indicator of stress for every 100°Cd 
segment before and after flowering. Analysing 27 900 data 
points (i.e. 62 seasons, 45 locations and 10 segments of 
100°Cd) of a super-short duration cultivar revealed four 
significant drought environment classes (DEC1–4) and four 
major types of maximum temperature environment classes 
(MTEC1–4), with varying frequencies of occurrence across 
seven agroecological regions (Table 4). 

The four DECs varied in the timing and intensity of the 
water stress experienced by the crop (Fig. 9a). Environments 
from DEC1 – a low or no-stress type, were characterised by 
higher SDR than the other stress types. They occurred with 
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Table 3. Correlationmatrix of average frequencies across 62 seasons of drought (DEC), maximum temperature (MTEC) environment classes, the
number of in-season heat events and the number of in-season heat-and-drought events (HtNDR), in-season rainfall and simulated yield across the
studied 45 locations for a super-short duration pigeonpea cultivar.

Lat Long DEC1 DEC2 DEC3 DEC4 MTEC1 MTEC2 MTEC3 MTEC4 Heat HtNDr Drought Rain

Lat

Long −0.24

DEC1 0.10 0.42

DEC2 0.42 0.44 0.27

DEC3 −0.09 −0.40 −0.36 −0.58

DEC4 −0.33 −0.46 −0.83 −0.63 0.23

MTEC1 0.35 −0.86 −0.50 −0.42 0.29 0.55

MTEC2 0.06 −0.02 −0.46 0.32 −0.13 0.22 −0.02

MTEC3 0.02 0.00 −0.33 0.40 −0.19 0.08 −0.10 0.71

MTEC4 −0.31 0.71 0.68 0.10 −0.13 −0.56 −0.78 −0.57 −0.49

Heat 0.20 −0.85 −0.63 −0.41 0.29 0.66 0.95 0.22 0.12 −0.89

HtNDr −0.07 −0.73 −0.74 −0.57 0.32 0.84 0.86 0.19 0.06 −0.79 0.94

Drought −0.44 −0.38 −0.83 −0.57 0.24 0.95 0.45 0.27 0.15 −0.51 0.60 0.82

Rain 0.30 0.56 0.72 0.46 −0.13 −0.84 −0.59 −0.30 −0.29 0.68 −0.73 −0.83 −0.83

Yield −0.13 0.76 0.83 0.51 −0.51 −0.79 −0.80 −0.24 −0.17 0.79 −0.86 −0.88 −0.73 0.72

The values in bold are significant at 5% probability, n = 45.

Fig. 6. A dendrogram of locations highlighting groups of similar (agroecological regions) and dissimilar locations
in terms of percentiles of seasonal yield as well as the long-term average yield within each agroecological region
(below the dendrogram) for a super-short duration pigeonpea cultivar. The joining height of clusters represents
the degree of dissimilarity. The seven clusters captured approximately 60% variability. The agroecological regions
are DC, Dawson Callide; WD, Western Downs; NNSW, Northern New South Wales; DD, Darling Downs;
CQH, Central Queensland Highlands; SD, Southern Downs; and BD, Burnett District.

an average frequency of 24.3% and had an average yield of 
2.20 t/ha with a CV of 31%. DEC1 environment occurred 
with the highest frequency (54.8 to 67.7%) in the Southern 
Downs AER. The frequency of DEC1 was positively associated 
with yield (r = 0.83, P < 0.01) (Table 3). DEC1 frequency was 
also positively related to longitude, though weakly. 

DEC2 environments had a simulated yield of 2.0 t/ha, with a 
CV of 23.4%. The frequency of DEC2, like DEC1, was positively 
associated with yield (r = 0.51, P < 0.01). DEC2 frequency also 
had a weak positive association with latitude and longitude. 

DEC3 – a severe mid-season type of stress, occurred with a 
frequency of 18.6%. DEC3 was characterised by a decline in 
the water stress index during the vegetative period to approxi-
mately 250°Cd after flowering, with a substantial release after 
that. The average yield associated with DEC3 was 1.44 t/ha, 

DEC2 – a moderate-stress type, occurred with a frequency 
of 24.4%. DEC2 was characterised by a water-stress index that 
declined from the pre-flowering period until close to maturity. 
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with a CV of 37.7%. The frequency of environments from 
DEC3 was negatively associated with yield (r = −0.51, 
P < 0.01) (Table 3). The DEC3 frequency was unrelated to 
latitude and longitude (r < 0.21). 

DEC4 – a severe mid-to-end season stress type, occurred 
with a frequency of 30.2%. DEC4 was characterised by a decline 
in the water stress index during the vegetative period, similar to 
DEC3, but with no release during grain filling. The water stress 
index typically declined to be <0.3 towards crop maturity. The 
average yield associated with DEC4 was 0.92 t/ha with a CV of 
37.4%. The frequency DEC4 was negatively associated with 
yield (r = 0.79, P < 0.01). DEC4 frequency was negatively 
related to longitude (r = −0.46, P < 0.01). 

Fig. 7. Clustering of locations based on long-
term averaged yield (a) and percentile ranks
(b) developed for a super-short duration pigeonpea
cultivar. The agroecological regions (i.e. clusters)
are generally more contiguous and compact
when developed using percentile ranks (b) rather
than when based on temporal changes in actual
yield of the locations (a). They are also consistent
with agroecologies reported by local experts.
The agroecological regions are DC, Dawson
Callide; WD, Western Downs; NNSW,
Northern New South Wales; DD, Darling
Downs; CQH, Central Queensland Highlands;
SD, Southern Downs; and BD, Burnett District.

The combined frequency of severe DEC3 and DEC4 drought 
types, negatively associated with yield, was 51.6% in the 
northern grains region. A principal component analysis indicates 
that these environments were mainly found in Northern New 
South Wales and the Western Downs location clusters (Fig. 9b). 

Four major types of maximum temperature environments 
(MTEC1–4) were identified (Fig. 9c) with varying impacts on 
yield depending mainly on post-flowering heat stress. MTEC1 
occurred at a frequency of 29.5%, MTEC2 25.0%, MTEC3 
25.6% and MTEC4 19.8% (Table 4). The average simulated 
yield (± s.e.) for MTEC1 environments was 1.0 ± 0.46 t/ha, 
1.63 ± 0.47 t/ha for MTEC2, 1.83 ± 0.53 for MTEC3 and 
2.53 ± 0.48 for MTEC4. 
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Fig. 8. Examples of synchronous patterns of yield percentiles over time for three agroecological regions in
Dawson Callide (a), Northern New SouthWales (b) and Southern Downs (c). With time, all three agroecological
regions had a significant downward trend in percentiles (solid grey line). Similar changes were also observed in
other agroecological regions but were not significant at a level of 0.05.

Grain yield was positively correlated with the MTEC4 
frequency of occurrence (r = 0.794, P < 0.01) and nega-
tively correlated (r = 0.800, P < 0.01) with MTEC1 frequen-
cies of occurrence, while no significant relationship 
was found for MTEC2 and MTEC3 (Table 3). MTEC1 was 
negatively related to longitude (r = 0.86, P < 0.01) and 
positively associated with latitude (r = 0.35, P < 0.01). 

The principal component analysis indicated a prominent pres-
ence of MTEC1 and MTEC2 in Western Downs, Central Highland 

and Dawson Callide  AER  (Fig. 9d). In contrast, MTEC4 was more 
pronounced in Southern Downs and Burnett AER (Fig. 9d). 
Severe MTEC1 and MTEC2 environments were more common 
in the Central Queensland Highlands, New South Wales and 
Western Downs AER. The principal component analysis also 
revealed this dominant distribution of the most-severe MTEC1 
(Fig. 9d). Of the 45 locations, 16 had very low frequencies of 
severe MTEC1 and MTEC2 types of temperature environments 
(Table 4). 
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Table 4. Frequencies (in %) of different drought (DEC) and maximum temperature (MTEC) environment (env.) classes across (1) the
agroecological regions and (2) the whole Australian northern grains region.

Agroecological region Drought env. class (DEC) Maximum temp. env. class (MTEC)

DEC1 DEC2 DEC3 DEC4 MTEC1 MTEC2 MTEC3 MTEC4

Dawson Callide 22.9 32.2 15.8 29.0 38.7 27.6 30.3 3.4

Western Downs 14.1 15.7 20.3 50.0 42.9 26.5 22.8 7.8

Northern-NSW 22.0 18.1 20.3 39.6 24.6 25.4 26.7 23.3

Darling Downs 24.2 28.6 17.3 29.9 18.5 31.2 29.3 21.0

CQ-Highlands 27.4 22.9 21.3 28.4 51.3 24.2 22.9 1.6

Southern Downs 61.3 20.2 10.5 8.1 0.0 4.0 4.0 91.9

South Burnett 33.1 23.4 27.4 16.1 0.0 8.9 4.0 87.1

Mean 24.3 24.0 18.6 33.0 29.5 25.6 25.0 19.8

Discussion

Yield potential of super-short duration pigeonpea

There is little documentation of pigeonpea cropping trials in 
the Australia’s northern grains region (NGR), which has a sub-
tropical climate with summer-dominant rainfall. To the best 
of our knowledge, this study is the first attempt to compre-
hensively evaluate the suitability of pigeonpea in the summer 
season of the NGR with crop modelling. The APSIM pigeonpea 
model required adjustment of a few parameters related 
to crop phenology, radiation use efficiency, transpiration 
efficiency, growth and daily dry matter partitioning into 
yield (Table S1), and the predictive accuracy comparable to 
earlier validation reported for pigeonpea (Robertson et al. 
2001; Rao et al. 2013). Changes made for the RUE were 
consistent with higher values observed under rainout 
shelters, where transient waterlogging known to impact this 
trait adversely (Milroy and Bange 2013) was avoided due 
to controlled application of water (Nam et al. 1998). 
Changes in the crop coefficient for transpiration use 
efficiency may have been necessitated due to genetic improve-
ment of modern genotypes as observed for wheat (Triticum 
aestivum) (Fletcher and Chenu 2015), and/or increased 
atmospheric carbon dioxide concentration (Leakey et al. 2019). 
This should be examined in future experiments. The calibrated 
model could accurately simulate growth and development 
accross the tested locations and planting times, with some 
small over-predictions of low yields and small under-predic-
tions of high yields. Those minor discrepancies are common 
in some legumes such as chickpea (Cicer arietinum) 
(Robertson et al. 2002). Although further research may be 
necessary to further improve the model, we deemed the bias 
acceptable to characterise pigeonpea growing environments. 

Simulated results suggest that approximately three-fold 
variation in water-limited yield is due to differences across 
seasons and locations. Such variability in yield was consistent 
with the observed performance of other related crop species 
grown in the region, including mungbean and chickpea. 

When searching for the main limiting abiotic factors respon-
sible for yield variation, we found that in-season rainfall 
accounted for approximately 71% of the temporal (seasonal) 
and 51% of the spatial (locational) variation in yield (Fig. 4a). 
In contrast, heat events across locations with a daily maximum 
temperature >35°C accounted for 46% of seasonal variation 
and 74% of spatial variation in yield (Fig. 4a). In wheat, 
approximately 43% of the variability in crop yield across 
Australia was reported to be explained by climatic factors, of 
which rainfall and temperature were essential components. In 
the current study, frequencies of heat-and-drought events 
together explained nearly 77% of yield variation. Of this, 
temperature alone appeared as the dominant factor, accounting 
for almost 73% of the variation in yield. According to a Grains 
Research and Development Corporation (GRDC) estimate, 
Australia suffers from a AUD1.1 billion annual loss in grain 
yield related to high temperature of all broad acre crops 
already grown in Australia. Pigeonpea being a summer crop, 
the impacts of temperatures are likely to be greater than for 
winter crops such as wheat. However, pigeonpea was found 
to be more resilient to increase in temperature among 
summer crops than sorghum (Sorghum bicolor), pearl millet 
(Pennisetum glaucum), peanut (Arachis hypogaea) and maize 
(Zea mays) (Dimes et al. 2008; Jat et al. 2012). In addition, 
targeted short-season pigeonpea cultivars cultivated as 
monocropping culture in Australia could pose an additional 
risk as they would be grown at higher planting densities. 
Hence, despite the reputation of pigeonpea as a more resilient 
crop in rainfed/dryland farming systems, improvements in its 
heat tolerance may still be required. 

Surprisingly, seasonal variation in yield was less related to 
frequencies of heat events than rainfall (Fig. 5). Rainfall 
amount and distribution likely influenced the timings and 
severity of drought and heat stresses. This effect was supported 
by a negative correlation (−0.73) between rainfalls and heat 
stress frequencies (Table 3). Further, correlation analysis 
suggested strong effects of longitude on rainfalls and frequen-
cies of heat events. A relationship of latitude and longitude 
with rainfalls, drought and heat-event frequencies indicated 

12



www.publish.csiro.au/cp Crop & Pasture Science 75 (2024) CP23177

Fig. 9. Main in-season patterns of drought (DEC, a) and their factor loadings (b), and maximum temperature (MTEC, c) and
their factor loadings (d). The effects of drought andmaximum temperature classes on yield are shown in inset charts in (a) and (c).
The clusters representing different agroecological regions in charts (b) and (d) are DC, Dawson Callide; WD,Western Downs;
NNSW, Northern New South Wales; DD, Darling Downs; CQH, Central Queensland Highlands; SD, Southern Downs; and
BD, Burnett District.

that these factors and the location could consistently affect the 
pigeonpea adaptation. 

Furthermore, climate change could increase extreme 
temperature events and decrease or increase rainfall. These 
changes may affect season-average yield, location-average 
yield, or both. Long-term climate projections suggest that there 
is unlikely to be a major shift in summer season rainfall amount 
in eastern Australia. Hence, grain yields may decline markedly 

with the projected increase in maximum temperatures, even if 
rainfall may not be affected much. How changes in these climatic 
factors would change yielding patterns could be examined, 
also looking at possible adaptations, for instance, in sowing 
dates and maturity types (Collins and Chenu 2021). In the 
current study, as the aim is to evaluate the potential to establish 
a new crop, this information would be valuable to assess future 
trends and potential for breeding and agronomic adaptation. 
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In examining variations in climatic environments, it is 
crucial to consider both spatial and temporal variation. Breeders 
generally prefer to focus on improving the spatial adaptation of 
crops (i.e. in terms of locations). In contrast, individual growers 
are more interested in performance across seasons at their 
location. Hence to meet both requirements, environment 
similarity must be looked at in both spatial and temporal terms. 

Environment similarity is conventionally determined 
through statistical analysis of genotypes, environments, crop 
management practices, and their interactions. This approach, 
however, often ignores the impact of temporal variation and 
the long-term stability of performance as the trials are 
conducted over a limited period. Identifying environment 
similarity that captures spatial and temporal variability to 
determine the similarity of environments is valuable from a 
breeding perspective that supports both the community of 
growers and individual growers. Crop modelling allowed 
pigeonpea’s performance to be evaluated comprehensively 
across locations and seasons. Clustering for environmental 
homogeneity based on yield percentiles over 62 seasons 
identified seven agroecological zones with similar ecological 
patterns. These agroecological zones differed substantially in 
terms of drought and heat types frequencies. 

A few studies have previously simulated yield directly to 
identify similarities between locations in regions with 
variable climates (Aggarwal 1993; Chauhan et al. 2008, 2013; 
Seyoum et al. 2017). However, such an approach may not be 
relevant for variable environments. In the current study, 
clustering environments based on absolute yield values led 
to grouping locations geographically far apart (Fig. 6a). 
This may be why simulated yield has had limited use in 
identifying similarities across locations. This may even be 
more glaring in breeding trials as such trials are typically 
conducted for a limited number of seasons. By contrast, when 
grouping locations from the current study based on seasonal 
variations in yield percentile, locations grouped as environmen-
tally similar in agroecological regions were geographically 
contiguous (Fig. 6b) and meaningful to local agronomists who 
could see some value in such grouping. 

The locations of the different agroecological zones 
identified were further characterised by heat and drought 
stress frequencies (Fig. 8). Each agroecological zone tended to 
have one to two dominating maximum temperature environ-
ments (Fig. 8d). Regarding the most severe stresses, it appeared 
that severely stressed MTEC1 and MTEC2 type environments 
were more common in Central Queensland, New South Wales 
and Western Downs, whereas yield-reducing DEC4 environ-
ments were more frequent in Western Downs and New South 
Wales clusters. 

Implications for the future of the pigeonpea
industry

This study identified seven Australian agroecological regions 
where pigeonpea could be cultivated. Similar frequencies of 

abiotic stresses characterised each agroecological region 
within member locations. While only 45 key locations were 
studied, other locations from the area are likely to have 
similar environments to the neatest studied locations and be 
part of the same agroecological region. Simulations could be 
quickly run and analysed if climatic data are available to 
confirm this. 

In some agroecological regions such as Western Downs, 
Central Queensland Highlands and Northern New South Wales, 
greater heat tolerance may be required to achieve higher and 
more stable production. Greater drought tolerance may be 
necessary to stabilise yield across seasons, especially in low 
rainfall environments. Identifying climatically disparate environ-
ments represented by different agroecological regions could 
offer an opportunity to develop region-specific cultivars and 
agronomy. For instance, pigeonpea cultivars tolerant to 
heat and drought could be introduced from other breeding 
programs and bred locally for the marginal agroecological 
areas in the Western Downs, Northern NSW and Central 
Queensland Highlands. Further, the proposed method could 
be applied to other pigeonpea-producing regions worldwide 
to identify agroecological zones with similar stress patterns 
as found in the Australian northern grains region, thus 
facilitating meaningful importation of germplasm with 
interesting adaptation to Australia. 

Identifying and characterising similarities between 
environments for crucial constraints should arguably be the 
first step to considering the prospects of a new crop and 
setting up the breeding objective -unless the crop has other 
issues related to biotic stress. In the past, pest problems, 
which overwhelmed the local pigeonpea crops, seem to have 
become more manageable due to the development of new, 
more effective pesticides (T. Volp, pers. comm.). Past research 
on the crop has mainly focused on breeding new cultivars with 
a relative lack of understanding of the possible agro-climatic 
environments and agronomy required in different locations. 
The current study is one of the new approaches imple-
mented to resurrect the Australian pigeonpea industry and 
precedes any recent breeding efforts for this crop. 

Conclusions

This research was focused on determining environmental 
similarities for pigeonpea in Australia using the APSIM model. 
The method considers both spatial and temporal variations, 
making it more reliable than traditional approaches that are 
based on average yield obtained over a few seasons of trials. 
This study bridges the knowledge gap about pigeonpea’s agro-
climatic adaptation in the Australian northern grains region 
for new super-short duration cultivars. Analysing the 
frequency of abiotic stresses makes it possible to identify yield 
constraints within each agroecological region, prioritise testing 
locations, and inform future pre-breeding and breeding studies. 
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This approach also helps understand how climate affects 
pigeonpea production in agroecological regions. 

The results suggest that pigeonpea has the potential to 
become a primary pulse rotation crop during the summer 
season in the northern grains region of Australia. Efforts to 
establish the pigeonpea industry could focus on locations 
with a yield potential of approximately 2 t/ha, such as in 
the favourable agroecological zones of South Burnett and 
Darling Downs. Alternatively, pigeonpea cultivars tolerant to 
heat and drought could be used in more marginal areas like 
Western Downs, Emerald and Northern New South Wales 
agroecological regions. The approach developed in this 
study is now being used to inform local pulse breeding 
programs and could be applied to other crops and regions. 

Supplementary material

Supplementary material is available online. 
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