QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES DIVISION OF PLANT INDUSTRY BULLETIN No. 604

EFFECT OF INITIAL DENSITY OF HUNTER RIVER LUCERNE ON PRODUCTIVITY AND PERSISTENCE OF HUNTER RIVER LUCERNE ALONE AND WITH PETRIE GREEN PANIC IN SWARDS

By W. J. SCATENI, M.Agr.Sc.

SUMMARY

Increasing Hunter River density raised its yield for 3 years. At that time, two common low Hunter River densities, without and with Petrie, had resulted. Greater Hunter River density initially depressed both Petrie and total yields but thereafter increased them. For the first 4 years, Hunter River and weed yields were lower in the mixed swards. Total yield was initially lower but was later equal or higher in the Hunter River swards.

Where Petrie only was planted, total yield after 2 years was lower than in the other treatments.

Yield of a forage sorghum crop planted on the experimental area at conclusion of the experiment was lowest in the sections which had carried Petrie only.

I. INTRODUCTION

The value of *Medicago sativa* cv. Hunter River as a legume component of mixed pastures in subtropical Queensland was reported by Christian and Shaw (1952), Young, Fox and Burns (1959) and Young and Daly (1967). The lastmentioned authors found that Hunter River persistence was poor and production declined 3 years after sowing under less favourable rainfall.

Supplementing native pasture with grazing Hunter River has been responsible for increased liveweight gains of steers at "Brian Pastures" Pasture Research Station (Anon. 1963) and greater wool yield of wethers at Texas, south-eastern Queensland (Lee and Rothwell 1966).

The effects of initial Hunter River density on productivity and persistence of Hunter River planted with and without *Panicum maximum* var. *trichoglume* cv. Petrie are reported here.

"Queensland Journal of Agricultural and Animal Sciences", Vol. 29, 1972

II. MATERIALS AND METHODS

The experiment was carried out at "Brian Pastures" Pasture Research Station near Gayndah in subtropical and sub-coastal Queensland. The station has an average annual rainfall of 700 mm. The soil was a dark grey-brown sandy-clay (Ug6 (Northcote 1965)) of moderate fertility fallowed for weed control for 10 months before sowing.

Treatments involved Hunter River densities of $2 \cdot 5$, $7 \cdot 4$, $22 \cdot 2$, $67 \cdot 7$ and $200 \cdot 1$ plants/m² with and without Petrie at a standard density of $24 \cdot 7$ plants/m². A 'control' treatment of Petrie alone at the standard density was included. The experiment was a randomized block design with five replications of 11 treatments. Plot size was 3 m x 3 m.

Petrie and Huner River were hand-broadcast and raked into a well-prepared seedbed at 33 and 9 kg/ha respectively on 23.ii.62. Hunter River seed was inoculated with the appropriate rhizobia before sowing. Plots were hand-thinned by replications between 19.iii.62 and 14.iv.62 to give an even distribution of plants at the desired densities.

Plots were either heavily grazed overnight or mown to a stubble height of 5 cm between one and four times per year with a mean of $2\frac{1}{4}$ defoliations per year for the 8 years of the experiment. Periodic sampling of the pasture for density and basal cover and yield dynamics at intervals of 2 years are reported. Three 100 cm x 40 cm random pasture samples in each plot were cut for yield to a stubble height of approximately $1 \cdot 3$ cm. These were separated into Petrie, Hunter River and weed, dried at 93° C in a forced-draught oven for 16 hr, and weighed.

Density of sown species per plot was obtained from 10, 6 and 25 100 cm x 40 cm quadrats in 1962, 1964 and 1965 respectively, and in 1967 and 1968 from four 100 cm x 100 cm quadrats. The lowest Hunter River density plots were rethinned to the treatment density of 2.5 plants/m² on 6.ii.63. Accurate density estimates for Petrie in the mixed swards were only possible up to that of 13.x.65. Percentage basal cover of Petrie, Hunter River, native *Dichanthium* species and other species was recorded on 1.xii.69 using a point quadrat with five points spaced 10.2 cm apart. Two hundred and fifty points were recorded per plot.

Plots were cultivated and a seedbed prepared on 1.xii.69. Sorghum vulgare cv. Sugardrip was then sown at 17 kg/ha in 15 cm drills and superphosphate applied at 220 kg/ha.

On 2.iii.70 a strip of sorghum 200 cm x 100 cm was cut to ground level in each plot. The cut material was chaffed, dried at 93° C in a forced-draught oven for 48 hr, and weighed.

III. RESULTS

The results are shown in Tables 1-8.

At the sampling on 5.v.62, Petrie yield decreased and Hunter River yield increased with greater Hunter River density (Table 1). Hunter River and weed yields were lower and total yield was higher in the mixed swards. Higher density caused an increase in total yield in the absence of grass and the reverse in the presence of grass producing a significant (P < 0.01) density x grass interaction. Total yield of the control was greater than for the Hunter River only swards and for the two highest Hunter River density mixed pastures.

TABLE 1

Hunter R	inar	w	ithout Gra	ISS		With	Grass		Density Means			
Densit (plants/)	y	Hunter River Weed Total			Petrie Hunter Weed Total			Hunter River	Weed	Total		
Control					2,560		90	2,640				
2.5		100	260	360	3,020	20	120	3,170	60	190	1,770	
7.4		240	240	480	2,710	50	10	2,760	150	120	1,620	
22.2		390	230	620	2,260	150	40	2,460	270	140	1,540	
67.7		670	240	920	1,480	300	30	1,820	490	140	1,370	
200.1		940	40	990	880	580	20	1,490	760	40	1,240	
Means		470	200	670		220	40	2,340				

DRY-MATTER ACCUMULATION FROM SOWING TO 15.V.62 (KG/HA)

				L.S.D.					
				i	P = 0.05	P = 0.01			
Petrie means	••	••	••	••	980	1,340			
Hunter River—									
density means	· ·		••		110	140			
grass means	• •	••	• •		70	90			
Weed grass means	• •	••	••	••	90	120			
Total—									
grass means				• •	330	430			
density x grass	means	••		••	730	960			
treatments v. co	ontrol m	eans		••	730	960			

At the sampling on 7.x.64, Petrie and Hunter River yields increased and weed yield decreased with higher Hunter River densities (Table 2). These had a greater effect on increasing Hunter River yield in the legume only than in the mixed swards resulting in a significant (P < 0.01) density x grass interaction. Hunter River and weed yields were depressed by Petrie. The decrease in weed yield with increasing legume density was greater in the legume than in the mixed swards and produced a significant (P < 0.01) density x grass interaction. Weed yield of the control was lower than in the lower density legume swards. Total yield in the legume swards decreased and in the mixed pasture increased, producing a significant (P < 0.01) density x grass interaction. Total yield of the control was lower than in the mixed pasture increased, producing a significant (P < 0.01) density x grass interaction. Total yield of the control was lower than in the mixed pasture increased, producing a significant (P < 0.01) density x grass interaction. Total yield of the control was lower than in the mixed pasture increased, producing a significant (P < 0.01) density x grass interaction. Total yield of the control was lower than in either the legume-only stands or the higher density mixed swards.

TABLE 2

Hunter R	iver	w	ithout Gra	ISS		With	Grass		D	ensity Mea	ns		
Densit (plants/1	у	Hunter River Weed		Total	Petrie	Hunter River	Weed	Total	Hunter River				
Control					720		70	800					
2.5		640	960	1,600	620	190	40	840	420	500	1,220		
7.4		720	470	1,190	790	250	50	1,090	480	260	1,140		
22.2	•••	750	280	1,030	1,190	240	30	1,460	500	150	1,240		
67.7		1,040	130	1,170	1,160	370	20	1,560	700	80	1,360		
200.1	••	1,220	40	1,260	1,070	160	10	1,240	690	20	1,250		
Means	•••	870	380	1,250		240	30	1,240					

DRY-MATTER ACCUMULATION FROM 10.iii.64 to 7.x.64 (KG/HA)

		L.S.D.	
		P = 0.05 $P = 0.01$	
Petrie means		320 430	
Hunter River—			
density means		110 150	
grass means	••	70 90	
density x grass means	••	160 210	
Weed—			
density means		140 180	
grass means		80 110	
density x grass means		190 250	
treatments v. control means	••	190 250	
Total—			
density x grass means		350 460	
treatments v. control means		350 460	

At the sampling on 17.x.66, Hunter River weed and total yields of the legume-only swards were higher than for the mixed swards (Table 3). Weed yield in the control was less than in the legume swards and total yield of the control was less than in the other pastures. The percentage Petrie in the weed yield of the legume swards increased as the legume density increased up to the second highest legume density.

At sampling on 21.ii.68 (Table 4) and 19.xi.69 (Table 5) weed yield was greater in the legume than in the mixed swards and total yield of the control was lower than in the other treatments. The percentage of Petrie in the weed yield of the legume swards increased as the Hunter River density increased.

Hunter I) in an	w	ithout Gra	ISS		With	Grass		D	ensity Mea	ns
Density (plants/m ²)		Hunter River	Weed	Total	Petrie	Hunter River	Weed	Total	Hunter River	Weed	Total
Control					700		200	910			
2.5		510	980 (30)	1,490	710	310	90	1,120	410	540	1,300
7•4		830	(30) 950 (60)	1,790	760	640	50	1,460	740	500	1,620
22.2		620	890 (60)	1,510	840	420	90	1,340	520	490	1,420
67.7		660	800 (80)	1,460	840	450	20	1,310	560	410	1,390
200.1		590	700 (30)	1,300	840	320	80	1,240	460	390	1,270
Means		640	870	1,510		430	70	1,290			

TABLE 3 DRY-MATTER ACCUMULATION FROM 16.vi.66 TO 17.x.66 (KG/HA)

() % Petrie in weed yield.

æ

3

4

6 Petrie in weed yield.		L.S.D.			
Hunter river grass means Weed—	••	I	P = 0.05 160	$\begin{array}{c} P = 0.01 \\ 210 \end{array}$	
grass means treatments v. control means Total—	 	 	120 270	160 350	
grass means treatments v. control means	••	 	180 410	240 530	

		Dry-m	ATTER A	CCUMULA	TION FR	ом 13.х	іі.67 то	21.xi.6	8 (кс/н/	A)		
(Janetan D		W	ithout Gra	iss		With	Grass		Density Means			
Hunter River Density (plants/m ²)		Hunter River	Weed Total Petrie Hunter River Weed Total		Hunter River	Weed	Total					
Control					290		1,820	2,110				
2.5		470	2,300 (20)	2,700	890	400	1,550	2,840	430	1,920	2,800	
7.4	•••	740	2,110 (30)	2,850	950	900	1,310	3,160	820	1,710	3,000	
22.2	••	700	2,790 (20)	3,490	1,030	270	1,480	2,770	480	2,130	3,130	
67.7	•••	570	3,380 (50)	3,950	1,240	820	960	3,020	700	2,170	3,490	
200.1	•••	640	(50) 3,390 (50)	4,030	1,470	490	1,370	3,330	570	2,380	3,680	
Means		620	2,790	3,420		570	1,330	3,020				

TABLE 4

() % Petrie in weed yield

L.S.D.

45

 $P = 0.05 \quad P = 0.01$... 450 590 ... 1,030 1,360

With Grass Without Grass Density Means Hunter River Density (plants/m²) Hunter River Hunter River Hunter River Weed Total Petrie Weed Total Weed Total 100 Control 600 690 2.5 0 890 890 470 0 450 920 0 670 900 . . (20)880 7.40 880 540 0 350 880 0 610 880 . . (40) 980 0 980 440 0 380 830 0 680 900 22.2. . (40)67.7 0 1,130 1,130 630 0 320 950 0 720 1,040 . . (60) 200.1 0 900 900 410 Δ 500 910 700 900 0 . . (40) 0 950 960 0 400 900 Means . .

TABLE 5Dry-matter Accumulation from 24.iv.69 to 19.xi.69 (kg/ha)

() % Petrie in weed yield

					L.S.D.		
					P = 0.05	P = 0.01	
Petrie means					270	370	
Weed grass means			••		120	160	
Total treatments v.	control	means	••	••	230	300	

The yield of sorghum was lower in the control than in the other treatments (Table 6).

SORGHUM DRY-MATTER YIELDS ON 2.111.70 (KG/HA)

Hunter River Density (plants/m ²)	Without Grass	With Grass	Density		
Control		4,900			
2.5 7.4 22.2 67.7 200.1	6,030 6,870 6,690 6,870 6,780	5,860 6,830 6,670 6,680 5,960	5,940 6,850 6,680 6,780 6,370		
Means	6,490	6,400			
Treatment v. c	ontrol means	P = 0.05 1,130	P = 0.01 1,490		

TABLE 6

Up to 1965, Hunter River density was in accordance with its original density (Table 7). In 1964 the higher legume density as its original density increased was greater in the legume swards and resulted in a significant (P < 0.01) density x grass interaction. In 1964, 1965 and 1967 Hunter River density was higher in the legume stands. In 1969 Hunter River density showed no significant differences between treatments.

		WI	THOUT G	RASS			•	WITH GRA	ASS			DEN	SITY MEA	NS	
Date	3.x.62	23.iii.64	13.x.65	21.vii.67	18.xi.69	3.x.62	23.iii.64	13.x.65	21.vii.67	18.xi.69	3.x.62	23.iii.64	13.x.65	21.vii.67	18.xi.69
Hunter River Density (plants/m ²) 2.5	7·4*	4·0	13.8	6.2	0.7	6.9*	2.5	11.4	2.7	0.2	7-2	3.2	12.6	4.5	0.4
7.4	10.6	8.6	14.6	5.9	0.2	8.2	3.7	10.9	3.5	0.2	9.4	6.2	12.8	7.7	0.2
22.2	23.0	13.1	15-1	8.2	0.5	22.5	4.7	6.4	2.2	0.2	22.7	9.0	10.8	5.3	0.3
67.7	72.6	22.5	16.3	4.7	0.6	64·2	5.4	8.2	8.2	0.4	68.3	14.0	12.3	4.1	0.5
200.1	171-2	25.9	16.8	5.4	0.5	172.4	7.2	7.9	3.2	0.4	171-9	16.5	12.4	4.3	0.5
Means	57.1	14.8	15.3	6.1	0.5	54.8	4.7	8.9	3.1	0.3		-!		-	
	nter Ri	ver re-thi	nned to	required	density	of 2.5	pl/m² on	6.xi.63	after the LS	first den	sity cour	nt.			
3.x.62 24.ii.64 13.x.65 21.vii.67 18.xi.69	:	density a density a grass me density a grass me grass me	means eans x grass m eans	eans	$P = 0.05 \qquad P = 0.01$ 8.1 16.6 4.2 5.5 2.7 3.5 5.9 7.8 4.4 5.7 1.7 2.2 N.S.										

TABLE 7

£

÷.

Lucerne Density (plants/m²)

47

EFFECT OF LUCERNE DENSITY

492

-18

TT		WITHOUT	GRASS			WITH GRASS				DENSITY MEANS			
Hunter River Density (plants/m ²)	Petrie	Dichanthium	Other Species	Total	Petrie	Dichanthium	Other Species	Total	Petrie	Dichanthium	Other Species	Total	
Control					0.6	2.6	0.2	3.4					
2.5 7.4 22.2 67.7 200.1	$ \begin{array}{r} 1 \cdot 0 \\ 1 \cdot 3 \\ 1 \cdot 0 \\ 2 \cdot 6 \\ 2 \cdot 3 \end{array} $	$ \begin{array}{r} 2.0 \\ 1.1 \\ 2.0 \\ 1.9 \\ 1.2 \end{array} $	0.0 0.2 0.2 0.4 0.3	3.0 2.6 3.3 5.0 3.8	1.8 1.5 1.9 4.4 2.0	2·0 1·9 2·6 1·8 2·7	$ \begin{array}{c} 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \end{array} $	3.9 3.7 4.6 6.3 4.9	1·4 1·4 1·5 3·5 2·2	2·0 1·5 2·3 1·8 2·0	0·1 0·2 0·2 0·3 0·2	3·4 3·1 4·0 5·6 4·4	
Means	1.6	1.6	0.2	3.5	2.3	2.2	0.2	4.7] <u> </u>			

No hits were recorded on lucerne in any plot.

110	into we	the recorded on racenic in any plot.	LSD)
			P = 0.05	P = 0.01
Petrie	:	density means	1.2	1.5
	:	treatment v. control means	1.7	2.2
Total	:	density means	1.2	1.6
	:	grass means	0.8	1.0

TABLE 8

PERCENTAGE BASAL COVER OF PASTURE COMPONENTS ON 1.iii.69

48

 -2λ

EFFECT OF LUCERNE DENSITY

Individual original plants of Petrie were recognizable for the first three density counts and to this time original Petrie density was maintained in all treatments. Subsequently Petrie plants either started to die from the centre outwards and formed peripheral individual crowns or died out completely.

Mean Petrie and total basal cover in the $67 \cdot 7$ plants/m² treatments were higher than in the other Hunter River density treatments (Table 8). The lowest cover of Petrie was in the control. The total basal cover was greater for the mixed than for the legume swards. A zero Hunter River basal cover was recorded in all plots.

IV. DISCUSSION

The initial effect of increasing Hunter River density in both the legume and mixed pastures was to increase the yield of Hunter River. Donald (1951) for the annual legume subterranean clover (*Trifolium subterraneum* L.) and Jarvis (1962) for lucerne showed that yield of dry matter was constant or increased only slightly from moderate to high densities and there was no reduction in dry matter per unit area even in extremely dense swards. The Hunter River densities used in the study reported here were at the lower end of the ranges investigated by these authors and the highest Hunter River density used was equivalent to a moderate level. Jarvis (1962) showed that plant population had a very considerable effect on yield up to a level of 190 plants/m² but little further increase in yield resulted when the population was increased beyond that point. In the mixed swards, increasing Hunter River density initially caused a marked reduction in Petrie and total yields. Hunter River weed yields were lower and total yield was higher in the mixed swards.

After 2 years, both legume and Petrie yields increased with increasing Hunter River density. The effect on total yield, particularly in the legume swards, was offset by a decrease in weed yield as Hunter River density increased. Total yield of the control was lower than in the legume swards and the higher density mixed swards. Cameron and Mullaly (1969) measured an increase in grass and total dry-matter yields in infrequently grazed grass-lucerne swards due to the inclusion of lucerne. The pastures were grown on a deep grey-brown clay-alluvial soil and measurements commenced 18 months after sowing. On a shallow basaltic-derived grey-brown sandy-clay soil in a similar environment, Scateni (1968) reported little effect of lucerne on grass and total yield for the period from 6 to 15 months after sowing.

The loss of Hunter River plants in the first 3 years of the experiment was considerable at the high populations but negligible or showed an increase at the low ones. This is in agreement with the results reported by Jarvis (1962). Two common Hunter River densities without and with Petrie had resulted 3 years after sowing. Subsequently Hunter River densities declined to very low levels.

The effects of Hunter River on Petrie dry-matter yield, invasion of legume plots and percentage basal cover after the early years of the experiment were probably due to the nitrogen contribution of the legume, which increased as the Hunter River density increased. However, Hunter River did not maintain a productive and closed Petrie stand and all mixed swards suffered considerable invasion by native grasses.

The results of the experiment indicate that for rain-grown Hunter River swards in this environment, a Hunter River density of 70 plants/m² equivalent to a seeding rate of about 4 kg/ha, assuming 90% germination and 40% establishment of pure

 \mathbf{C}

live seed, would give optimum Hunter River production, persistence and beneficial effect on a subsequent crop. The situation with grass-Hunter River pastures is less clear. Where maximum lucerne yields and optimum persistence of the sown grass (without nitrogen fertilizer) are the aims, a Hunter River density of 70 plants/m² would also be optimum. However, where the aim is maximum early total dry-matter production from the sward, the results suggest that a much lower density of approximately 8 plants/m² would be required.

V. ACKNOWLEDGEMENTS

The assistance of the staff at "Brian Pastures" Pasture Research Station in establishing the trial and collecting the data is acknowledged. The Australian Meat Board provided facilities.

REFERENCES

ANON. (1963).—Agriculture Branch. In Rep. Dep. Agric. Stk Qd 1962-63:11.

- CAMERON, D. G., and MULLALY, J. D. (1969).—Effect of Hunter River lucerne (Medicago sativa L.) on grasses in rain-grown pastures. Qd J. agric. Anim. Sci. 26:35.
- CHRISTIAN, C. S., and SHAW, N. H. (1952).—A study of two strains of Rhodes grass (Chloris gayana Kunth.) and of lucerne (Medicago sativa L.) as components of a mixed pasture at Lawes in south-east Queensland. Aust. J. agric. Res. 3:277.
- DONALD, C. N. (1951).—Competition among pasture plants 1. Intra-specific competition among annual pasture plants. Aust. J. agric. Res. 2:355.
- JARVIS, R. H. (1962).—Studies on lucerne and lucerne-grass leys V. Plant population studies with lucerne. J. agric. Sci., Camb. 59:281.
- LEE, G. R., and ROTHWELL, W. E. M. (1966).—Effects of grazing lucerne supplementation and stocking rate on sheep and native pasture productivity in the Queensland traprock region: Progress report 1962-1965. Qd J. agric. Anim. Sci. 23:287.
- SCATENI, W. J. (1967).—Effects of legumes and fertilizer nitrogen on productivity of green panic swards at Gayndah, south-eastern Queensland. Qd J. agric. Anim. Sci. 25:85.
- YOUNG, N. D., and DALY, J. J. (1967).—A study of three important pasture mixtures in the Queensland subtropics: Progress report 1958-1963. *Qd J. agric. Anim. Sci.* 24:149.
- YOUNG, N. D., Fox, N. F., and BURNS, M. A. (1959).—A study of three important pasture mixtures in the Queensland subtropics: Progress report 1955-1958. *Qd J. agric. Sci.* 16:199.

(Received for publication September 9, 1971)

The author is an officer of Agriculture Branch, Queensland Department of Primary Industries, stationed at "Brian Pastures" Pasture Research Station, Gayndah.