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Abstract. Reliable seasonal climate forecasts are needed to aid tactical crop management decisions in south-eastern
Australia (SEA). In this study we assessed the quality of two existing forecasting systems, i.e. the five phases of the
Southern Oscillation Index (SOI) and a three phase Pacific Ocean sea-surface temperatures (SSTs), to predict spring
rainfall (i.e. rainfall from 1 September to 31 November), and simulated wheat yield. The quality of the forecasts was
evaluated by analysing four attributes of their performance: their reliability, the relative degree of shift and dispersion
of the distributions, and measure of forecast consistency or skill. Available data included 117 years of spring rainfall
and 104 years of grain yield simulated using the Agricultural Production Systems Simulator (APSIM) model, from four
locations in SEA. Average values of spring rainfall were 102–174 mm with a coefficient of variation (CV) of 47%.
Average simulated wheat yields were highest (5609 kg/ha) in Albury (New South Wales) and lowest (1668 kg/ha) in
Birchip (Victoria). The average CV for simulated grain yields was 36%. Griffith (NSW) had the highest yield variability
(CV = 50%). Some of this year-to-year variation was related to the El Niño Southern Oscillation (ENSO). Spring rainfall
and simulated wheat yields showed a clear association with the SOI and SST phases at the end of July. Important variations
in shift and dispersion in spring rainfall and simulated wheat yields were observed across the studied locations. The
forecasts showed good reliability, indicating that both forecasting systems could be used with confidence to forecast spring
rainfall or wheat yield as early as the end of July. The consistency of the forecast of spring rainfall and simulated wheat
yield was 60–83%. We concluded that adequate forecasts of spring rainfall and grain yield could be produced at the end of
July, using both the SOI and SST phase systems. These results are discussed in relation to the potential benefit of making
tactical top-dress applications of nitrogen fertilisers during early August.

Additional keywords: APSIM, simulated yield, absolute median difference, dispersion, reliability, skill.

Introduction

Crop production in south-eastern Australia (SEA) is highly
sensitive to present inter-annual climatic variability (Power et al.
1999; Potgieter et al. 2002). Probabilistic seasonal climate
forecasts (SCF), capable of predicting some of this variability
(Rimmington and Nicholls 1993; Hammer et al. 1996), are
widely available to decision makers. However, even when
widely used in Queensland and northern New South Wales
(Meinke and Hochman 2000; Stephens et al. 2000; Hayman and
Fawcett 2004), their value for in-season decision making in SEA
remains uncertain. The Southern Oscillation Index (SOI) phase
forecasting system has been shown to have economic value for
farmers in southern Queensland (Hammer et al. 1996). Useful
signals from El Niño Southern Oscillation (ENSO) have also
been reported for the south-eastern grain belt (Power et al. 1998),
and correlations between the SOI and May–October rainfall have
been observed for some regions of southern Australia (Hayman
and Fawcett 2004; www.cvap.gov.au).

Probabilistic rainfall forecasts for the months of August,
September, and October could be used to assist farmers make
better tactical changes in in-crop management such us top-
dressing nitrogen (Lythgoe et al. 2004). In the SEA region, wheat
is usually sown between May and July with no or small amounts
of nitrogen fertilisers (Angus 2001), generally on dry soils, and
irrespective of expected seasonal conditions. In addition, crops
mostly rely on seasonal rainfall during the spring months (Sadras
et al. 2002) as stored soil water is usually minimal due to shallow
soils or the presence of subsoil constraints (Sadras et al. 2003;
Rodriguez et al. 2006). Uncertainty on seasonal rainfall makes
farmers avoid expensive and risky practices such as the use of
nitrogen fertilisers at sowing, thereby limiting yields during the
best seasons (Lythgoe et al. 2004). The availability of reliable
forecasts during late autumn can be important for farmers to
adjust crop nitrogen nutrition to expected seasonal conditions.

In this paper we aim to: (i) quantify the predictive capacity
of the SOI 5-phase system (Stone and Auliciems 1992 in Stone
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et al. 1996), and the Pacific Ocean SST phases (Drosdowsky
2002) at the end of July, a time of the year when farmers decide
whether or not to top dress crops with extra nitrogen; and (ii) to
test if the predictive capacity of these forecasting systems can
be improved by predicting an integrative variable, i.e. simulated
wheat yields, instead of forecasting rainfall. We also explore the
conditions required for the effective use of ENSO-related wheat
yield and seasonal climate forecasts, and investigate forecast
quality (Potgieter et al. 2003) and the association of spring
rainfall and wheat yields with SOI and SST phases.

Materials and methods
Site and climate data
Historical climate data (1 January 1900–31 December 2003)
from four locations within major wheat-growing areas of
SEA, i.e. Birchip (35.98◦S, 142.92◦E) and Dooen (36.67◦S,
142.30◦E) in Victoria, and Albury (36.07◦S, 146.96◦E) and
Griffith (34.25◦S, 146.07◦E) in New South Wales, were obtained
from the SILO website (www.bom.gov.au/silo/, 2005). Major
differences in the production systems across the studied locations
included differences in soil properties, crop cultivars, planting
dates, plant densities, nitrogen practices, and climatic conditions
(Tables 1 and 2).

Seasonal climate forecasts
Several medium-term climate forecasting systems are available
(Stone et al. 1996; Drosdowsky 2002) that provide seasonal

climate forecasts over the few subsequent months. However,
for the effective application of seasonal climate forecasting,
targetted and relevant information capable of influencing
decisions is needed (Hammer 2000). In cropping, relevant
and targetted information usually relates to the effect of a
particular decision on the yield or profitability of the cropping
enterprise. In this work, we used a cropping systems simulator to
produce information that is highly relevant to the decision maker,
i.e. wheat yields, and tested the capacity of the 5-phase SOI
system (Stone and Auliciems 1992) and a 3-phase Pacific Ocean
SSTs system (Drosdowsky 2002) to forecast spring rainfall
and wheat yield. We analysed the spring rainfall, as rainfall
between 1 September and 31 November. Analogue years with the
same SOI phase over the June–July months were obtained from
the long-paddock website (www.longpaddock.qld.gov.au/), and
years in history with the same Pacific Ocean SST phase in July
were obtained from the website of the Bureau of Meteorology
(www.bom.gov.au) (Table 3).

Simulation of wheat yields
We used the Agricultural Production Systems Simulator
(APSIM-wheat) model (McCown et al. 1996; Keating et al.
2003) Version 3.6 to simulate wheat yields. This model simulates
the development, growth, and final yield of several crops under
prescribed management, as well as the changes in soil water and
soil nitrogen supply during the cropping season (Asseng et al.
1998; Rodriguez and Nuttal 2003; Sadras et al. 2003). APSIM-
wheat has been previously used to identify crop management

Table 1. Soil type, plant-available water capacity (PAWC), initial available water (AW), rooting depth (depending on subsoil salinity), soil nitrogen
and C : N ratio in the previous crop residues used for wheat crop simulation with APSIM, and annual and seasonal (April–October) rainfall

for 4 regions across south-eastern Australia

Location Soil PAWC AW Rooting NO3-N C : N in residue Annual Seasonal
(mm) (mm) depth (m) (kg/ha) rain (mm) rain (mm)

Victoria
(Southern Mallee) Red-coloured 94 42 0.6–0.8 17 80 371 253
Birchip Calcarosol
(Wimmera) Grey cracking 179 47 1–1.2 35 24 420 300
Dooen clay

New South Wales
Albury Red Padzolic 124 25 1.5 60 50 664 446
Griffith Red brown earth 146 15 1.2–1.5 45 50 400 248

Table 2. Common agronomic practices for rainfed wheat production and the basic assumptions for wheat crop simulation with APSIM

Location Cultivar Plants/m2 Sowing Nitrogen and tillage management

Victoria
(Southern Mallee) Frame 140 7 May–15 July Pre-drilled: 20 kg N/ha as urea. Sowing: 20 kg N/ha as urea. Residues burnt,
Birchip and 2 cultivations before sowing
(Wimmera) Frame 140 1 May–20 June Pre-drilled: 54 kg N/ha as urea. Sowing: 20 kg N/ha as urea. Residues burnt,
Dooen and 1–2 cultivations before sowing

New South Wales
Albury Diamondbird 120 1 May–13 June Sowing: 40 kg N/ha as (MAP) Monoammonium phosphate. Spring top-dressing:

60 kg N/ha as urea. Residues burnt, and 1–2 cultivations before sowing
Griffith Diamondbird 80 21 April–14 June Sowing: 50 kg N/ha as urea. Spring top-dressing: 40 kg N/ha as urea.

Residues burnt, and 1–2 cultivations before sowing
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Table 3. The analogue years for the 5-phase SOI system and the 3-phase SST system in June–July between 1900 and 2003
The SOI phases relate to trends in the SOI over the 2-month period. For SST phases, ‘Cold Pacific’ represents La Niña events, ‘Warm Pacific’ represents El

Niño events and the remainder are Neutral in July

Years

SOI phase
Consistently negative

(CN)
1905, 1911, 1914, 1919, 1940, 1941, 1946, 1972, 1977, 1982, 1987, 1992, 1993, 1994, 1997

Consistently positive
(CP)

1900, 1901, 1909, 1910, 1917, 1920, 1921, 1924, 1931, 1934, 1938, 1945, 1950, 1952, 1955, 1956, 1964, 1968, 1973, 1975, 1981,
1986, 1989, 1996, 1998

Rapidly falling (RF) 1918, 1923, 1925, 1937, 1951, 1965, 1970, 1976
Rapidly rising (RR) 1903, 1906, 1912, 1916, 1926, 1928, 1933, 1936, 1939, 1943, 1947, 1948, 1949, 1954, 1960, 1963, 1974, 1979, 1984, 1985, 1988,

1995, 1999, 2003
Consistently near

zero (NZ)
1902, 1904, 1907, 1908, 1913, 1915, 1922, 1927, 1929, 1930, 1932, 1935, 1942, 1944, 1953, 1957, 1958, 1959, 1961, 1962, 1966,

1967, 1969, 1971, 1978, 1980, 1983, 1990, 1991, 2000, 2001, 2002

SST (Pacific Ocean) phases
Cold Pacific 1901, 1903, 1906, 1908, 1909, 1910, 1913, 1916, 1917, 1921, 1922, 1929, 1933, 1938, 1941, 1946, 1950, 1954, 1955, 1956, 1959,

1964, 1967, 1970, 1971, 1974, 1975, 1978, 1981, 1984, 1985, 1986, 1988, 1989, 1994, 1996, 1999, 2000
Neutral Pacific 1904, 1907, 1911, 1912, 1915, 1919, 1920, 1923, 1924, 1927, 1928, 1930, 1931, 1934, 1935, 1936, 1937, 1939, 1942, 1943, 1945,

1947, 1948, 1949, 1952, 1960, 1961, 1962, 1966, 1968, 1973, 1979, 1980, 1990, 1993, 2001
Warm Pacific 1900, 1902, 1905, 1914, 1918, 1925, 1926, 1932, 1940, 1944, 1951, 1953, 1957, 1958, 1963, 1965, 1969, 1972, 1976, 1977, 1982,

1983, 1987, 1991, 1992, 1995, 1997, 1998, 2002, 2003

strategies and quantify benefits from the adoption of seasonal
climate forecasts to reduce risks in wheat cropping (Hammer
et al. 1996; Lythgoe et al. 2004). The model APSIM-Wheat
was parameterised with the modules SOILN2, SOILWAT2, and
RESIDUE2. The phenology parameters were calibrated for the
cv. Frame at Birchip and cv. Matong at Dooen. Values of soil
water content at saturation (SAT) were calculated from values
of bulk density (Dalgliesh and Foale 1998), and values of
drainage upper limit (DUL) were measured in the field (Nuttall
et al. 2003). Crop water lower limits (LL) were taken as soil
water contents determined in the laboratory at −1500 kPa.
Crop management practices were obtained from experienced
agronomists for each of the regions (Tables 1 and 2), and
starting conditions (soil water, soil N and residues) for each
simulation were set on the 1 January of each simulated year.
The agreement between observed and simulated results was
evaluated by comparing the coefficient of determination and root
mean square deviation (RMSD).

Associations of rainfall and yield with the climate phases
A contingency table was built to test whether effects
(associations) were present between spring rainfall or simulated
wheat yields, with SOI phases in June–July and/or with the
Pacific Ocean SST phase in July. The statistical significance
(P < 0.05) of such deviations was assessed by a χ2 (Chi-square)
test (Wilks 1995).

Forecast quality
A variety of forecast verification procedures exists, although
they all usually involve measures of the relationship between
a forecast and the corresponding observation of the predicand
(Wilks 1995). In this work we have assessed the quality of
two probabilistic forecasts by studying four attributes of their
performance, their reliability, the relative degree of shift and
dispersion of the distributions (Wilks 1995; Potgieter et al.
2003), and measure of forecast consistency.

Reliability
Forecast verification is the process of assessing the quality of

a forecast. A deterministic forecast can be compared or verified,
against a corresponding observation of what actually occurred, or
a good estimate of the true outcome. By definition, probabilistic
forecasts cannot be defined as correct or incorrect. However,
probabilistic forecasts can be assessed as ‘reliable’ in the sense
that when a forecaster says that there is a high probability of
rain, it should rain more than when the forecaster says there is
a low probability of rain. Reliability plots (Fig. 1) are used to
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Fig. 1. The reliability diagram (Wilks 1995) graphically relates the
observed relative frequency to each possible forecast probability.
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indicate the reliability of a probabilistic forecast (Wilks 1995).
The reliability plot summarises the information contained in the
conditional distribution [P(O|f )] and describes how often an
observation occurred given a particular forecast (Wilks 1995).
Ideally,

P(O|f ) = f (1)

i.e. for the set of forecasts where a forecast probability value
f was given to a particular observation, O, the forecast is
considered perfectly reliable if the relative frequency of the
observations equals the forecast probability (Wilks 1995).
The reliability plot graphically relates the observed relative
frequency (ORF) to each possible forecast probability f . The
conditional distribution of a set of perfectly reliable forecasts will
fall along the 1 : 1 line between ORF and f (Murphy and Winkler
1992). In the present work we have quantified the reliability of
forecasts of spring rainfall and wheat yields at the end of July,
using the method described in Potgieter et al. (2003).

In Fig. 2, we show how the observed climate up to 31
July was projected to create spring rainfall and simulated
wheat yield data plumes, for each year between 1889 and
2005. Individual data plumes or trajectories associated with the
prevailing SOI or SST phases, i.e. analogue years, were used
to derive the respective forecast distributions for spring rainfall
and simulated wheat yields (Table 3). Long-term medians were
calculated using all available records (n), i.e. 117 years of
climate records were used for spring rainfall, and 104 years
of climate records to simulate the wheat yields. For each of
the forecasted distributions, i.e. using the 5 SOI and the 3 SST
phase systems, we then calculated the probability of exceeding
the long-term median ( f ). The values of f were then grouped
into quintiles i.e. 0–20%, 20–40%, 40–60%, 60–80%, and

  

  

Year 1891: 1 - 8 - 1891 to 31 - 12 - 1891

Year 1890: 1 - 8 - 1890 to 31 - 12 - 1890

Year 1889: 1 - 8 - 1889 to 31 - 12 - 1889

Year 2005: 1 - 8 - 2005 to 31 - 12 - 2005

1 January 1889 to 31 July 1889    

Year 1891: 1 - 8 - 1891 to 31 - 12 - 1891

Year 1890: 1 - 8 - 1890 to 31 - 12 - 1890

Year 1889: 1 - 8 - 1889 to 31 - 12 - 1889

Year 2005: 1 - 8 - 2005 to 31 - 12 - 2005

Year 1890: 1 - 8 - 1890 to 31 - 12 - 1 890

Year 1889: 1 - 8 - 1889 to 31 - 12 - 1889

Year 2005: 1 - 8 - 20 05 to 31 - 12 - 2005

            
        

Actual climate
for each year

  
Projected climate for end of July forecast  

    
          

1 January 1890 to 31 July 1890  

1 January 2005 to 31 July 2005  

Fig. 2. Projected climate data trajectories using actual climate up to the
time of forecast as proposed by Potgieter et al. (2003). Forecast distributions
of projected climate were based on analogue years of June–July SOI phase.
Dark black arrows indicate the actual climate.

80–100%, and compared against the observed relative frequency
(ORF) of realised forecasts, i.e. with respect to the total number
of issued forecasts. The degree of reliability was estimated from
the slope through the origin in the reliability plot, i.e. ORF v.
the f interval. The root mean square deviation (RMSD) was
calculated to indicate the deviation of the ORF values around
the 1 : 1 line, and the values of the slope (b) were classified
into reliability classes, i.e. poor (b ≤ 0.5 or b ≥ 1.5), moderate
(0.5 < b ≤ 0.75 or 1.25 ≤ b < 1.5), and good (0.75 < b < 1.25)
(Potgieter et al. 2003).

Shift and dispersion
Kruskal–Wallis tests (KW) (Kruskal and Wallis 1952) were

used to test the significance of shifts in median spring rainfall
and simulated wheat yield, for each SOI/SST phase (forecasts),
with respect to the rest of the years. Whenever significant
differences were detected, a Kolmogorov–Smirnov test (KS)
(Conover 1971) was used to test differences in the cumulative
distributions between each of the individual phases and the rest
of the years (Wilks 1995; Meinke et al. 1996). The absolute
median difference (AMD) (Eqn 2) was used to quantify shifts
in median values, and inter-quartile ratios (IQR) (Eqn 3) were
used to quantify changes in dispersion in the distributions (Wilks
1995; Potgieter et al. 2003):

Absolute median difference (AMD) = |XR − XF| (2)

where XF and XR are the sample medians of the forecasted and
reference, i.e. rest of the years distributions;

Inter-quartile ratio (IQR) = (X75 − X25) F

(X75 − X25) R
(3)

where Xp indicates the percentile value (75% or 25%) for the
forecasted and reference distributions, respectively. Values of the
IQR higher (smaller) than 1 indicate a higher (smaller) dispersion
(spread) in the forecasted values with respect to the reference
distribution.

Forecast consistency
To independently verify the hindcast skill of the forecasting

systems, a cross-validation technique was applied to spring
rainfall and simulated yields. Cross-validation was used to
ensure that the verification of the statistical prediction scheme
is based on independent data. This is achieved by excluding
some years when the statistical scheme is developed and then
assessing the consistency of the statistical scheme developed
in predicting the rainfall (or crop yield) in the years excluded
(Wilks 1995). The methodology results in a measure of
consistency expressed as ‘percent consistent’, i.e. the number
of consistent forecasts for a category (e.g. above median),
divided by the total number of forecasts made for that category
(www.bom.gov.au). Experience shows that people have difficulty
in understanding probabilistic forecasts. Some people initially
interpret the information in a categorical sense, e.g. by assuming
that the tercile with the highest probability is actually being
forecasted categorically, ignoring the other two terciles even
when all three tercile probabilities are non-zero. The use of
the term ‘Percent Correct’ (Wilks 1995) in communications
with end users can actually mislead and encourage users to
erroneously regard the probabilistic forecasts as categorical
forecasts. To avoid this, we follow the alternative term Percent
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‘Consistent’ (S. Power, D. Solofa, W. Young, S. Williams,
D. Jones, D. McClintock, J. Pahalad, unpublished data).

Results

Wheat simulations

Comparison of simulated and observed wheat yields for
experimental data from the locations under study is shown in
Fig. 3. The crop model was able to explain 74% of the observed
variability in grain yields with a RMSD of 640 kg/ha. Given
this adequate level of predictability, we applied the APSIM-
wheat model to create long-term time series (1900 to 2003) of
simulated yields of wheat based on common agronomic practices
(Tables 1 and 2) at each of the studied locations. The long-term
median simulated wheat yield ranged from 1826 to 5950 kg/ha
across the locations (Table 4 and Fig. 7). The coefficient of
variation (CV) of simulated wheat yield was 36% at Birchip,
37% at Dooen, 21% at Albury, and 50% at Griffith (Table 4).
The highest value was obtained at Albury, NSW (5950 kg/ha),
while the lowest was obtained at Birchip, Vic. (1826 kg/ha). As
expected, the locations with higher rainfall usually produced
higher grain yields (Table 4). The simulated time series of yield

Table 4. Descriptive statistics for simulated wheat yields and climate variables at each of the studied locations
The numbers in parentheses next to the minimum and maximum indicate the year in which the extreme occurred, as well as the corresponding SOI/SSTs phases
in June–July. CV%, Coefficient of variation; CN, consistently negative; CP, consistently positive; RF, rapidly falling; RR, rapidly rising; NZ, consistently near

zero; C, Cold Pacific SSTs; N, Neutral Pacific SSTs; W, Warm Pacific SSTs

Statistic Birchip Dooen Albury Griffith

Yield (kg/ha)
Minimum 111 (1982, CN, W) 254 (1982, CN, W) 1708 (1914, CN, W) 199 (1902, NZ, W)
33rd percentile 1543 2579 5491 1876
Median 1826 2945 5950 2578
Average 1668 2708 5604 2679
66th percentile 2016 3304 6247 3280
Maximum 2658(1984, RR, C) 4138(1974, RR, C) 7197 (1986, CP, C) 5931 (1974, RR, C)
CV (%) 36 37 21 50

Spring rainfall (mm)
Minimum 9 (1982, CN, W) 16 (1967, NZ, C) 41 (1938, CP, C) 22 (1957, NZ, W)
33rd percentile 72 89 143 70
Median 97 108 172 94
Average 104 115 174 102
66th percentile 124 133 204 130
Maximum 266 (1975, CP, C) 283 (1975, CP, C) 451 (1992, CN, W) 233 (1916, RR, C)
CV (%) 48 46 44 50

Annual rainfall (mm)
Minimum 111 (1982, CN, W) 190 (1982, CN, W) 314 (1967, NZ, C) 166 (1902, NZ, W)
33rd percentile 330 373 580 342
Median 372 416 661 393
Average 371 416 664 399
66th percentile 421 456 741 446
Maximum 729 (1973, CP, N) 810 (1973, CP, N) 1138 (1939, RR, N) 720 (1974, RR, C)
CV (%) 28 25 26 30

Seasonal rainfall (mm)
Minimum 62 (1982, CN, W) 91 (1902, NZ, W) 189 (1982, CN, W) 60 (1994, CN, C)
33rd percentile 221 236 387 210
Median 244 288 456 245
Average 253 288 445 247
66th percentile 291 334 516 283
Maximum 440 (1973, CP, N) 548 (1973, CP, N) 709 (1992, CN, W) 500 (1974, RR, C)
CV (%) 32 31 30 33

Observed grain yield (t/ha) 
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Fig. 3. Comparison of simulated and observed wheat yields at Birchip,
Brim, and Dooen. Farm wheat yield data were used from 1983 to 2002 at
Birchip and Brim, using cv. Frame, and from 1988 to 2001 at Dooen, using
cv. Matong. Simulations were conducted with APSIM Version 3.6.
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Table 5. Associations of simulated wheat yields and spring rainfall, with corresponding SOI phase in June–July and Pacific Ocean SSTs events
in July for four regions across south-eastern Australia

The contingency table presents tercile values. The numbers in parenthesis are the percentage of years in each tercile for each SOI phase and SST phase
(Table 3). (CN: consistently negative; CP: consistently positive; RF: rapidly falling; RR: rapidly rising and NZ: consistently near zero). The χ2 test value is

shown at the bottom of the table. ‘df’ indicates degrees of freedom and P is the probability of rejecting the null hypothesis (i.e. no association)

SOI phase Tercile SST phase Tercile
Lower Middle Upper Total Lower Middle Upper Total

Birchip
Spring rainfall

CN 8 (53%) 5 (33%) 2 (13%) 15 Cold 8 (21%) 13 (34%) 17 (45%) 38
CP 5 (20%) 6 (24%) 14 (56%) 25 Neutral 9 (25%) 13 (36%) 14 (39%) 36
RF 4 (50%) 3 (38%) 1 (13%) 8 Warm 17 (57%) 10 (33%) 3 (10%) 30
RR 6 (25%) 9 (38%) 9 (38%) 24 Total 34 36 34 104
NZ 11 (34%) 13 (41%) 8 (25%) 32 χ2 = 14.37; df = 4; P = 0.006

Total 34 36 34 104
χ2 = 23.97; df = 8; P = 0.002

Yield
CN 8 (53%) 3 (20%) 4 (27%) 15 Cold 7 (18%) 16 (42%) 15 (39%) 38
CP 7 (28%) 10 (40%) 8 (32%) 25 Neutral 15 (42%) 13 (36%) 8 (22%) 36
RF 4 (50%) 1 (13%) 3 (38%) 8 Warm 12 (40%) 7 (23%) 11 (37%) 30
RR 3 (13%) 10 (42%) 11 (46%) 24 Total 34 36 34 104
NZ 12 (38%) 12 (38%) 8 (25%) 32 χ2 = 7.37; df = 4; P = 0.117

Total 34 36 34 104
χ2 = 23.90; df = 8; P = 0.002

Dooen
Spring rainfall

CN 9 (60%) 3 (20%) 3 (20%) 15 Cold 7 (18%) 18 (47%) 13 (34%) 38
CP 6 (24%) 8 (32%) 11 (44%) 25 Neutral 8 (22%) 13 (36%) 15 (42%) 36
RF 3 (38%) 4 (50%) 1 (13%) 8 Warm 19 (63%) 5 (17%) 6 (20%) 30
RR 4 (17%) 10 (42%) 10 (42%) 24 Total 34 36 34 104
NZ 12 (38%) 11 (34%) 9 (28%) 32 χ2 = 19.18; df = 4; P < 0.001

Total 34 36 34 104
χ2 = 11.54; df = 8; P = 0.173

Yield
CN 7 (47%) 1 (7%) 7 (47%) 15 Cold 10 (26%) 14 (37%) 14 (37%) 38
CP 5 (20%) 12 (48%) 8 (32%) 25 Neutral 11 (31%) 14 (39%) 11 (31%) 36
RF 4 (50%) 3 (38%) 1 (13%) 8 Warm 14 (47%) 7 (23%) 9 (30%) 30
RR 5 (21%) 6 (25%) 13 (54%) 24 Total 35 35 34 104
NZ 13 (41%) 14 (44%) 5 (16%) 32 χ2 = 3.89; df = 4; P = 0.420

Total 34 36 34 104
χ2 = 18.75; df = 8; P = 0.016

Albury
Spring rainfall

CN 11 (73%) 2 (13%) 2 (13%) 15 Cold 10 (26%) 12 (32%) 16 (42%) 38
CP 4 (16%) 8 (32%) 13 (52%) 25 Neutral 8 (22%) 18 (50%) 10 (28%) 36
RF 3 (38%) 3 (38%) 2 (25%) 8 Warm 16 (53%) 6 (20%) 8 (27%) 30
RR 3 (13%) 10 (42%) 11 (46%) 24 Total 34 36 34 104
NZ 13 (41%) 13 (41%) 6 (19%) 32 χ2 = 11.63; df = 4; P = 0.020

Total 34 36 34 104
χ2 = 23.97; df = 8; P = 0.002

Yield
CN 12 (80%) 1 (7%) 2 (13%) 15 Cold 9 (24%) 13 (34%) 16 (42%) 38
CP 3 (12%) 13 (52%) 9 (36%) 25 Neutral 10 (28%) 12 (33%) 14 (39%) 36
RF 4 (50%) 2 (25%) 2 (25%) 8 Warm 15 (50%) 11 (37%) 4 (13%) 30
RR 5 (21%) 10 (42%) 9 (38%) 24 Total 34 36 34 104
NZ 10 (31%) 10 (31%) 12 (38%) 32 χ2 = 8.91; df = 4; P = 0.064

Total 34 36 34 104
χ2 = 23.90; df = 8; P = 0.002

Griffith
Spring rainfall

CN 9 (60%) 4 (27%) 2 (13%) 15 Cold 9 (24%) 10 (26%) 19 (50%) 38
CP 6 (24%) 6 (24%) 13 (52%) 25 Neutral 13 (36%) 12 (33%) 11 (31%) 36

(continued next page)
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Table 5. (continued)

SOI phase Tercile SST phase Tercile
Lower Middle Upper Total Lower Middle Upper Total

RF 4 (50%) 2 (25%) 2 (25%) 8 Warm 12 (40%) 12 (40%) 6 (20%) 30
RR 4 (17%) 8 (33%) 12 (50%) 24 Total 34 34 36 104
NZ 11 (34%) 14 (44%) 7 (22%) 32 χ2 = 7.15; df = 4; P = 0.128

Total 34 34 36 104
χ2 = 16.24; df = 8; P = 0.039

Yield
CN 8 (53%) 4 (27%) 3 (20%) 15 Cold 11 (29%) 8 (21%) 19 (50%) 38
CP 4 (16%) 8 (32%) 13 (52%) 25 Neutral 12 (33%) 16 (44%) 8 (22%) 36
RF 3 (38%) 4 (50%) 1 (13%) 8 Warm 11 (37%) 12 (40%) 7 (23%) 30
RR 5 (21%) 9 (38%) 10 (42%) 24 Total 34 36 34 104
NZ 14 (44%) 11 (34%) 7 (22%) 32 χ2 = 9.08; df = 4; P = 0.059

Total 34 36 34 104
χ2 = 13.62; df = 8; P = 0.092

were used to explore the effect of climate variability and quality
of the climate forecasts.

Associations of spring rainfall and wheat yield
with the forecasting systems

There were strong and consistent associations of spring
rainfall and simulated yield with the climate phases. Table 5
shows changes in the proportison of years within each of the
terciles for each of the phases of the forecasting system for
spring rainfall and simulated wheat yields. For example, there
were 24 rapidly rising SOI (RR) events in the last 104 years.
Assuming no association with the SOI 5-phase system, there
should be ∼8 years in each tercile. However, for Birchip there
are 9 and 11 years in the upper tercile for spring rainfall and grain
yield, respectively (Table 5), i.e. a higher proportion of spring
rainfall (38%) and simulated wheat yield (46%) values in the
upper tercile than what would be expected from chance alone
(33%). Correspondingly, there are only 6 and 3 RR years in the
lower terciles for spring rainfall (25%) and grain yield (13%),
respectively. During consistently negative years at the end of
July (CN), the opposite pattern was observed. Given the 15 CN
events on record, one would again expect ∼5 years in each tercile.
However, for spring rainfall there were 8 years in the lower tercile
(53%) and only 2 (13%) in the upper tercile. For simulated grain
yield there were 8 years in the lower tercile (53%) and only 4
(27%) in the upper tercile. The χ2 P-value (P = 0.002 for both
spring rainfall and wheat yield) indicates that counts in the table
cells were significantly different from those expected if spring
rainfall and yield were independent of the SOI phases. This level
of significance prevailed for spring rainfall and simulated wheat
yield across most of the locations studied (Table 5). In regards
to the Pacific Ocean SST in July (Table 5), only spring rainfall
showed a distinct association with the corresponding Cold,
Neutral, and Warm SST phases. The association of simulated
wheat yields with Pacific Ocean SST in July appeared to be site
dependent, as simulated wheat yields in Wagga Wagga (data
not shown) showed a significant χ2 P-value (P = 0.020). These
results indicated that stronger ENSO signals on spring rainfall
and simulated grain yields can be obtained from the SOI 5-phase
system, even when the number of phases in this system is higher
than in the SST system, i.e. fewer degrees of freedom.

Reliability of the forecasts of spring rainfall and wheat
yield

Figure 4 shows the reliability plots for the forecasts of spring
rainfall using the June–July SOI phases (Fig. 4a–d) and Pacific
Ocean SSTs events in July (Fig. 4e–h). Accept at Albury
(New South Wales) under the SOI 5-phase forecasting system
(Fig. 4c), probabilities for spring rainfall in the 0–20% forecast
category (i.e. 0–20% chance of exceeding the median) and for all
four locations in the 80–100% forecast category (i.e. 80–100%
chance of exceeding the median) were never forecast. With the
exception of Griffith (NSW), and for the Pacific Ocean SSTs
events in July (Fig. 4h), there was a high number of years
in the 20–80% forecast category, with good reliability for the
forecast of spring rainfall. For the 40–60% forecast category, the
agreement between ORF and f was highest under the Pacific
Ocean SSTs events at Griffith (74 years) (Fig. 4h), Dooen
(72 years, under the SOI 5-phase forecasting system) (Fig. 4b),
and Birchip (69 years, under the SOI 5-phase forecasting
system) (Fig. 4a). The reliability of the forecast for spring
rainfall at Birchip, Dooen, and Griffith was classified as ‘Good’,
with regression slopes of 0.877–1.011 and RMSD values of
0.021–0.077, both under the SOI 5-phase forecasting system and
the Pacific Ocean SSTs events. However, at Albury (Fig. 4c),
even when the reliability for spring rainfall was classified as
‘Good’, the RMSD value was high (0.397) under the SOI 5-phase
forecasting system. These results indicate that the reliability
of the forecasts for spring rainfall is site dependent, and that
both forecasting systems lack capacity to forecast the extremely
good, i.e. above decile 8, and extremely poor seasons, i.e. below
decile 2.

Figure 5 shows the reliability plots for the forecasts
of simulated wheat yields using the June–July SOI phases
(Fig. 5a–d ) and Pacific Ocean SSTs events in July (Fig. 5e–h).
The reliability of the SOI 5-phase system to forecast wheat
yields was classified as ‘Good’ for Birchip, Dooen, and Griffith,
with regression slopes of 0.772–1.023 (Fig. 5a, b, d ). For these
locations, the RMSD was 0.063–0.105. Wheat yields were never
forecast for the 0–20% range forecast category at Birchip and
Griffith (Fig. 5a, d), but there was a high number of years in
the 20% to 80% forecast category for all four locations. For the
40–60% forecast category, the agreement between ORF and f
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Fig. 4. Reliability diagrams for the probabilistic spring rainfall forecasts at 4 regions across south-eastern Australia for
(a–d) the SOI phase in June–July, and (e–h) the Pacific Ocean SSTs events in July. The filled rectangles represent the
data points for observed relative frequency against forecast probability with the numbers of times forecast issued in each
forecast probability category. The dashed black line represents the 1 : 1 line of perfect reliability and the solid black line
joins the observed relative frequency values at each quintile.

was highest at Griffith (72 years) (Fig. 5d), Birchip (65 years)
(Fig. 5a), Albury (61 years) (Fig. 5c) and Dooen (52 years)
(Fig. 5b). At Birchip and Griffith, the relative error was less
than 10%, and for Dooen it was 11%, indicating high reliability
of the forecast. The reliability of the forecast for simulated wheat
yield at Albury was classified as ‘Moderate’, with a regression
slope of 0.732 (Fig. 5c), and a relative error of 20%. In the other
locations, the forecasting system was reliable, indicating that
the SOI phase system could be used to forecast wheat yields
by the end of July. Similarly, at all four locations, the reliability
of the Pacific Ocean SST 3-phase system to forecast simulated
wheat yields was classified as ‘Good’, with regression slopes of

0.778–0.995 (Fig. 5e–h) and RMSD of 0.063–0.409. From these
results, it can be summarised that both SOI and SST phases at
the end of July could be used with confidence to forecast wheat
yields. However, the forecasts were never issued for the higher
and lower deciles, indicating lack of capacity to forecast the
extremely good, i.e. above decile 8, and extremely poor seasons,
i.e. below decile 2.

Capacity of the June–July SOI phase system and July
Pacific Ocean SST phase to discriminate spring rainfall

Significant shifts in median values of spring rainfall were
observed between all years and SOI and Pacific Ocean SSTs
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Fig. 5. Reliability diagrams for the probabilistic wheat yield forecasts at 4 regions across south-eastern Australia for
(a–d) the SOI phase in June–July and (e–h) the Pacific Ocean SSTs events in July. The filled rectangles represent the
data points for observed relative frequency against forecast probability with the numbers of times forecast issued in each
forecast probability category. The dashed black line represents the 1 : 1 line of perfect reliability and the solid black line
joins the observed relative frequency values at each quintile.

phases (Fig. 6). Significant (P < 0.001) differences in the median
values of spring rainfall for the different SOI 5 phases were
detected using a KW test (Kruskal and Wallis 1952). The
consistently negative (CN) and rapidly falling (RF) SOI phases
during June–July, and Warm events of Pacific Ocean SSTs
in July indicated a greater likelihood of lower amounts of
spring rainfall across all locations. Consistently positive (CP)
and rapidly rising (RR) SOI phases in June–July, and Cold
events in the Pacific Ocean in July, indicated greater chance
of higher spring rainfall. Additionally, different SOI phases in
June–July and Pacific Ocean SST events in July had contrasting
discrimination capacities (KS tests; Conover 1971). Across all

locations, the SOI phases, except RR at Birchip, were able
to significantly discriminate shifts in median values of spring
rainfall. The Pacific Ocean SST phases (Fig. 6) also significantly
discriminated spring rainfall.

Changes in the medians and in the dispersion of the
probability distribution functions were also evaluated by
calculating the values of the absolute median difference (AMD)
and the inter-quartile ratio (IQR), for both the SOI 5 phases, and
the Pacific Ocean SSTs (Fig. 6). In general, AMD was higher for
the CP and RR phases than for the CN and RF phases (Fig. 6).
There were no consistent effects on the values of IQR, except for
the CN phase, i.e. lower variability at all locations. From these
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Fig. 6. Relative frequency (%) distribution of spring rainfall at 4 regions across south-eastern Australia for each (a–d) SOI phase
in June–July and (e–h) the Pacific Ocean SSTs events in July. Means of ENSO phases with common letters below their respective
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results, it can be summarised that different SOI and SST phases
at the end of July had contrasting capacities to discriminate for
changes in spring rainfall.

Wheat yield analysis based on June–July SOI phase
system and Pacific Ocean SST phase in July

Figure 7 shows important shifts in the median values of the
cumulative probability distribution function for simulated wheat
yields. During CN and RF phases in June–July, the probability
distribution function shifts towards lower yields at almost all
the locations. Median grain yields are reduced by ∼20–43%,
4–32%, 9–56%, and 7–77% for CN and RF SOI phases in
Birchip, Dooen, Albury, and Griffith, respectively (Fig. 7a–d),
compared with the rest of the years. In contrast, during the CP
SOI phase, the probability distribution function shifts towards
higher median wheat yields at all locations (Fig. 7). Cumulative
probabilities for the simulated wheat yields under the Pacific
Ocean SST phase in July (Fig. 7e–h), also showed considerable
shifts in the median values among cold, neutral, and warm events.
Median yield values were higher during cold events, than during
warm events, with neutral years falling in between. Shifts in
median values among all SOI and SST phases were highly
significant (P < 0.001) (Fig. 7).

Changes in the medians and in the dispersion of the
probability distribution functions were evaluated by calculating
the absolute median difference (AMD), and the inter-quartile
ratio (IQR) (Fig. 7). At Birchip (Fig. 7a), higher yields,
i.e. AMD = 126 kg/ha and 277 kg/ha, and reduced variability,
i.e. IQR = 0.72 and 0.52, could be expected under CP or
RR SOI phases in July, respectively. Similarly, lower yields,
i.e. AMD = 313 kg/ha and 583 kg/ha, and increased variability,
i.e. IQR = 1.64 and 2.6, could be expected during RF and CN
phases in July, respectively.

Forecasts consistency

Cross-validation techniques were used to evaluate the skill of
the SOI 5-, and Pacific Ocean SST 3-phase forecasting systems
(Figs 8, 9). This method quantifies the number of times (as a
percentage) that the probability swing, i.e. for above and below
long-term median, was in the direction subsequently observed.
In general, the overall skill of the SOI phase system was slightly
higher than that for the Pacific Ocean SSTs system. As an
example, we present and discuss the results for spring rainfall
(Fig. 8a) and simulated grain yield (Fig. 9a) at Birchip. The
overall skill of the SOI system, i.e. % consistent, for spring
rainfall (Fig. 8a) at the end of July was 61%. The values of
% consistent were highest for the consistently positive (76%)
and consistently negative (73%) phases. The overall skill of the
Pacific Ocean SSTs system for spring rainfall was 70%. The
consistency of the system was highest for the warm (90%) and
cold (68%) events.

The overall skill of the SOI system for simulated yields
at Birchip (Fig. 9a) was 60% consistent. The values of %
consistent were highest during the rapidly rising (80%) and
consistently negative (67%) phases. Values of % consistent
lower than 50% indicate the absence of forecast skill. The
overall skill of the Pacific Ocean SSTs for simulated wheat
yields at Birchip was 59% consistent. The highest consistency
was observed for the cold events (66%), while for the warm

events it was 57%. Similar forecasting capacity and important
variations in the predictive consistency for the different phases
of the SOI and SST were observed across the other locations
(Figs 8, 9).

Discussion

Our results confirm that ENSO has important effects on the
existing variability (Figs 6, 7) in spring rainfall and simulated
wheat yields in south-eastern Australia. Both forecasting
systems tested here, i.e. the 5-phase SOI (Stone et al. 1996)
and the 3-phase Pacific Ocean SST (Drosdowsky 2002) systems,
can be used with the help of crop models, to translate general,
i.e. climate datasets, into value-added targeted, i.e. crop yields,
information for decision makers (Hammer et al. 1996). The
additional value of targetted information resides in the fact
that crop yields are not only affected by rainfall, but by
several climatic, edaphic, and biological processes that crop
simulation models are able to account for (Rodriguez and
Sadras 2007).

The close association between spring rainfall, or simulated
wheat yields and both the June–July SOI phase, and July Pacific
Ocean SST phase systems (Table 5), would allow wheat and
canola growers to consider more flexible nitrogen top-dressing
practices (Lythgoe et al. 2004), and to take full advantage of
existing seasonal climate risk management tools. Spring rainfall
showed a clear association with the Pacific Ocean SST in July
(Table 5), across most of the studied locations, i.e. during a cold
(warm) event there is an increased likelihood of higher (lower)
than normal rainfall during August–October. In south-eastern
Australia the August–October period coincides with the critical
stages for grain yield definition in wheat (Rodriguez and Sadras
2007). For wheat and canola, wet and mild conditions during
early spring are usually associated with high yielding seasons
(Fischer 1979; McCallum et al. 2000), seasons during which
farmers would certainly profit from turning up crop nitrogen
nutrition.

A variety of forecast verification procedures exists which
involve measures of the relationship between a forecast and
the corresponding observation of a predictand (Wilks 1995).
In this work we have assessed the quality of the SOI and SST
phase systems by studying four attributes of their performance:
their reliability, accuracy, and the relative degree of shift and
dispersion of the distributions (Wilks 1995; Potgieter et al.
2003).

The analysis of reliability in Figs 4 and 5 indicated that in
SEA, both the SOI phase system and the Pacific Ocean SST
3-phase system can be used with confidence to forecast spring
rainfall or wheat yield as early as the end of July. However, they
also indicate their lack of capacity to identify the most critical
extremely good and extremel poor seasons, in which farmers
make most, or lose most of their financial capital.

At all four locations, with both the June–July SOI phases and
the Pacific Ocean SSTs events in July, the agreement between
ORF and f was highest for the 40–60% forecast category. With
the exception of Albury (Fig. 5c), which had only moderate
reliability (b = 0.732, RMSD = 0.21) of forecast wheat yields
using the SOI 5-phase system, the reliability of the forecasting
system was greatest for spring rainfall (Fig. 5), with small values
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Fig. 7. Relative frequency (%) distribution of simulated wheat yields at 4 regions across south-eastern Australia for each (a–d) SOI
phase in June–July and (e–h) the Pacific Ocean SSTs events in July. Specific soil and management conditions have been used in the
analyses (see text). Means of ENSO phases with common letters below their respective box-and-whiskers are not significantly different
(P ≤ 0.05). The significance of the shift in the medians in each phase away from the All-years value was measured using Kruskal-Wallis test
(KW) and the similarity of distributions by the Kolmogorov-Smirnov P-value test (KS). The shift is measured using the absolute median
difference (AMD), while changes in the distribution dispersion are measured using the inter-quartile ratio (IQR). All years and phases as in
Fig. 5.
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Fig. 8. The predictive consistency of spring rainfall forecasts at the end of July by cross-validation of % consistent based on SOI and SST phase forecast
systems in 4 regions across south-eastern Australia: (a) Birchip and (b) Dooen in Victoria; (c) Albury and (d) Griffith in New South Wales. OS, Overall skill;
CN, consistently negative; CP, consistently positive; RF, rapidly falling; RR, rapidly rising; NZ, consistently near zero; C, Cold Pacific; N, Neutral Pacific;
W, Warm Pacific. Horizontal line at 50% consistent.
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Fig. 9. The predictive consistency of simulated wheat yield forecasts at the end of July via cross-validation of % consistent based on SOI and SST
phase forecast systems in 4 regions across south-eastern Australia: (a) Birchip and (b) Dooen in Victoria; (c) Albury and (d) Griffith in New South Wales.
OS, Overall skill; CN, consistently negative; CP, consistently positive; RF, rapidly falling; RR, rapidly rising; NZ, consistently near zero; C, Cold Pacific;
N, Neutral Pacific, W, Warm Pacific. Horizontal line at 50% consistent.

of RMSD in most of the locations across SEA. The moderate
reliability of the forecast wheat yield at Albury indicated that
forecasts of wheat yield made by the end of July would be better
made using the SST system. Further, the higher reliability of
spring rainfall forecast than wheat yield could be related to
the fact that the predictability of crop yields is subject to the
accumulation of the errors in predicting yields from seasonal
rainfall (Hansen et al. 2004).

Significant shifts in median values for both spring rainfall
and simulated wheat yields were observed from applying both
forecasting systems (Figs 6, 7). Our results confirm those
of Hammer et al. (1996) and Potgieter et al. (2002), that a

substantial portion of the inter-annual variability in simulated
wheat yield is associated with ENSO-related variability. Shifts
in median values of spring rainfall based on the June–July
SOI phase (Fig. 6a–d) indicate some discrimination capacity
for this variable at all locations across SEA. The KW test
(Kruskal and Wallis 1952) for the July Pacific Ocean SST phases
showed no significant differences in median values of spring
rainfall (Fig. 6e–h). However, significant differences according
to a KS non-parametric test (Conover 1971) were observed
in cumulative distributions of spring rainfall, which indicates
that high (low) spring rainfall is more frequent during cold
(warm) events.
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Significant shifts in median values of simulated grain yield
based on the June–July SOI phases and Pacific Ocean SSTs
events in July (Fig. 7) were also observed. For example, at
Albury (Fig. 7c), the median simulated yield during consistently
negative SOI years in June–July, was 3816 kg/ha, which is about
30–37% lower than the median yield for either the rest of the
years or the other four SOI phases. The impact of ENSO on
wheat production in SEA differs among locations and months
of the year (Rodriguez and Luo 2003).

In addition to changes in the median values (AMD), changes
in dispersion (IQR), for spring rainfall and simulated wheat
yields were also associated with ENSO. The inter-quartile ratio
(Figs 6d, 7d) during a CP SOI phase at Griffith was close to 1
for both spring rainfall (1.04) and simulated wheat yield (1.07),
indicating that during CP phases, simulated wheat yields would
fluctuate less around the long-term median. Therefore, during
those years with CP SOI phase changing crop management,
e.g. top-dressing nitrogen fertilisers, could produce economic
benefits (Hammer et al. 1996; Lythgoe et al. 2004; Hayman
2006).

The consistency of both forecasting systems was relatively
constant across the regions and tended to be higher for spring
rainfall than for simulated grain yields. The overall skill of the
SOI 5-phase system for spring rainfall and simulated wheat
yields at the end of July varied from 60 to 78% consistent.
The overall skill of the Pacific Ocean SST phase system ranged
from no skill at all to 72% consistent in Victoria. This would
indicate that there might be potential for farmers to benefit from
the adoption of more flexible management approaches to take
full advantage of the climate information. When skill of the
forecasting system was dissected on the performance of each
individual phase, a consistent pattern emerged. Different phases
of the SOI and the SST showed different contribution to the
overall predictive consistency of the forecasts. In general terms
the consistently positive and consistently negative phases, as well
as the cold and warm events, seemed to have a stronger signal
than the others. However, this was highly location dependent. At
this stage it is unclear, however, if these regional contrasts are
robust or merely the result of sampling variance. Consequently,
some phases might be more useful than others, although this
warrants further investigation.

Conclusions

We observed significant ENSO signals as early as the end of July,
on the spring rainfall and expected grain yields in south-eastern
Australia (SEA), which can be used to help growers make better
decisions. Spring rainfall and simulated wheat yields showed
associations with the studied forecasting systems. Whether this
would allow farmers to make better tactical nitrogen applications
needs to be better evaluated. We observed significant changes in
the probability distribution functions of grain yield and spring
rainfall, when using either the SOI or SST phase systems in
June–July. Changes in shift and dispersion can be useful to
inform better tactical farming management options. Our analysis
of reliability and forecast consistency indicated that the forecasts
can be used to make potentially useful seasonal outlooks for
grain yield. The overall predictive skill for spring rainfall and
simulated wheat yield ranged from 60 to 83% consistent. The

consistency was site specific and different phases of the SOI and
SST made different contributions to the overall predictive level
of both forecasting systems.
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