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Abstract. In this paper we report the development of a bioeconomic modelling system, AgFIRM, designed to help
close a relevance gap between climate science and policy in Australia. We do this by making a simple econometric farm
income model responsive to seasonal forecasts of crop and pasture growth for the coming season. The key quantitative
innovation was the use of multiple and M-quantile regression to calibrate the farm income model, using simulated crop
and pasture growth from 2 agroecological models. The results of model testing demonstrated a capability to reliably
forecast the direction of movement in Australian farm incomes in July at the beginning of the financial year (July–June).
The structure of the model, and the seasonal climate forecasting system used, meant that its predictive accuracy was
greatest across Australia’s cropping regions. In a second paper, Nelson et al. (2007, this issue), we have demonstrated how
the bioeconomic modelling system developed here could be used to enhance the value of climate science to Australian
drought policy.

Introduction

The economic impacts of climate variability and change are
of significant concern to governments and rural communities.
Changing seasonal patterns of rainfall and temperature affect
the incomes of rural businesses directly through changes in
production, and indirectly through the variability of international
commodity prices (Chapman et al. 2000; White 2000; Hill
et al. 2001). In the longer term, climate change has potential
to influence the productivity and profitability of agricultural
systems, altering patterns of land use and regional economic
outcomes (Kokic et al. 2005; Heyhoe et al. 2007). The concern
that governments and communities share in terms of the social
and economic impacts of drought arises from the welfare
implications for rural households and others in the community
faced with a risk of catastrophic loss (Hardaker et al. 1997;
Anderson 2003).

The impacts of climate variability and change on human
systems are ultimately social and economic in nature. Drought,
for example, is largely a social construct representing the
risk of agricultural activity being substantially disrupted by
spatial and temporal variation in rainfall and temperature
(Botterill 2003; Meinke et al. 2006). In Australia, a drought in
2002–03 reduced farm incomes by 60–80%, albeit from the
relatively high income levels in 2001–02 (Martin et al. 2007).

Economic effects of this kind have been linked to dramatic
social impacts on rural communities, such as divorce, illness,
and suicide (Hayman and Cox 2005; Perry 2006). Reduced farm
incomes can have significant flow-on effects on the national
economy and society more generally. Estimates of the impact of
the 2002–03 drought on the Australian economy range between
0.75 and 1.6% of GDP, with significant effects on employment
(Penm and Fisher 2003; Horridge et al. 2005).

In contrast, the information systems used to support
climate-related policy in Australian agriculture focus almost
exclusively on biophysical measures of climate variability and
its impacts on agricultural production. Traditional drought
science, for example, has been heavily dominated by reductionist
measures of variability in rainfall, temperature, soil moisture,
and plant growth (Laughlin and Clark 2000). At the beginning
of 2007, this narrow biophysical emphasis remained in the
newly developed National Agricultural Monitoring System
(www.nams.gov.au), nearly 10 years after this divergence
between drought science and policy in Australia was first
pointed out (Thompson and Powell 1998). Meinke et al. (2006)
refer to this misalignment of drought science and policy in
Australia as a policy relevance gap, highlighting a range of
potential disciplinary and institutional causes that need to
be addressed.
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In this paper and its sequel we explore the potential of
bioeconomic modelling to address a dimension of this policy
relevance gap: the ability of multi-disciplinary science to inform
policy makers of the likely impact of climate variability on farm
incomes in the coming season. The key quantitative innovation
described in this paper is the use of M-quantile regression
to calibrate a simple econometric model of farm incomes to
agroecological models providing probabilistic forecasts of crop
and pasture growth for the coming season. We then test the
predictive capability of the model by using it to hindcast farm
incomes across Australia from 1990–91 to 2002–03. Potential
policy applications of this bioeconomic modelling system, the
Agricultural Farm Income Risk Model (AgFIRM), are explored
in a second paper (Nelson et al. 2007, this issue).

Background

Past approaches

Most policy-related analyses of income variability in Australian
agriculture have been based on information provided by farmers
through the Australian Agricultural and Grazing Industries
Survey (AAGIS) (ABARE 2003). AAGIS is a large-scale,
stratified sample survey conducted annually since 1978–79 for
770–1654 farms in Australia’s broadacre cropping, beef, and
sheep industries. A range of information has been collected
from each sample farm including its production and physical
characteristics as well as its financial performance. Information
for individual farms is aggregated to provide national, regional,
and industry statistics.

Previous attempts to empirically relate the seasonal
variability of farm incomes reported in AAGIS to the
seasonal variability of rainfall have been hindered by other
sources of income variability (Kokic et al. 1993; Scoccimarro
et al. 1994). In addition to climate, the variability of farm
incomes is influenced by seasonal and longer term trends in
commodity prices, and multiple influences on productivity such
as differences in soils, past land management, and enterprise
mix. Attempts to regress farm incomes against seasonal
rainfall inevitably also need to contend with a high degree of
intrinsic heterogeneity between farms in similar locations and
with apparently similar physical characteristics. These include
differences in management, aversion to risk, family composition,
and lifestyle goals. This has been exacerbated by a rotating
panel of sample farms in AAGIS representing each industry and
region, with around 80% of farms remaining in the sample from
one year to the next (Kokic et al. 1993).

With multiple sources of variability, the 27 years (1978–79 to
2004–05) of data provided by farmers via AAGIS are a relatively
short period when it comes to isolating the effects of climate on
farm income variability. This is because extreme climate events
such as droughts and floods may only be represented once or
twice during this period, and because the effect of a drought
depends on the profitability and wealth of farm businesses in
preceding years.

The potential of bioeconomic modelling

Bioeconomic modelling has potential to improve our
understanding of the impacts of climate variability on
farm incomes. Policy-relevant bioeconomic modelling of

agricultural systems has been comprehensively reviewed
by Kruseman (2000). According to Kruseman (p. 15):
‘An important role of bio-economic modelling is to make
complex interactions between agro-ecological and socio-
economic phenomena transparent in policy debates’. From
this perspective, bioeconomic modelling is a quantitive way
of integrating alternative disciplinary approaches to provide
consistent and intuitively meaningful decision support for
policy advisers.

Kruseman classifies bioeconomic models for agricultural
systems research according to their temporal scale and spatial
aggregation, and the extent to which they are descriptive,
explanatory, or predictive. Descriptive models are by definition
qualitative, explaining interactions within a system using a
consistent set of terms and definitions. Explanatory models
provide interpretative insight into past relationships between
measurable indicators. Predictive models take this explanatory
power one step further, providing interpretive insights into
the likely future relationships between measurable indicators.
Models of all 3 kinds can provide intuitively meaningful policy-
relevant insights by enhancing the mental models used by policy
advisers to design and implement policy.

The model developed by Kokic et al. (1993, 2000) is
an econometric farm-scale supply-response model that is
calibrated and applied at a regional scale. The model (described
below) is explanatory by design, because it is used to abstract
from farm to farm variability in the way that management
decisions are made. It is not a farm household model in
the classic sense described by Singh et al. (1986) because
consumption is not incorporated. Most farm household models
have been designed to model the delicate balance of household
supply and demand for food in subsistence agriculture
(Kruseman 2000). Omitting consumption is consistent with
the commercial nature of Australian farm businesses in which
household consumption is largely separate from supply-response
decisions.

As the model is explanatory by design, we concentrated our
evaluative testing on its ability to provide explanatory insight
into the likely direction of farm income variability in the coming
season. For completeness, we also tested the model’s predictive
performance. In previous forecast applications, the model
accurately predicted the direction of change in production and
farm incomes in response to changes in commodity prices (Kokic
et al. 1993, 2000). However, Kokic et al. (1993) showed that not
modelling the dynamic aspects of decision making and supply
response reduced the precision with which the model could
predict the magnitude of these changes. In this paper, we enhance
the dynamic response of the model to seasonal climate variability
by incorporating forecasts of crop yield and pasture growth
from previously published and long-operational agroecological
modelling systems.

Methods
Overview: linking the models
Two methodological steps are reported in this paper. The first
is the use of ordinary least-squares and M-quantile regression
to calibrate the farm income model (FIM) to agroecological
models providing probabilistic forecasts of crop and pasture
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growth for the coming season. In the second step, the calibrated
model is used to hindcast farm incomes for 13 years from
1990–91 to 2002–03. A sequel to this paper explores a
third step: potential policy applications of this bioeconomic
modelling system.

The first step is to describe and then calibrate the econometric
model. The problems encountered in past attempts to develop
empirical relationships between farm income survey data
and rainfall suggest an opportunity for a more structural
bioeconomic modelling approach. In particular, a model is
required that abstracts from farm to farm variability in decision
making, and that is capable of disaggregating and separately
modelling the multiple sources of variability in farm incomes
(π), especially the price (P) and yield (y) components:

π = function(P, y) (1)

The FIM developed by Kokic et al. (1993) is a farm-scale,
econometric supply-response model that estimates production
and farm incomes based on changes in commodity prices and
yields. The version of the model applied in this paper estimates
supply elasticities for 6 major broadacre commodities: beef,
wool, lamb, wheat, winter crops, and summer crops. Supply
elasticities are estimated from the detailed financial, physical,
and economic information provided by Australian farmers each
year via the AAGIS survey (ABARE 2003). A full description
of how AAGIS survey data are used to estimate the various
parameters of the model has been provided by Kokic et al.
(2000), with a brief overview provided in Appendix 1. In
forecast application, the model has 2 basic inputs: (1) the
expected yield of the 6 broadacre commodities (per hectare);
and (2) their expected prices. In this application, we use the
crop and pasture models (CPMs) to improve the yield forecasts
used in the FIM, which would otherwise be solely derived from
price changes.

In this application of the FIM we use 2 agroecological
models to simulate the effect of climate variability on crop
and pasture growth to forecast the direction of change in
farm incomes. The shire-scale crop forecasting system of
Potgieter et al. (2002, 2005, 2006) is used to predict the
seasonal variability of crop yields. The shire-scale wheat model
integrates a biophysical model for predicting wheat moisture
stress (Potgieter et al. 2006) with a regression model to calibrate
moisture stress to wheat yields from the Australian Bureau
of Statistic’s agricultural census across the 284 shires in the
Australian wheatbelt (Potgieter et al. 2002). For summer crops,
sorghum yields have been simulated using a simple shire-
scale sorghum moisture-stress model described by Potgieter
et al. (2005).

The Aussie GRASS model described by Carter et al. (2000)
is used to predict the seasonal variability of pasture growth.
Aussie GRASS is a national pasture forecasting system based
on the GRASP model of Rickert et al. (2000). Models that
predict more direct measures of livestock productivity such as
liveweight gain are under development (McKeon et al. 2000)
but were not available for this application. Aussie GRASS
was therefore used to simulate an overall index of pasture
growth (PGI), and an indication of extreme pasture growth
conditions in terms of the number of days in a month that PGI is
less than 0.05.

The CPMs simulate wheat yield (w), sorghum yield (s), and
pasture growth (r) using a large number of biophysical variables
(R) that include rainfall, plant phenology, evaporation, soil type,
and farm management. That is:

(w, s, r) = function(R) (2)

The critical innovation is the statistical linkage between the
CPMs and the FIM. The first step in our approach is therefore
to develop and test statistical models capable of predicting the
yields (y) reported by farmers in the AAGIS survey using wheat
yield (w), sorghum yield (s), and pasture growth (r) simulated
by the CPMs:

y = function(w, s, r) (3)

Nesting equations (1) to (3) together enables farm incomes
to then be predicted from commodity prices and the climate
variables:

π = function(P, R) (4)

The development of (2) has previously been reported in
the development of the component models (Kokic et al. 1993,
2000; Carter et al. 2000; Potgieter et al. 2002, 2005, 2006). The
following sections provide more detailed description of (3) and
(4) in the development of this simple bioeconomic modelling
capability, including:

• the development and testing of empirical relationships
between the yields (y) reported by farmers and those simulated
by the CPMs (3); and

• testing the explanatory and predictive capability of the
modelling system to predict seasonal variability of regional
farm incomes (4).

In testing the model, we draw insights into forecast quality
and usefulness using the approaches outlined by Potgieter et al.
(2003) and Meinke and Stone (2005). Because the FIM is
theoretically derived, we used hindcasting to test the ability of
the model to forecast the direction of movement in farm incomes
for the coming season.

Calibrating to the crop model
In forecast application, the FIM uses probabilistic forecasts of
crop and pasture growth from the CPMs to forecast farm incomes
for the coming season. The simulated crop yields are similar in
spatial and temporal scale to the crop yields reported by farmers
in the AAGIS survey. This meant that crop yields from AAGIS
could be regressed directly against yield simulated by the crop
models using multiple linear regression.

The FIM incorporates 3 crop yield variables that need to be
predicted: wheat yield (wh), other winter crop yield (wc), and
summer crop yield (sc), all measured in tonnes per hectare. These
3 measures of crop yield were regressed against the appropriate
combinations of wheat (w) and sorghum (s) yields simulated by
the crop models. Simulated wheat yield (w) was used to predict
wheat and other winter crop yields, while simulated sorghum
yield (s) was used to predict summer crop yield.

The regression model used to explain the variability of wheat
yields, wh

(g)
t , reported by farmers in the AAGIS survey was:

wh
(g)
t = αg0 + αg1f

(g)
t + αg2w(g)

t + εgt (5)
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where f (g)
t is fertiliser costs in year t, w(g)

t is simulated wheat
yield, and εgt is a residual random error term with mean zero and
variance σ2

gt , while αg0, αg1, and αg2 are unknown regression
coefficients. Here and throughout the paper the variable g is
used to signal the level of aggregation used. This is discussed in
more detail below. At an early stage of model development, it
was found that incorporating fertiliser costs in (5) significantly
improved the ability of the regression model to explain the
variability of wheat yields reported by farmers in the AAGIS
survey.

The corresponding regression models for winter, wc
(g)
t , and

summer crop yields, sc
(g)
t , were, respectively:

wc
(g)
t = βg0 + βg1f

(g)
t + βg2w(g)

t + δgt (6)

and

sc
(g)
t = γg0 + γg1f

(g)
t + γg2s

(g)
t + ζgt (7)

where s(g)
t is simulated sorghum yield, and δgt and ζgt are residual

random error terms with zero means and constant, but different,
variances.

Calibrating to the pasture growth model
A statistical relationship between the livestock yields in the FIM
(beef, wool, and lamb) was estimated from the pasture growth
indices produced by the Aussie GRASS model using M-quantile
regression (Breckling and Chambers 1988, Appendix 2). It
results in a single livestock yield index, q, which is predicted
from the pasture growth index using the logistic-linear regression
model (8):

log

(
1 − q

(g)
t

q
(g)
t

)
= λg0 +

4∑
j=1

λgj r
(g)
j t +

8∑
j=5

λgjp
(g)
j t + ηgt (8)

where r(g)
j t is the average of the pasture growth index in quarter

j of the current financial year t, p(g)
j t is the average proportion of

days in quarter j that the pasture growth index is less than 0.05,
and ηgt is a residual error term with mean zero and constant
variance. As described in Appendix 2, M-quantile regression
produces non-parametric functions that relate q to each of the
livestock yields, which together with (8), provides a method of
constructing the yield function (3).

The dependent and independent variables in the regression
Eqns 5–8 correspond to a particular level of aggregation, or
geographic stratification, denoted by g. Two regional scales were
tested in the course of model development: local government
areas, also known as shires, and ABARE farm survey regions,
which are considerably larger than shires (ABARE 2003, Fig. 1).

Early results of fitting models 5–8 to shire-scale data can
only be described as moderately acceptable, at best. For wheat
(Eqn 5), for example, the average R2 value across all regions was
47% and, in several of the wheat-growing regions, substantially
smaller values than this were obtained. Consequently it was
decided to only consider linking the models at a regional scale
(Fig. 1).

Fig. 1. Australian broadacre regions: first digit represents state; second
digit represents zone (1, pastoral zone; 2, wheat–sheep zone; 3, high-rainfall
zone); third digit represents region within state and zone.

Forecasting farm incomes
In forecast application, the FIM was recalibrated each year
to the areas of land allocated by farmers to each commodity,
and then used to forecast farm incomes 1 year into the future.
This accounts for trends and dynamic responses, particularly
in livestock herds, which are not incorporated into the simple
econometric model. For example, supply elasticities tend be
lower in years when prices are relatively high, yield is high,
or when relatively few commodities contribute to farm income.
For this application, the FIM was recalibrated each year from
1989–90 to 2001–02, and used to forecast income in the years
1990–91 to 2002–03. Kokic et al. (1993) found that hindcasting
farm incomes in years before 1990–91 was difficult because
of the significant structural changes in Australian agriculture
brought about by the end of a wool floor-price scheme in 1987.
The actual prices realised in each year were used for hindcasting
in order to isolate the explanatory power of the crop and pasture
growth simulations for forecasting farm incomes. In forecast
mode, anticipated commodity prices for the coming season
would be used, introducing an additional source of variability
into the forecasts.

For each of the 32 agricultural regions, crop and pasture
yields were simulated 103 times using historical climate data
from 1900–01 to 2002–03. A unique set of 103 simulations of
crop and pasture growth was generated with the antecedent soil
moisture conditions that prevailed across Australia for each of
the 13 years between 1990–91 and 2002–03. An assumption
of current technology means that these simulations show what
crop and pasture growth would have been across each region
if the climate for each year between 1900–01 and 2002–03
had been experienced. These simulations of crop and pasture
growth were then used to simulate climate-responsive, regional
farm income distributions for each of the 13 years over the
hindcast period.
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Forecasts of annual seasonal conditions are not yet routinely
available in Australia (Meinke and Stone 2005). In lieu of a
reliable, annual forecasting system, annual farm incomes were
assumed to be closely related to seasonal conditions in autumn
and winter. Australia’s rainfall variability is strongly influenced
by the dynamics of the El Niño/Southern Oscillation (ENSO)
phenomena, and the Southern Oscillation Index (SOI) is a
convenient method of indexing the state of the ENSO system.
Prolonged periods of negative (positive) SOI values are often
indicative of El Niño (La Niña) type climatic conditions that
generally result in decreased (increased) rainfall probabilities
over much of Australia (McBride and Nicholls 1983; Stone
et al. 1996).

The SOI phase forecasting system was used to develop
a leading indicator of winter seasonal conditions, which is
available at the end of June. To forecast farm incomes, each of
the distributions of farm income was subdivided into 3 groups
of historical analogue years, using the SOI phase forecasting
system of Stone et al. (1996). Each year of simulated farm
income was classified as positive/rising (negative/falling) if
the SOI phases were consistently positive or rapidly rising
(consistently negative or rapidly falling) at the end of both
May and June. All other years were defined as SOI neutral.
This results in a stricter classification of year types than the
use of an SOI phase at the end of a single month, with
26 years classified as positive/rising, 14 years negative/falling,
and 63 years considered SOI neutral.

The result is a probabilistic forecast of annual farm incomes
conditional on the SOI for each of the 13 years from 1990–91
to 2002–03 across Australia’s 32 agricultural regions. These
probabilistic forecasts can then be validated against the
realised farm incomes that occurred in each region for
these years.

Testing the bioeconomic model

The model was tested in 2 steps. First, calibration of the
econometric model using simulated crop and pasture growth was
tested using standard regression statistics. Second, the ability
of the bioeconomic modelling system to forecast farm incomes
was tested using explanatory and predictive measures of forecast
quality.

Calibrating to the CPMs

The crop and livestock regression models (Eqns 5–8) were
fitted using 24 years of farm survey data from 1978–79 to
2001–02. The predictive accuracy of each regression model
was assessed using estimates of R2 and mean absolute error
(MAE) of fit. The proportion of variability in yield explained by
the simulated crop and pasture yields was reported separately
as the R2 difference. This statistic was calculated as the
difference in R2 achieved by models 5–8 compared with
the corresponding models excluding the simulated crop and
pasture growth variables. Note that because we are interested
in the predictive accuracy of the regression models, the
statistical significance of the coefficients was of less concern
than measures of the actual fit of the model (see Chambers
2001).

Forecasting farm incomes

The bioeconomic modelling system was tested by hindcasting
farm incomes across Australia’s broadacre agricultural zones
for 13 years between 1990–91 and 2002–03. Separate forecasts
were made for each of the 32 farm survey regions across
Australia (Fig. 1). Figure 2 shows how the reliability of the
probabilistic forecasts of farm incomes was assessed for each
region, drawing on the pragmatic approaches of Potgieter et al.
(2003) and Meinke and Stone (2005) for assessing the quality
of probabilistic forecasts of agricultural production.

A Brier score was used as one measure of forecast quality. The
Brier score measures whether the realised outcome is consistent
with the forecast probability of exceeding the median:

BS = n−1
n∑

t=1

(ft − ot )
2

where n is the number of years, ft is the forecast probability of
exceeding the median income, and ot is an indicator of whether
the realised farm income exceeded the median in year t or not.
For example, in Fig. 2, the forecast probability of exceeding the
median is 80% ( ft = 0.8) and the realised farm income exceeded
the median (ot = 1). The statistical significance of the Brier
score can be computed by Monte-Carlo simulation by comparing
it with a reference (or null) distribution for the realised farm
incomes, i.e. one in which no climate or price information had
been used in making the forecast. In this case the reference
distribution is the same in all years and has 50% chance of
being above or below the median. The null distribution of the
Brier score and hence statistical significance was computed by
repeatedly simulating the set of ot values from the reference
distribution while holding the ft values fixed.

The expected value of the forecast distribution was used as
a point prediction of farm income to compare with realised
income values (Fig. 2). The predictive accuracy of the model was
tested by comparing the relative mean absolute error (RMAE)
of predicted and realised farm incomes over the 13 years of the
hindcast period. Predictive accuracy in this sense is higher the

Realised FI

Forecast of exceeding
the median
prob = 80%

Forecast
distribution

Expected FI

t t+1

FIt

LT Median FI

Fig. 2. Measures of forecast quality were derived to compare probabilistic
forecasts of farm incomes with the realised values (FI, farm income; LT,
long term).
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closer this statistic is to zero. RMAE is one of the measures
of distributional shift described by Potgieter et al. (2003).
RMAE needs to be interpreted alongside the Pearson correlation
coefficient, with skill improving towards 1.0, in order to include
the potential effects of mean reverting processes.

Predictive accuracy is a demanding criterion to satisfy,
particularly for a simple descriptive model such as this one,
and a forecast can still carry valuable information even when
the ability to predict point outcomes with precision is poor
(Potgieter et al. 2003; Meinke and Stone 2005). For this reason,
the following 2 simpler tests of forecast quality were used to
assess how often the direction of the forecast was accurate.

• Direction: the proportion of years in which both the predicted
and realised values of farm income were on the same side of
the long-term median. In Fig. 2, for example, they are both
above the median at time t + 1.

• Change: the proportion of years in which the predicted change
in farm income from the previous year was in the same
direction as the realised change. In Fig. 2, both arrows are
pointing upwards and so, in this case, the change is in the
same direction.

Skill in either of these statistics is indicated by a value
significantly greater than 0.50. The statistical significance of
both these statistics was assessed relative to the same reference
distribution used for the Brier score.

Results

Calibrating to the crop model

Table 1 shows summary fit statistics for the 3 crop yield
regression models (Eqns 5–7) by farm survey region. As can
be seen from Table 1, the fit of the wheat yield model as
measured by R2 exceeded 71% across most of Australia’s main
crop-producing regions (zone 2; second digit of region). The
proportion of variation explained by simulated wheat yield
was very high across zone 2. While simulated wheat yield
explained only 26–27% of the variation of wheat yields from
AAGIS in Western Australian, the overall R2 exceeded 77%.

Table 1. Fit of winter and summer crop yield models (Eqns 5–7)
to survey region level data

Region Obs. Wheat Other winter Summer crops
(wh) crops (wc) (sc)

R2 R2 diff. R2 R2 diff. R2 R2 diff.

121 24 0.76 0.51 0.65 0.22 0.60 0.01
122 24 0.79 0.60 0.72 0.11
123 24 0.73 0.43 0.61 0.29
221 24 0.82 0.76 0.64 0.42
222 24 0.75 0.65 0.65 0.62
223 24 0.72 0.46 0.49 0.38
321 24 0.76 0.62 0.51 0.09 0.55 0.27
322 24 0.56 0.56 0.34 0.01 0.48 0.42
421 24 0.85 0.66 0.78 0.30
422 24 0.74 0.30 0.71 0.25
521 24 0.77 0.27 0.14 0.09
522 24 0.80 0.26 0.58 0.16

The performance of the model was poor in the coastal regions
(zone 1) where there is less crop production.

The fit of the other winter crops model at the survey region
level was, as expected, not as good as for the wheat model, with
the average R2 value across all regions of 56% compared with
75% for wheat. Given the fact that wheat makes up 64% of
total winter crop production, the performance of the other winter
crops model was considered adequate to proceed with testing the
ability of the model to predict the direction of change in farm
incomes. The fit for summer crops to simulated sorghum yields
was also considered adequate.

Calibrating to the pasture growth model

One consequence of aggregating the data to region level was
that this resulted in only 24 observations per farm survey region,
one for each survey year. For the crop models, which only have
2 dependent variables, this is not an important issue, but for
the livestock model (Eqn 8) there was a risk of over-fitting.
Consequently, steps were taken to reduce this risk. These
steps included forming higher level groupings of regions in
agronomically related zones. In order to maintain the generality
of the livestock model, separate pasture growth variables for
each region were included. Backward step-wise regression was
then used to remove statistically non-significant terms. This
reduced the number of dependent variables to less than 7 in
most cases.

Table 2 shows the results of fitting the livestock model as
described above. Clearly the pasture growth variables explain a
reasonable proportion of variation of the livestock yield index
in most regions, 55% on average across all survey regions.
In addition, nearly all coefficient estimates selected by the
backward elimination procedure were highly significant.

Forecasting farm incomes

The results of model validation demonstrated that the model can
reliably hindcast the direction of movement of farm incomes for
the coming financial year at the beginning of July. The Direction
and Change indicators were statistically significant across most
regions of the wheat–sheep and high-rainfall zones, and in more
than half of the regions of the pastoral zone (Table 3).

The predictive performance of the model was highest in
the wheat–sheep zone (Fig. 3a–c, Table 3), where statistically

Table 2. Fit of the livestock yield index model (Eqn 8)

Region Obs. d.f. R2 MAE

111, 411 48 2 0.19 0.07
121, 122, 123 72 5 0.65 0.05
131, 132 48 3 0.30 0.06
221, 222, 223 72 6 0.75 0.06
231, 631 48 3 0.44 0.04
311, 312, 313, 314 96 6 0.76 0.07
321, 322 48 2 0.66 0.05
331, 332 48 5 0.32 0.08
421, 422, 431 72 6 0.84 0.06
511, 512 48 9 0.50 0.08
521, 522, 531 72 5 0.91 0.05
711, 712, 713, 714 63 2 0.31 0.07
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Table 3. Forecast quality statistics for hindcasts of farm incomes
from 1990–91 to 2002–03

†P < 0.1; *P < 0.05

Region n Brier RMAE Pearson’s Direction Change
score (%) correln. coeff.

(%)

Pasture zone
111 13 0.24† 45 10 0.85* 0.75*
311 13 0.22* 61 78* 0.85* 0.58
312 13 0.13* 41 78* 0.92* 0.42
313 13 0.23* 45 77* 0.85* 0.58
314 13 0.61 55 35 0.46 0.58
411 13 0.22* 22 30 0.85* 0.83*
511 13 0.23 97 29 0.62† 0.67†
512 13 0.36 91 39 0.54 0.58
711 13 0.16* 57 75* 0.85* 0.75*
712 12 0.33 56 57* 0.50 0.82*
713 12 0.33 71 38 0.50 0.64
714 12 0.49 85 −15 0.50 0.73*

Average: 0.30 61 44 0.69 0.66

Wheat–sheep zone
121 13 0.30 44 8 0.54 0.58
122 13 0.19* 20 59* 0.77* 0.75*
123 13 0.13* 25 60* 0.85* 0.83*
221 13 0.20* 40 62* 0.85* 0.75*
222 13 0.25 48 48† 0.69* 0.75*
223 13 0.25 48 51† 0.69* 0.67†
321 13 0.22† 47 53† 0.54 0.67†
322 13 0.23† 31 46† 0.77* 0.75*
421 13 0.19* 41 58* 0.77* 0.67†
422 13 0.16* 33 72* 0.92* 0.83*
521 13 0.16* 23 70* 1.00* 0.67†
522 13 0.21† 34 −4 0.69* 0.67†

Average: 0.21 36 49 0.76 0.72

High-rainfall zone
131 13 0.14* 44 68* 0.92* 0.83*
132 13 0.46 69 61* 0.69* 0.92*
231 13 0.32 49 69* 0.77* 0.67†
331 13 0.23 33 43 0.69* 0.67†
332 13 0.20* 63 68* 0.85* 0.75*
431 13 0.11* 37 80* 0.92* 0.67†
531 13 0.53 30 6 0.62† 0.58
631 13 0.29 29 59* 0.62† 0.75*

Average: 0.28 44 57 0.76 0.73

significant Brier Scores in 75% of regions indicated a high
degree of forecast quality. As expected, however, the RMAE
results indicated poorer performance in predicting the precise
amount by which farm incomes were likely to vary each season.
Evidence of mean reversion, particularly in the wheat–sheep
and high-rainfall zones (Fig. 3b, c), suggested that smoothing
during parameterisation of the model may partially explain poor
performance in forecasting extreme values of farm incomes.
Despite this, the Pearson correlation coefficient indicated that
the model explained around half the variability in farm incomes
across all 3 zones. This rose by nearly 10% in the pastoral and
wheat–sheep zones if 2 outlying regions were excluded from
each.

Pastoral zone(a)

(b)

(c)

–500000

0

500000

1000000

1500000

–500000 0 500000 1000000

Wheat-sheep zone

0
0

100000

200000

0000100000

P
re

di
ct

ed
 In

co
m

e

High rainfall zone

0

50000

100000

0 50000 100000

Income

200000

1500000

Fig. 3. Predicted v. realised farm incomes by agricultural zone (see Table 3,
Fig. 1), in constant 2002–03 dollars, 1990–91 to 2002–03.



1000 Australian Journal of Agricultural Research P. Kokic et al.

Discussion
Several factors contributed to the superior performance of
the bioeconomic model AgFIRM in the wheat–sheep zone
compared with the pastoral and high-rainfall zones. These
factors include the structure of this version of the model, and
the way it was applied.

In terms of the structure of AgFIRM, a much more
direct link was able to be established between the FIM and
the crop model because crop yields contribute directly to
farm incomes. For livestock regions, operational forecasting
systems such as Aussie GRASS currently predict pasture
growth, rather than animal production on which farm incomes
directly depend. Development of models such as Aussie
GRASS to predict the liveweight gain for sheep and cattle
across Australia continues, hampered by data limitations
(McKeon et al. 2000). Data limitations include tracking of
inter-regional transfers of animals and the influence of feed-
lots, changes in herd structure, and uncertainty about birth and
death rates.

The current verson of the FIM is not dynamic, with structural
changes in the rural sector addressed by recalibrating the model
each year and only forecasting 1 year into the future. Livestock
production responds dynamically to climatic and other shocks
over several years, and it was not possible to use a complete
set of lagged covariates to link the FIM to the pasture model
because of the risk of over-fitting. The bioeconomic model
could be improved significantly in future by incorporating the
dynamic adjustment of livestock herds from year to year within
the econometric model. Models of this kind have already been
developed for Australian agriculture, including Beef-BEM (Cao
et al. 2003), which shares a similar heritage in being calibrated
using AAGIS data.

The econometric model could also be improved by capturing
the key interactions between livestock and cropping enterprises
on mixed farms. Livestock can be moved around the farm,
and fed in combinations of pasture grazing, grazing on-farm
forage crops, and/or grain imported from off-farm. Accurately
predicting the dynamic response of livestock production to
factors such as climate variability may therefore require much
more explicit modelling of the dynamic linkages among
enterprises than the simple econometric model used in this paper
(Pengelly et al. 2004).

A challenge for future applications of AgFIRM is to
incorporate price forecasts, which are routinely available and
forecast each quarter (e.g. Brown et al. 2007; Drum et al. 2007).
Incorporating price forecasts would introduce an additional
source of variability to farm income forecasts; one that is
currently faced by decision makers without the aid of model-
based income forecasts.

The performance of AgFIRM in cropping relative to
pastoral regions can partly be explained by the way it was
applied. The FIM at the core of AgFIRM works on an annual
time step. There are currently no operational forecasting
systems for forecasting annual climate conditions relevant to
Australian agriculture (Meinke and Stone 2005). In lieu of
an operational annual forecast system, the proven SOI-based
seasonal forecasting system of Stone et al. (1996) was used.
This choice of forecast system meant that the performance
of the current version of AgFIRM depended on the extent

to which winter seasonal conditions during the months of
July–August influence annual farm incomes. Winter seasonal
conditions contribute more to annual farm incomes in the
cropping systems of southern Australia than in the pastoral
systems or high-rainfall zones in which grazing depends more
on autumn and spring conditions. Winter crop production
dominates farm incomes in southern Australia because hot,
dry summers prevent summer cropping without irrigation,
and sheep numbers, formerly a major alternative source of
income, have fallen dramatically since the early 1990s (Nelson
2002; Nelson and Lawrance 2004). However, given that
ENSO is the major, single source of climate variability in
Australia and the fact that the ENSO cycle roughly corresponds
to the Australian financial year (July–June), our approach
remains valid.

Many of the model’s shortcomings could be addressed in
future operational versions. Its design is consistent with the
systems approach to applications of seasonal climate forecasting
outlined by Hammer (2000), with a modular design enabling
alternative models and forecasting methods to be readily applied.
It can be modified to include improved combinations of CPMs in
different regions for modelling crop and pasture growth. It can
also be modified to include improved forecast systems as they
evolve, and to use different forecast systems in different regions.
Improvements to the econometric and livestock modelling
outlined above would enable anticipated improvements
in seasonal, annual, and inter-annual climate forecasting
systems from global climate models (Hunt and Hirst 2000) to
be incorporated.

Conclusions

In this paper we have reported the development of a bioeconomic
modelling system, AgFIRM, capable of forecasting the direction
of movement in Australian farm incomes at the beginning of
the financial year (July–June). The structure of the model, and
the seasonal climate forecasting system used, mean that the
predictive accuracy of the current version of the model is greatest
across Australia’s cropping regions. Numerous opportunities
exist to enhance the model using existing econometric
techniques, and anticipated developments in livestock modelling
and seasonal climate forecasting.

Effectively recruiting climate science to inform decision
making and policy surrounding climate variability and change
is becoming an increasingly topical issue. In a sequel to this
paper, Nelson et al. (2007, this issue) demonstrate how the
bioeconomic modelling system developed in this paper can
be used to enhance the value of climate science to Australian
drought policy. We provide 3 simple examples of how forecasts
of farm financial performance can be used to enhance or replace
advice to decision makers and policy processes that currently
rely mostly, if not exclusively, on analyses of rainfall and
temperature. By doing this we seek to close the policy-relevance
gap between climate science and decision making, in order to
enhance both.
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Appendix 1. The Farm Income Model (FIM)

The FIM model is theoretically derived. Its design assumes that farmers have maximised net income in a base year subject to a land
area constraint. The profit function for farm is:

πi =
m∑

j=1

PijQij − Ci(Qi1, . . . , Qim), (A1)

where m is the number of commodities produced by the population of farms of interest, Pij is the price received for commodity j by
farm i, Qij is the quantity of commodity sold by farm i, and Ci is the cost function.

As the size of farms increases, the costs of producing a unit of any commodity will generally also increase due to constraints on
the availability of land. To capture this effect, a convex cost function of the form:

Ci = bi0 +
m∑

j=1

bijQ
µij

ij

is used, where µij >1 and bij are unknown parameters.
The operating area Ai of the farm is assumed to be fixed over time and is written as the following functional form of the quantities

of commodity sold:

Ai = di0 +
m∑

j=1

dijQij , (A2)

where dij represents the inverse of the per-hectare yield, yij , for commodity j by farm i.
Subject to the constraint that the operating area on farm is fixed, Kokic et al. (2000) obtained optimum values of Qij , which

maximise the profit function (A1) subject to (A2) given a set of expected prices {P∗
ij ; j = 1, . . ., m} at the forecast time point. At this

optimum the cost function reduces to:

Ci = ci0 +
m∑

j=1

cijQij , (A3)

where

cij = P ∗
ij + λidij

µij

= P ∗
ij + λi/yij

µij

(A4)

is the farm’s unit cost of producing commodity, and λi is a Lagrange multiplier from constraint (A2).
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Predicting income when commodity prices change

Partial derivatives of the quantity of each commodity produced (Qij ) and λi with respect to expected prices (P∗
ij ) are used to simulate

the production of each commodity given an expected price change between the base and forecast time points. This means that the
resulting change in unit costs can also be predicted (using Eqn A4).  Profit is  simulated  by  using  Eqns A1 and A3 and  the  realised
price. In other words, provided that a farm is managed so that its outputs are always adjusted to maximise its expected profit subject
to Eqn A2, its micro-level supply response (change in its outputs) to price changes can be simulated.

Details of the estimation and application of the model to forecast incomes in response to changes in commodity prices have been
presented by Kokic et al. (1993, 2000).

Predicting income when yields change

The CPMs were used to forecast the quantity of each commodity in the FIM (beef, wool, lamb, wheat, winter crops, and summer
crops). The quantity of each commodity in the FIM is adjusted in proportion to yields forecast by the CPMs (y∗

ij ) relative to the base
year (yij ):

Q∗
ij = y∗

ij

yij

Qij .

Unit costs are modified using Eqn A3, and profit is simulated by using Eqns A1 and A3.

Appendix 2. M-quantile regression

The role of M-quantile regression in predicting farm incomes has been discussed in detail by Kokic et al. (2000). The productivity of
individual farms varies with farm-specific factors such as soil moisture availability, soil fertility, management practices, and on-farm
infrastructure. This means that productivity can vary dramatically among farms that share broadly similar characteristics such as
location, size, and enterprise mix. The use of standard regression methods implicitly assumes that the parameters relating productivity
to farm incomes are the same for all farms, resulting in aggregation or averaging bias. This can be partly overcome using M-quantile
regression (Breckling and Chambers 1988) to estimate farm-specific productivity coefficients.

M-quantile regression is a method of modelling that implicitly allows for ‘missing variables’ in a regression specification, effectively
replacing the conventional OLS ‘average line plus noise’ model by a family of lines indexed by a coefficient q (Fig. B1). Different
values of q then correspond to different levels of the missing variables. The regression surface passing through the ith dependent
value corresponds to a particular quantile value qi and a set of regression coefficients di . The advantage of this approach over OLS
regression is that the regression coefficients are disaggregated down to each data point. While this disaggregation may not be complete
because of the smoothing effect of regression, M-quantile regression has the advantage that it is non-parametric and so the estimates
of regression coefficients are dictated solely by the data.

In research reported in this paper, M-quantile regression was applied to the livestock components of Eqn A2. Corresponding to
each value of q there are regression coefficient estimates dj (q) for j = 1, . . ., m. These regression coefficients can be interpreted as
a set of non-parametric functions dj (q), which map the livestock productivity index q to estimates of the yields of lamb, beef, and
wool from the AAGIS survey data. The value qi for any given farm is chosen so as to equate the livestock component of Eqn A2 to
the area of the farm used for livestock production. The estimates of yield for that farm i are given by:

ŷij = {
dj (qi)

}−1
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Fig. B1. Example of M-quantile regressions.
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