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EXTENDED ABSTRACT 

Increasing the efficiency and profitability of beef 
production through targeting market specifications 
for fat and weight are important industry issues. 
Typically, young animals are drafted into pens 
within a feedlot situation, and then grown out until 
they reach a marketable size. There are 
considerable price penalties for animals which do 
not achieve the set weight and fat depth 
specifications. 

The Cooperative Research Centre (CRC) for Beef 
Genetic Technologies in Armidale is promoting 
the use of systems models to better manage the 
overall production of marketable animals. In this 
study, the Davis Growth Model was adopted for 
the simulation of a feedlot scenario. This model 
simulates the growth, composition and fat 
distribution of beef cattle over time. A typical 
mixed-breed cohort of 306 animals was taken as 
the intake to the feedlot, and growth was then 
simulated for 60 to 140 days. The overall value of 
the carcasses and the variable feedlot operational 
costs were estimated, and the gross margin 
calculated as the difference between these. 

The optimal gross margin for the single (non-
segregated) herd was $237.19 per animal, which 
occurred at 84 days on feed. Whilst this value 
initially seems attractive, note that all of the fixed 
costs of feedlot operations have not yet been 
included. 

Segregating this herd by breed type into separate 
feedlot pens, and growing each pen to its 
respective optimal days on feed, resulted in 
relatively little improvement (0.5%) in the average 
gross margin. However, segregation by initial 

liveweight allowed the pens to be marketed at a 
wider range of times, and this increased the overall 
gross margin by 2.2%. These results indicate that, 
across the breed types used in this study, initial 
size has more of an influence on ultimate 
profitability than actual breed. 

Evolutionary computation is a biologically-
inspired optimisation technique, based on 
simulated natural selection. Given our animal 
intake data and feedlot model, differential 
evolution (a particularly efficient and robust 
evolutionary algorithm) was used to seek the 
optimal allocation of animals to pens, as well as 
days on feed for each pen. Despite the size and 
complexity of the potential search-space, this 
efficient algorithm repeatedly converged to the 
global optimum for this system, in less than two 
hours of computation time. The best allocation was 
somewhat related to initial weight, but also 
incorporated the interacting aspects of breed, 
frame size, and initial body condition and fat 
depth. This optimal allocation resulted in a gross 
margin of $244.27 per animal, which is a 3.0% 
improvement over the base management scenario, 
and worth about $2,200 for this particular intake of 
animals. 

This study demonstrates that feedlot scenario 
modelling can profitably be used to investigate the 
likely outcomes of alternate management 
strategies. Also, it is shown that formal economic 
optimisation is a useful and logical extension, and 
for this we recommend differential evolution as a 
proven robust optimisation algorithm. Future CRC 
research will include simulating more of the ‘real-
world’ feedlot management options, after 
consultation with feedlot operators. 
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INTRODUCTION 

As with many primary production systems, beef 
producers face the combined pressures of 
increasing costs and decreasing returns. Carcass 
prices are determined by a strict weight and fat 
grid, and it is essential that producers turn off a 
high proportion of their animals in the highest 
price windows. This is usually best achieved by 
finishing animals on a grain-mix diet in a feedlot 
situation, and here different management options 
and strategies are available. 

This study uses a proven simulation model of steer 
growth to set up a typical feedlot scenario. 
Alternate management strategies are investigated, 
and their effects on overall gross margin estimated. 
Differential evolution, a notably robust and 
efficient variant of evolutionary algorithms (Mayer 
et al. 2005) is employed to seek out the optimal 
solution for this scenario. 

1. FEEDLOT MODEL 

1.1. Davis Growth Model 

The dynamic Davis Growth Model (DGM; Oltjen 
et al. 1986, Sainz and Hasting 2000, McPhee et al. 
2007) simulates the growth, composition and fat 
distribution in beef cattle. The concepts of cellular 
hyperplasia and hypertrophy are an integral 
component of these fat deposition models. The net 
synthesis of total body fat (kg) is calculated as net 
energy available after accounting for maintenance 
and protein synthesis. Total body fat (kg) is then 
partitioned into four fat depots (intermuscular, 
intramuscular, subcutaneous, and visceral) and 
then converted to carcass characteristics: 
intramuscular fat (IMF) in kilograms (kg) of fat to 
IMF as a percentage, subcutaneous fat (kg) to 
12/13th rib fat depth (mm), and visceral fat (kg) to 
kidney, pelvic, and heart fat (%). Each of the fat 
depots is derived by a first order differential 
equation and empirical equations convert the fat in 
kilograms into their respective carcass 
characteristics. The amount and quality of feed 
intake determines the increases in these various 
body depots, on a daily basis. 

For the more efficient modelling of our standard 
feedlot scenario, the DGM was first run on an 
individual-animal basis to simulate final body 
weight (kg), carcass weight (kg) and P8 fat depth 
(mm). This was done for a grid of defined inputs, 
namely frame size (3 to 8) by condition score (1 to 
6) by initial body weight (350 to 450 kg, in 
increments of 10) by time on feed (60 to 140 days, 
in increments of 5). Parameters which were fixed 

for these DGM simulations included sex (steers), 
implantation status (implanted with a hormonal 
growth promotant), metabolisable energy intake of 
the feed (12.0 MJ/kg dry matter), and dry matter 
intake of the animals (2.8% of bodyweight per 
day). The inputs and outputs from these DGM runs 
thus consisted of a 6x6x11x17 matrix, which is 
subsequently referred to in the text as the DGM 
grid. For all the model and optimisation runs, 
outputs for the intermediate input parameter values 
were estimated (where needed) by linear 
interpolation within this grid. All simulations were 
run on a Sun Unix workstation, under Fortran 90. 

1.2. Input Data 

A typical feedlot intake was compiled from a 
cohort of animals from the Beef CRC ‘Regional 
Combinations’ trial (McKiernan et al. 2005). 
These animals are typical of steers entering into 
feedlot situations. Seven breed types were 
represented, namely Limousin, Charolais, Red and 
Black Wagyu, and three types of Angus – selected 
for high retail beef yield (RBY), high 
intramuscular fat (IMF), or high for both traits. 
There were 586 animals in the initial data set, but 
we excluded those with incomplete data, frame 
sizes less than 3 (the lowest value in our grid), and 
intake weights greater than 420 kg (these were 
considered too heavy for our minimum of 60 days 
on feed). This left an intake for the simulated 
feedlot scenario of 306 animals, with a mean 
liveweight of 385 kg and P8 fat depth of 4.2 mm. 
There were 27 to 63 animals per breed. Basic 
economics were incorporated by assuming a base-
price of $1.80 per kg liveweight for animals at 
feedlot entry, labour, medicine and freight costs of 
$32 per head, feed costs of $250 per tonne, 8% p.a. 
interest on purchase and feed costs, a transaction 
levy of $3.50 per head, and by adopting a 
commercial (confidential) carcass price-grid based 
primarily on P8 fat depth and carcass weight. 
Overheads and fixed costs have not been included, 
so gross margin only is estimated, on a per-animal 
basis for consistency. 

In general animals in feedlots remain in their 
initially allocated pens, because it takes several 
days to establish their social structure, and any 
disruption is detrimental to production. Different 
pens can be managed separately, most importantly 
they can be drafted off and sent to slaughter on 
different days. One management option is to 
allocate the animals to different pens according to 
breed. This assumes the different breeds will tend 
to show different growth paths, and thus be 
‘market-ready’ at different times. A commonly-
used alternative is to allocate animals to different 
pens according to their initial liveweights, with the 
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obvious expectation that the heavier groups will be 
marketable sooner. 

1.3. Management Strategy Scenarios 

In the ‘base scenario’, the 306 steers were 
managed in the simulated feedlot as one mob. 
Predicted carcass characteristics and gross margins 
were estimated for the full range (60 to 140) of 
days on feed, and the highest value of the gross 
margin noted. 

For the second scenario, animals were segregated 
according to breed, requiring seven different pens 
(some feedlots have more pens, and others less). 
The optimal slaughter date was estimated 
separately for each pen, again via complete 
enumeration of all days on feed. 

The third scenario segregated the animals by initial 
liveweight. For consistency, seven pens were again 
used, with equal numbers of animals per pen. 

In the fourth scenario, the animals were grouped 
according to their likely end-market specifications 
over time. To achieve this we utilised an 
optimisation routine, to search for the best 
allocation of animals to pens. Again, seven pens 
were allowed, but no restrictions were placed on 
the numbers in each. This is not an unrealistic 
scenario, as feedlots do tend to have combinations 
of smaller and larger pens. The optimisation 
method is outlined in the following section. 

2. OPTIMISATION 

2.1. Evolutionary algorithms 

Evolutionary algorithms (Michalewicz and Fogel 
2000) are a class of optimisation methods which 
are inspired by nature, and include genetic 
algorithms, evolution strategies and evolutionary 
programming. In each, ‘parents’ are formed, 
corresponding to a genetic representation of 
different combinations of the management options 
for the system under study. Each ‘parent’ is then 
assigned a ‘fitness value’, which is usually taken 
as the resultant profitability of the system under 
that particular management combination. The 
better (‘fitter’) parents are selected for breeding, 
and usually their ‘offspring’ (being combined 
versions of their management options) will be 
superior to either. Random mutation is introduced 
to avoid ‘genetic stagnation’. Then the ‘offspring’ 
replace the ‘parents’, and this process is repeated 
for the next generation. 

By simulating the processes of evolution and 
natural selection, evolutionary algorithms have 

consistently proven to be most efficient and robust. 
This has been shown for both general (Fogel 1995, 
Bäck et al. 1997) and agricultural systems - 
Appendix 1 of Mayer (2002) lists 35 agricultural 
examples which had appeared in the literature to 
that date, and many more have subsequently been 
published. Whilst many different variants of 
evolutionary algorithms are available, studies have 
demonstrated that the exact form is not critical – 
for many problems, any version of an evolutionary 
algorithm will tend to outperform the alternative 
optimisation techniques. Similarly, the choice of 
operational parameters for the evolutionary 
algorithm does not appear to be critical, as most 
combinations do seem to work well in practice. 

2.2. Differential Evolution 

Differential evolution (DE), as introduced in Storn 
and Price (1997) and expanded in Price et al. 
(2005), is a notably simple, efficient and robust 
variant of evolutionary algorithms. DE has 
successfully been used in the optimisation of a 
number of agricultural systems (López Cruz et al. 
2003, Mayer et al. 2005, Groot et al. 2007). In 
contrast with many of the more complex versions, 
DE can be programmed in about 20 lines of 
pseudo-C code, as listed in Storn and Price (1997). 
Similarly, DE has only three operational 
parameters, whereas some other evolutionary 
algorithms require a more comprehensive range of 
parameters to define operations such as parent 
selection strategy, recombination, mutation, and 
replacement method. 

The first of DE’s operational parameters is the 
population size, namely how many genetic 
‘parents’ are used. Price and Storn (1997) 
recommended a population size of 5 to 20 times 
the dimensionality of the problem. However, this 
may be excessive, as research with alternate real-
value evolutionary algorithms has shown best 
results with factors between 1.5 and 2 (Mayer 
2002). Values in this lower range could be more 
efficient, by not carrying an excessive number of 
population members. 

The second of the key operational parameters is 
the crossover rate (CR), which defines the genetic 
operation of recombination. Storn and Price (1997) 
suggest a CR value of 0.1 for a thorough (but 
slow) optimisation, to 1.0 for speedier (but riskier) 
convergence. Previous evolutionary algorithm 
studies have shown that most forms of 
recombination work well, across quite a wide 
range of rates, so the recommended value of 0.5 
(Storn and Price 1997) would appear an adequate 
choice. 
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The mutation rate is the third key operational 
parameter. Studies have shown that low (around 
0.01) to high (towards 1.0) mutation rates can all 
be effective (Mayer, 2002). DE has no user-
specification for the mutation rate; instead it is 
taken as (1 – CR). Hence using CR of 0.5 also 
gives a mutation rate of 0.5, which again appears a 
reasonable choice. Mayer et al. (2001) show that 
the exact form of mutation used is less critical than 
ensuring that some version is actually present, to 
drive exploration. DE’s innovative version of 
mutation (Storn and Price 1997) ensures self-
adaptation of the mutation amounts as the 
optimisation progresses. This arithmetical form 
allows both intermediate and extrapolative 
mutation, depending on the defined scaling factor 
(F). Storn and Price (1997) recommended a value 
of F of between 0.4 and 1, with 0.5 as a good 
initial choice. Investigations with DE (B.P. 
Kinghorn, unpublished) have found that ‘pulsing’ 
F to a larger amount every few generations has the 
effect of assisting the optimisation process, as it 
introduces extrapolative mutation. 

Under the terminology of Price et al. (2005), we 
have adopted the standard and robust 
DE/rand/1/bin. Different versions of this basic 
configuration have been tested, and in practice, 
most have worked well. As with most evolutionary 
algorithms, DE incorporates the key processes of 
recombination and mutation. Theoretical and 
empirical investigations (Michalewicz and Fogel 
2000) have shown that these processes have a 
synergistic effect. 

2.3. Feedlot Model Optimisation 

As described, our feedlot scenario forms quite a 
difficult problem. There are 313 options to 
optimise, being the days on feed for each of the 
seven pens, plus the actual pen allocation for each 
of the 306 animals. This results in an optimisation 
across 313 dimensions, with a potential search-
space of the order of 10270. Previously, the most 
difficult optimisation we have tried was a 70-
dimensional herd dynamics model with a search-
space of 10120 (Mayer et al. 2005). That particular 
optimisation took 9 months (using the same 
workstation) to converge to the global optimum, 
which was found after 37 million runs of that 
much more complex model. 

In the current feedlot study, the key operational 
parameters adopted for DE were a population size 
of 100 (500 was initially used, but this proved to 
be inefficient), CR of 0.5, and F of 0.5 
intermittently spiking up to 5.0. Initial runs 
allowed up to 108 generations, but this proved 
excessive so the limit was subsequently set to 106. 

3. RESULTS AND DISCUSSION 

Simulated growout for the single herd produced 
results as expected. Average carcass weights and 
P8 fat depths increased almost linearly with time, 
from 291 kg and 15.2 mm at 60 days, to 334 kg 
and 23.1 mm at 140 days. At 60 days on feed only 
a proportion of these animals were in the highest 
pricing window. This increased with time, and at 
84 days on feed the herd reached its optimal 
overall gross margin, of $237.19 per animal. This 
value forms the ‘minimal management’ benchmark 
for this feedlot scenario. After 84 days, 
proportionately more animals entered into the 
over-fat categories, but the major factor affecting 
profitability was that the extra feed and other costs 
overwhelmed further gains in the marketable 
carcass weights. Hence, the overall gross margin 
for the herd steadily declined after this. 

Segregation by breeds into separate pens improved 
the overall average gross margin slightly, to 
$238.30 per animal, an increase of 0.5%. This was 
achieved by accommodating the somewhat 
different growth patterns between breeds, as 
shown in Figure 1. 
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Figure 1. Gross margins against days on feed, for 
seven pens allocated by breeds. 

As expected, Limousin had the lowest average P8 
fat (13.0 mm at 60 days to 20.3 mm at day 140), 
and high-IMF Angus the highest (16.5 to 24.8 mm 
respectively). Red and Black Wagyu had the 
lowest carcass weights throughout. Amongst the 
other breeds, at 60 days Charolais were heaviest 
followed by Angus and then Limousin, but at 140 
days this order had reversed to Limousin, Angus 
and then Charolais. These breed interactions 
between growth and fat deposition result in the 
observed different patterns in gross margins across 
time for these breeds (Figure 1). Optimal time on 
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feed ranged between 76 and 84 days, depending on 
the breed. Limousin was clearly the most 
profitable breed for this scenario (at $245.84 per 
animal), and Red Wagyu the least ($233.89 per 
animal). 

Segregation by initial liveweight proved to be a 
better option, with an overall gross margin of 
$242.48 per animal, which is a 2.2% improvement 
over the base scenario. Again, these simulated 
results provided no real surprises. The initial 
separation in liveweights was maintained across 
the growth paths, as were the P8 fat patterns – the 
lighter animals had lower P8 throughout. As 
Figure 2 shows, the pen with the heaviest animals 
was ‘market-ready’ at 60 days (and maybe even 
earlier, but this was outside our set scenario). The 
other groups then reached their respective highest 
price windows approximately in sequence, with 
the exception of the 3rd-lightest group which 
showed a curious double-hump. The second of 
these was that group’s actual optimum, and these 
animals took 94 days on feed to reach this. These 
results indicate that factors other than just initial 
liveweight are important in determining overall 
profitability. 
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Figure 2. Gross margins against days on feed, for 
seven pens allocated by initial liveweights (lightest 

to heaviest). 

As expected, the DE optimisation algorithm 
performed consistently and reliably. Four 
randomly-generated replicate optimisation runs all 
converged to about the same gross margin, of 
$244.27 per animal, which is a 3.0% increase over 
the base scenario. This is now assumed to be the 
global optimum for this particular scenario, but 
will obviously change with different animals, 
prices, feed types, etc. All the replicate 
optimisations converged prior to 400,000 
generations (which equates to 40 million 

individual model runs), and these took less than 
two hours of computational time. Whilst the gross 
margins of the replicates were all about the same, 
the allocation patterns of the animals were not. 
This is probably due to the reasonably wide 
optimal pricing window, along with the similar 
performance of some of the pens, allowing some 
groups of animals to drift between similar pens 
without affecting the economic outcome. 

Figure 3 shows the animal allocation pattern for 
the best replicate. The other replicates were 
reasonably similar to this. One pen (number 3) had 
the highest number of animals, made up primarily 
of the heavier (Figures 4 and 5) and fatter (Figure 
6) animals. This single pen contained more than 
half of the Angus animals, with the rest distributed 
across the other six pens. Pen 2 contained animals 
which were a little lighter and had less fat than 
those in pen 3. These two ‘heaviest’ pens had the 
largest gross margins ($251.80 and $250.80 per 
animal respectively), with these occurring notably 
earlier than for the other pens (Figure 7). 
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Figure 3. Distribution of the numbers of animals 
by breeds, for the seven pens allocated according 

to DE’s optimal solution. 

With proportionately more Limousin, pen 6 
contained the ‘later-maturing’ animals, and took 
the longest (89 days) to reach its optimum. Despite 
this, its optimal value of $244.90 per animal was 
third only to the two early-maturing pens. Pens 1, 
4 and 7 performed quite similarly economically, 
with gross margins ranging between $234.00 and 
$237.40 per animal. These three pens had similar 
weights throughout (Figure 5) but showed some 
discrimination regarding fat depth (Figure 6). The 
fatter animals assigned to pen 1 took 72 days to 
reach optimal market condition, whereas pen 7 
took 84 days. Pen 5 contained the ‘poor 
performers’, having the lowest weights and fat 
depths throughout, and this resulted in an average 
gross margin of only $231.70 per animal. 
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The patterns displayed in these figures are no 
doubt due to interactions between the initial 
weights, frame sizes and condition scores, the 
weight and fat gains over time, feed and other 
costs, and the proportions of animals achieving the 
various pricing windows. These interacting effects 
can be difficult to interpret, but investigative 
‘what-if’ simulations should give some 
understanding of the various mechanisms 
involved. We intend conducting these in 
consultation with key industry personnel, to 
investigate and address these issues. These 
exercises should also provide valuable learning 
exercises into the potential uses of simulation 
models for these industry experts. 
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Figure 4. Boxplot distributions (mean, inter-

quartile distance and range) of initial liveweights 
(kg), for the seven pens allocated according to 

DE’s optimal solution. 
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Figure 5. Carcass weights (kg) against days on 
feed, for the seven pens allocated according to 

DE’s optimal solution. 

12

14

16

18

20

22

24

26

60 70 80 90 100 110 120 130 140
Days on Feed

P
8 

Fa
t (

av
er

ag
e)

Pen 1 Pen 2
Pen 3 Pen 4
Pen 5 Pen 6
Pen 7

 
Figure 6. Average P8 fat depth (mm) against days 
on feed, for the seven pens allocated according to 

DE’s optimal solution. 
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Figure 7. Gross margins against days on feed, for 

the seven pens allocated according to DE’s optimal 
solution. 

Overall, the results of these alternate management 
strategies, particularly the DE optimisation, were 
successful. Against the base-line ‘minimal 
management’ scenario, segregation by breeds 
lifted the gross margin by 0.5%, whereas 
segregation according to initial liveweight resulted 
in a 2.2% increase. Allocation of animals via DE’s 
optimal strategy raised the gross margin by 3.0%, 
which is worth about $2,200 for this intake of 
animals. 

4. FUTURE RESEARCH 

In subsequent simulations, more real-world 
management options will be incorporated, after 
consultations with feedlot managers. For example, 
‘managerial intervention’ can be applied at one or 
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more times, to draft-off some of each pen and let 
the rest grow out to better specifications, along the 
lines of Walmsley (2007). Despite increased 
labour costs here, this could prove to be more 
optimal. However, with a higher number of input 
options to investigate, these optimisations will 
become more lengthy and difficult. 

5. CONCLUSION 

This study showed that feedlot scenario modelling 
can profitably be used to investigate the likely 
outcomes of alternate management strategies. 
Here, economic optimisation can be a useful and 
logical extension. Again, differential evolution has 
proven to be a robust optimisation technique, 
consistently and efficiently finding the global 
optimum of this system. 
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