DIFFERENTIATION AND INCREASE IN SIZE OF NYMPHAL INSTARS OF MONISTRIA DISCREPANS (WALKER) (ORTHOPTERA: PYRGOMORPHIDAE)*

By P. G. Allsopp, M.Agr.Sc.

Abstract

SUMMARY The width of the pronotum, length of metathoracic tibia and femur, total length, and number of antennal segments have been determined for all instars and adults of both sexes of Monistria discrepans (Walker). Total body length is the most useful measurement for the identification of the various instars. Growth of the pronotum, metathoracic tibia and femur, and body length conform to both Dyar's rule and Przibrum's principle.

I. INTRODUCTION

Monistria discrepans (Walker) has been considered one of the insects which shows promise as a biocontrol agent for green turkey bush (Eremophila gilesii F. Muell.) (Allsopp 1977). To assess the potential of this insect, detailed knowledge of both the life-cycle and reproductive potential of the species is necessary. However, before such studies can be completed adequate means to differentiate the various stages of the insect must be available.

This study was aimed at determining the size of the various nymphal instars of M. discrepans and, as an adjunct, at analysing their growth rates. Neither of these aspects has been studied in any Australian pyrgomorphid.

II. MATERIALS AND METHODS

Nymphs of M. discrepans were reared from laboratory-laid eggs obtained from adults collected 48 km north-west of Charleville in March 1973. Each nymph was maintained in a separate plastic tube, 80 mm high and 40 mm in diameter, at $27.5^{\circ} \mathrm{C}$ and 60% relative humidity and under a $12: 12$ photoperiod. Sprigs of fresh E. gilesii were added at least every second day. Tubes were examined daily and the presence of cast skins noted-this was considered a reliable indicator of moulting since nymphs of M. discrepans do not eat cast skins. Measurements of various parts were made using a binocular microscope fitted with a micrometer eyepiece after the individual had moulted and the cuticle had acquired the usual degree of rigidity.

Measurements were made of the following parts: width of pronotum at widest point (P) ; length of the right hind tibia (T); length of the right hind femur (F); and total length of the body excluding the antennae (L). In addition the number of antennal segments (A) was determined for each stage.

[^0]The increase in size of M. discrepans nymphs was analysed to determine whether it conformed to either Dyar's rule (Dyar 1890) or to Przibrum's principle (Przibrum and Megusar 1912). Both analyses followed the pattern used by Duarte (1938) in his study of Locusta migratoria (L.).

III. RESULTS

The number of antennal segments, width of pronotum, length of metathoracic tibia and femur (both taken from the distal end, not including spines, to the tip of the lower lobe of the proximal end), and total length for each instar and sex are given in tables 1 and 2 . Measurement of adults, except the male femur length, show no significant difference $(\mathrm{P}<0.01)$ from those of their field-collected parents (compare table 3 with tables 1 and 2).

The rates of increase for the various structures from instar to instar were obtained by dividing any of the values for length in tables 1 and 2 by the preceding one. The values of R then given in tables 4 and 5 are the means of these rates for each measurement. Using this average rate of increase for each parameter, values were calculated between the first and last nymphal instar in accordance with Dyar's rule. These are compared with the actual values in tables 4 and 5. In no instance was there a significant difference between the actual and calculated values ($\mathrm{P}=0 \cdot 01$).

The standard coefficient of 1.26 enabled calculated values to be obtained in an attempt to apply Przibrum's principle. An allowance was made for latent divisions and the calculated values were compared with the actual data (tables 6 and 7). There is no significant difference ($\mathrm{P}=0.01$) between the two sets of data.

IV. DISCUSSION

Measurements of the width of pronotum, lengths of metathoracic tibia and femur, and total length were all helpful in determining nymphal instars since, in most instances, their ranges did not overlap in adjacent stages. The most useful measurement is probably that of total length as it is easier to measure than is the pronotal width and not as subject to damage or loss as are the hind tibia and femur. Overlap is present only between instar II and III of the male and these instars can easily be separated on the basis of reversal of the alar rudiments. Individual variation in the number of antennal segments added at each moult makes this character unacceptable for separation of instars.

Although cranial widths are normally used for the separation of instars in insects, other measurements were used in this study. In M. discrepans the dorsal part of the head is triangular and is capable of partial retraction into the pronotum. Hence establishing a common point on the head for measurements to be taken from many specimens would be difficult. Total length, hind tibial and femoral lengths, width of pronotum and number of antennal segments, among others, have been used successfully in the differentiation of orthopteran nymphs in numerous studies, e.g. Daurte (1938), Richards and Waloff (1954), and Valek and Coppel (1972).

Dyar (1890) showed that in lepidopterous larvae the relative increase in head width keeps practically constant throughout the instars. This value is obtained by means of a geometric progression, its terms being the relationship between successive values of the dimensions of the part or parts concerned. In the present study it can be concluded that Dyar's rule holds true for the growth of the pronotum, hind tibia and femur, and total body length of both sexes of M. discrepans.

TABLE 1

Measurements (mm \pm S.D.) of the Width of Pronotum, Length of Metathoracic Tibia and Femur and Total Length; and the Number of Antennal Segments of 29 Male Monistria discrepans

Instar	No. of Antennal Segments	Width of Pronotum	Length of Metathoracic Tibia	Length of Metathoracic Femur	Total Length
I	$8.00 \underset{(8) *}{ \pm} 0.0$	1.70 ± 0.08	2.68 ± 0.15	$2 \cdot 83 \pm 0 \cdot 10$	$5 \cdot 80 \pm 0 \cdot 14$
II	$9.13^{(8)^{*}}$	($1.6-1.8$)	(2.5-2.8)	(2.7-2.9)	(5.6-5.9)
II	13 ± 1.26	$2 \cdot 18 \pm 0 \cdot 16$	3.86 ± 0.41	$4.00 \pm 0 \cdot 39$	8.88 ± 0.83
III	12.87 ± 1.42	$2 \cdot 70 \pm 0 \cdot 16$	$5 \cdot 18 \pm 0 \cdot 23$	$5 \cdot 45 \pm 0.50$	10.35 ± 0.54
	(10-14)	(2.4-3.0)	(4.7-5.7)	(4.5-6.1)	(9.9-11.1)
IV	13.90 ± 0.45	$3 \cdot 20 \pm 0.13$	6.67 ± 0.28	7.04 ± 0.33	15.30 ± 1.81
	(12-14)	$(3 \cdot 0-3.4)$	(6.1-7.2)	(6.2-7.4)	(13.2-17.0)
Adult	$\begin{gathered} 15 \cdot 68 \pm 0 \cdot 48 \\ (15-16) \end{gathered}$	$\begin{aligned} & 3 \cdot 68 \pm 0 \cdot 21 \\ & (3 \cdot 3-4 \cdot 2) \end{aligned}$	$\begin{aligned} & 8.43 \pm 0.44 \\ & (7.8-8.9) \end{aligned}$	$\begin{aligned} & 9 \cdot 09 \pm 0 \cdot 48 \\ & (8 \cdot 2 \pm 10 \cdot 1) \end{aligned}$	$\begin{aligned} & 19 \cdot 16 \pm 1 \cdot 33 \\ & (17.3-21.5) \end{aligned}$

* Numbers in parenthesis show range.

TABLE 2

Measurements (mm \pm S.D.) of the Width of Pronotum, Length of Metathoracic Tibia and Femur and Total Length; and the Number of Antennal Segments of 33 Female Monistria discrepans

Instar	No. of Antennal Segments	Width of Pronotum	Length of Metathoracic	Length of Metathoracic Femur	Total Length
I	8.0 ± 0.0	1.70 ± 0.09	$2 \cdot 70 \pm 0 \cdot 12$	2.82 ± 0.13	5.90 ± 0.14
	(8)*	(1.6-1.8)	(2.4-2.8)	(2.7-2.9)	(5.8-6.0)
II	9.29 ± 0.95	2.63 ± 0.05	4.13 ± 0.59	4.10 ± 0.55	8.60 ± 0.56
	(8-10)	(2.6-2.7)	$(3.3-4.7)$	(3.7-4.8)	(8.1-9.2)
III	$12 \cdot 10 \pm 1 \cdot 66$	2.97 ± 0.18	5.19 ± 0.47	5.64 ± 0.54	$10 \cdot 13 \pm 0 \cdot 38$
	$(10-14)$	(2.7-3.3)	$(4.6-5.7)$	$(5.0-6.6)$	(9.5-10.9)
IV	13.60 ± 0.70	3.49 ± 0.21	6.47 ± 0.51	7.00 ± 0.33	14.80 ± 1.06
	(12-14)	$(3 \cdot 3-4 \cdot 0)$	$(5.9-6.7)$	$(6.5-7.4)$	(14.0-16.0)
V	$14 \cdot 20 \pm 0 \cdot 42$	$4 \cdot 51 \pm 0 \cdot 24$	8.42 ± 0.45	8.96 ± 0.49	$18 \cdot 83 \pm 1 \cdot 32$
	$(14-15)$	$(4 \cdot 1-4.9)$	(7.8-9.1)	(8.1-9.7)	(17.1-20.5)
Adult	$\begin{gathered} 15 \cdot 88 \pm 0 \cdot 33 \\ (15-16) \end{gathered}$	$\begin{aligned} & 6 \cdot 19 \pm 0 \cdot 45 \\ & (5 \cdot 1-7 \cdot 0) \end{aligned}$	$\begin{array}{r} 10.47 \pm 0.48 \\ (9.6-11.7) \end{array}$	$\begin{gathered} 11.70 \pm 0.75 \\ (9.5 \pm 13.2) \end{gathered}$	$\begin{aligned} & 31 \cdot 47 \pm 3 \cdot 60 \\ & (23.4-36 \cdot 0) \end{aligned}$

TABLE 3
Measurements ($\mathrm{mm} \pm$ S.D.) of the Width of Pronotum, Length of Metathoracic Femur and Total Length with the Number of Antennal Segments of Field-collected Monistria discrepans

	Sex			Number Examined	No. of Antennal Segments	Width of Pronotum	Length of Metathoracic Femur	Total Length
Male \ldots	\ldots	\ldots	\ldots	25	15.82 ± 0.67	3.56 ± 0.34	9.73 ± 0.65	20.13 ± 1.72
Female	\ldots	\ldots	\ldots	42	15.93 ± 0.59	6.23 ± 0.67	11.67 ± 0.83	30.96 ± 3.71

TABLE 4
Application of Dyar's Rule to the Growth of Various Parameters of Male Monistria discrepans Showing Actual and Calculated Values (mm)

Instar	Pronotum Width		Tibia Length		Femur Length		Body Length	
	Actual	Calculated	Actual	Calculated	Actual	Calculated	Actual	Calculated
I	1.70		2.68		$2 \cdot 83$		5.80	
II	2.18	2.06	$3 \cdot 86$	3.56	4.00	3.79	8.88	7.89
III	2.70	2.49	5.18	4.74	$5 \cdot 45$	5.08	10.35	10.73
IV	3.20	3.01	$6 \cdot 67$	6.31	7.04	6.81	$15 \cdot 30$	14.59
Adult	$3 \cdot 68$		8.43		9.09	.	$19 \cdot 16$	
R*	$1 \cdot 21$		1.33		$1 \cdot 34$		$1 \cdot 36$	
$\begin{gathered} \chi^{2} \\ (2 \mathrm{df}) \end{gathered}$	$\begin{gathered} 0.0367 \\ \text { n.s. } \end{gathered}$		$\begin{aligned} & 0.0867 \\ & \text { n.s. } \end{aligned}$		$\begin{gathered} 0.0464 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0 \cdot 1722 \\ \text { n.s. } \end{gathered}$	

[^1]TABLE 5
Application of Dyar's Rule to the Growth of Various Parameters of Female Monistria discrepans Showing Actual and Calculated Values (mm)

Instar	Pronotum Width		Tibia Length		Femur Length		Body Length	
	Actual	Calculated	Actual	Calculated	Actual	Calculated	Actual	Calculated
I	1.70		$2 \cdot 70$		$2 \cdot 82$		5.90	
II	$2 \cdot 63$	$2 \cdot 21$	$4 \cdot 13$	$3 \cdot 56$	$4 \cdot 10$	3.75	$8 \cdot 60$	8.32
III	2.97	2.87	$5 \cdot 19$	$4 \cdot 70$	$5 \cdot 64$	$4 \cdot 99$	$10 \cdot 13$	11.73
IV	$3 \cdot 49$	$3 \cdot 73$	$6 \cdot 47$	$6 \cdot 20$	$7 \cdot 00$	$6 \cdot 64$	14.80	$16 \cdot 54$
V	$4 \cdot 51$	$4 \cdot 85$	$8 \cdot 42$	$8 \cdot 18$	$8 \cdot 96$	8.83	18.83	23.32
Adult	$6 \cdot 19$		$10 \cdot 47$		$11 \cdot 70$	-8.	31.47	
R*	$1 \cdot 30$		1.32		1.33		1.41	
$\begin{gathered} \chi^{2} \\ (3 \mathrm{df}) \end{gathered}$	$\begin{gathered} 0 \cdot 1226 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0 \cdot 1611 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0 \cdot 1388 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 1 \cdot 2752 \\ \text { n.s. } \end{gathered}$	

* $\mathrm{R}=$ average rate of increase between stadia.
n.s. $=$ not significantly different at $P=0.01$.

TABLE 6
Application of Przibrum's Principle to the Growth of Various Parameters of Male Monistria discrepans Showing Actual and Calculated Values (mm)

Instar	Pronotum Width		Tibia Length		Femur Length		Body Length	
	Actual	Calculated	Actual	Calculated	Actual	Calculated	Actual	Calculated
I	1.70	1.46	2.68	$2 \cdot 65$	2.83	$2 \cdot 86$	$5 \cdot 80$	$6 \cdot 03$
				3.34		$3 \cdot 61$	5	$7 \cdot 60$
II	$2 \cdot 18$	$1 \cdot 82$	3.86	$4 \cdot 21$	4.00	4.54	$8 \cdot 88$	$9 \cdot 58$
III	$2 \cdot 70$	$2 \cdot 32$	$5 \cdot 18$	$5 \cdot 31$	$5 \cdot 45$	5.73	$10 \cdot 35$	12.07
IV	3.20	$2 \cdot 92$	$6 \cdot 67$	$6 \cdot 69$	7.04	$7 \cdot 21$	15.30	15.21
Adult	$3 \cdot 68$		8.43		9.09		$19 \cdot 16$	
$\begin{gathered} \chi^{2} \\ (3 \mathrm{df}) \end{gathered}$	$\begin{gathered} 0 \cdot 1914 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0.0327 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0.0822 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0 \cdot 3056 \\ \text { n.s. } \end{gathered}$	

TABLE 7
Application of Przibrum’s Principle to the Growth of Various Parameters of Female Monistria discrepans Showing Actual and

Instar	Pronotum Width		Tibia Length		Femur Length		Body Length	
	Actual	Calculated	Actual	Calculated	Actual	Calculated	Actual	Calculated
I	1.70	1.55	$2 \cdot 70$	$2 \cdot 62$	$2 \cdot 82$	2.92	5.90	$6 \cdot 24$
	2.63	1.95 2.46	$4 \cdot 13$	3.30 4.15	$4 \cdot 10$	3.68 4.64	$8 \cdot 60$	7.86
III	2.97	3.09	$5 \cdot 19$	$5 \cdot 23$	$5 \cdot 64$	5.85	$10 \cdot 13$	9.91
IV	3.49	3.90	$6 \cdot 47$	6.59	$7 \cdot 00$	$7 \cdot 37$	14.80	12.49 15.73
V	4.51	4.91	$8 \cdot 42$	8.31	8.96	$9 \cdot 29$	18.83	$19 \cdot 82$
Adult	$6 \cdot 19$.	10.47		11.70	.	$31 \cdot 47$	24.98
$\begin{gathered} \chi^{2} \\ (4 \mathrm{df}) \end{gathered}$	$\begin{gathered} 0 \cdot 1066 \\ \text { n.s. } \end{gathered}$		$\begin{gathered} 0.0050 \\ \text { n.s. } \end{gathered}$		$\begin{aligned} & 0 \cdot 1041 \\ & \text { n.s. } \end{aligned}$		$\begin{gathered} 0.1975 \\ \text { n.s. } \end{gathered}$	

[^2]In M. discrepans, the values for the increase in size of different parts (except the male pronotum) keep above $1 \cdot 26$, the value postulated by Przibrum and Megusar (1912) as the increase in size between moults. In such cases Bodenheimer (1927) suggested cell divisions may have occurred more than once in the same stadium, and he termed the extra divisions 'latent divisions'. With an allowance for such divisions the growth of the pronotum, hind tibia and femur, and total length of M. discrepans conforms to that postulated under Przibrum's principle. The presence of such latent cell divisions in some parts of both sexes would allow for extra instars without increasing the size of the resultant adult. In laboratory rearing the number of instars of both male and female M. discrepans does show some variation (Allsopp 1976). The very large value for the increase in body length between instar V and the adult of females is due to sexual development and the associated increase in the size of the ovaries and related structures.

As the above data do conform to both Dyar's rule and Przibrum's principle the question of which is the relevant law arises. Obviously when the rate of increase is much greater than $1 \cdot 26$, the observations in many cases can be made to conform to Przibrum's principle simply by the assumption of a latent instar in any position. However Wigglesworth (1965) presented evidence which shows that the assumption of latent divisions is incorrect in various larval flies. Thus Dyar's rule, in which the growth rate may vary between species and between parts of a single species, must be more relevant.

V. ACKNOWLEDGEMENTS

The staff of the Charleville Pastoral Laboratory assisted by sending regular consignments of fresh leaf. The work on which this paper is based was financed by the Wool Research Trust Fund.

REFERENCES

Allsopp, P. G. (1976).-Studies in the ecology of Monistria discrepans (Walker) (Orthoptera: Pyrgomorphidae) in southern Queensland. M.Agr.Sc. thesis, Univ. of Queensland.
Allsopp, P. G. (1977).-Insects associated with Eremophila gilesii F. Muell. in southern Queensland. Queensland Journal of Agricultural and Animal Sciences 34: 157-161.
Bodenheimer, F. S. (1927).-Über Regelmassigkeiten in dem Wachstum von Insekten. 1. Das Langenwachstum. Deutsche Entomologisch Zeitschrift 4: 33-57.
Duarte, A. J. (1938).-Problems of growth of the African migratory locust. Bulletin of Entomological Research 29: 425-456.
Dyar, H. G. (1890).-The number of molts of lepidopterous larvae. Psyche, Cambridge 5: 420-422.
Przibrum, H., and Megusar, F. (1912).-Wachstummessungen an Sphodromantis bioculata Burmeister. Archiv Fuer Entwicklungsmechanik Der Organismen 34: 680-741.
Richards, O. W. and Waloff, N. (1954).-Studies on the biology and population dynamics of British grasshoppers. Anti-Locust Bulletin 17: 1-182.
Valek, D. A. and Coppel, H. C. (1972).-Bionomics of an oak defoliating grasshopper, Dendrotettix quercus, in Wisconsin. Annals of the Entomological Society of America 65: 310-319.
Wigglesworth, V. B. (1965).-'The Principles of Insect Physiology'. 6th edn, (Methuen and Co.: London).
(Received for publication 27 October, 1976).

[^3]
[^0]: * Based on part of thesis submitted to University of Queensland for Degree of M.Agr.Sc.

[^1]: *R = average rate of increase between stadia
 n.s. $=$ not significantly different at $P=0.01$.

[^2]: n.s. $=$ not significantly different at $P=0.01$

[^3]: The author is an officer of Entomology Branch, Queensland Department of Primary Industries, and is stationed at Toowoomba, Q. 4350.

