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Abstract. A fundamental tool in carbon accounting is tree-based allometry, whereby easily measured variables
can be used to estimate aboveground biomass (AGB). To explore the potential of general allometry we combined
raw datasets from 14 different woodland species, mainly eucalypts, from 11 sites across the Northern Territory,
Queensland and New South Wales. Access to the raw data allowed two predictor variables, tree diameter (at 1.3-m
height; D) and tree height (H), to be used singly or in various combinations to produce eight candidate models.
Following natural log (ln) transformation, the data, consisting of 220 individual trees, were re-analysed in two steps:
first as 20 species–site-specific AGB equations and, second, as a single general AGB equation. For each of the
eight models, a comparison of the species–site-specific with the general equations was made with the Akaike
information criterion (AIC). Further model evaluation was undertaken by a leave-one-out cross-validation technique.
For each of the model forms, the species–site-specific equations performed better than the general equation. However,
the best performing general equation, ln(AGB) = −2.0596 + 2.1561 ln(D) + 0.1362 (ln(H))2, was only marginally
inferior to the species–site-specific equations. For the best general equation, back-transformed predicted v. observed
values (on a linear scale) were highly concordant, with a slope of 0.99. The only major deviation from this relationship
was due to seven large, hollow trees (more than 35% loss of cross-sectional stem area at 1.3 m) at a single
species–site combination. Our best-performing general model exhibited remarkable stability across species and
sites, when compared with the species–site equations. We conclude that there is encouraging evidence that general
predictive equations can be developed across sites and species for Australia’s woodlands. This simplifies the
conversion of long-term inventory measurements into AGB estimates and allows more resources to be focused
on the extension of such inventories.

Introduction
The woodlands of northern Australia cover about a quarter
of the continent. Because of the large area, changes in
structure owing to clearing, fire, thickening and drought
can significantly contribute to continental/national-scale
accounts of carbon fluxes (Burrows et al. 2002; Chen et al.
2003; Williams et al. 1997, 2004). As a consequence,
robust dynamic estimates of carbon stored in terrestrial
landscapes, particularly forests and woodlands, are required
at international, national and regional scales (Scholes and
Noble 2001; Körner 2003; Grace 2004).

Tree-based allometry, which uses easily measured
variables such as trunk diameter and tree height, to
estimate carbon stored in aboveground biomass (AGB), is
a fundamental tool in carbon accounting (Parresol 1999;
Burrows et al. 2000, 2002; Snowdon et al. 2002). Tree-based
allometry combined with stand-based inventory is probably
the most accurate technique to detect AGB change in
the short–medium term (c. 5 years, Burrows et al. 2000).
Furthermore, allometry and inventory data are often used
to validate model outputs and remotely sensed spatial
predictions of AGB (e.g. Gower et al. 1999).
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For regional estimates of AGB, generalised allometric
relations are required to simplify the conversion of inventory
measurements to estimates of biomass (Jenkins et al. 2003;
Wirth et al. 2004). Published allometric relationships are
typically developed from sampling at one site and may not be
suitable for making estimates beyond the stand or plot from
which they were developed. The development of general
allometric equations, especially from published sources, is
often constrained because of the different forms of equations
(e.g. natural or base 10 logarithmic transformations;
power functions), differences in measurement techniques
(e.g. diameter at 30 cm v. diameter at breast height) and use
of different predictor variables.

The use of allometric relationships for estimating AGB
is common in temperate forests (e.g. Hingston et al. 1981;
Husch et al. 1982; Ter-Mikaelian and Korzukhin 1997;
Keith et al. 1999) and in the humid tropics (Brown et al.
1989; Phillips et al. 1998; Chave et al. 2003). There
have also been a number of allometric studies in
Australia’s northern eucalypt woodlands, including O’Grady
et al. (2000) and Werner and Murphy (2001) for the mesic
savannas in the Northern Territory (NT), Ostendorf et al.
(2004) for the eucalypt rainforest ecotone in the humid
tropics and Burrows et al. (2000, 2002) and Grigg and
Mulligan (1999) for a number of species in eastern and central
Queensland.

Eamus et al. (2000), in summarising allometric
relationships for a number of species in the tropical
region of northern Australia, concluded that within a site
a common allometric relationship for different species
existed but variation in allometry was observed across sites.
In contrast, Montagu et al. (2005) provided evidence that
general allometry could be developed across contrasting
sites for a single eucalypt species. Thus, there is a need
to further explore the issue of species–site generality of
allometric equations that predict AGB in savannas and other
woodland ecosystems. One way to resolve these issues is to
undertake analyses of multiple raw datasets, preferably from
a wide range of species and sites.

The aim of this paper, therefore, is to further explore the
potential of using a general allometric relationship to predict
AGB in Australia’s savannas. We combined raw datasets from
14 different tree species, mainly eucalypts, from 11 woodland
sites across NT, Queensland and New South Wales (NSW).
In each raw dataset, two predictor variables (tree diameter
at 1.3-m height, D, and tree height, H) were measured
for all individual trees. Thus, these variables could be
combined to determine the best allometric model for
predicting AGB.

Materials and methods

Data sources

We used data sets, both published and unpublished, from multiple
species and sites across Australia (Table 1). Six sites were located

in the wet–dry tropical region of the NT, between ∼12◦ and 17◦S.
(Humpty Doo, Howard Springs, Katherine, Katherine Research Station,
Manbulloo, and Kidman Springs). Tree basal area ranged from
∼4 to 10 m2 ha−1. The NT species are all very common, and dominant
or co-dominant in most of the major savanna types mapped by
Wilson et al. (1990) in the northern part of the NT (i.e. north of
∼17◦S). Four sites were located in central and eastern Queensland
(between 22◦S and 151◦E) and one in north-western NSW
(Oakvale, near Bourke: 30.92◦S, 146.50◦E). At the Queensland and
NSW woodland sites, rainfall ranged from ∼350 to 1100 mm year−1,
with tree basal area ∼8–16 m2 ha−1; the eucalypt species
were either dominant or co-dominant components of the
plant community.

Biomass estimation

Aboveground tree biomass was estimated by direct-harvest techniques
following the national carbon accounting system (NCAS) protocols
(Snowdon et al. 2000, 2002). The approaches were essentially the
same across the NT, NSW and Queensland sites. A sample of 5–20
trees of each species was collected, which spanned the range of
diameters in the stand. Variables determined prior to sampling were
basal diameter, diameter at 30 cm, diameter at breast height (1.3 m; D,
cm) and tree height (H, m). The extent of tree hollows was recorded
for some species (e.g. E. populnea F.Muell.) and for all species
from Katherine and Kidman Springs in the NT. For these trees, the
diameter of any hollows in the trunk was measured at 1.3 m above
ground level.

Trees were felled and samples were separated into the following
component parts: trunk, branches, leaves (Burrows et al. 2000; Montagu
et al. 2005). The fresh mass of each component was measured.
Immediately following fresh-mass determination, subsamples of
each biomass component were taken to determine the dry-mass
correction factor. For the trunks and large branches, 2–4 disks
(each 200–2000 g) per tree were taken. Similar-sized subsamples (on
the basis of fresh weight) for dry-mass determination were collected
from the smaller branches and foliage of each tree. Subsamples were
returned to the laboratory and dried at 65–80◦C until they reached
a constant mass. Thus, dry-mass correction factors were calculated for
each component of each tree separately.

Data analysis

Data screening

Of the initial total of 260 individual trees, 36 observations
from Howard Springs did not have tree-height information and
four data points were from very small trees (D ≤ 2.5 cm); these
data were excluded from further analyses. The analyses reported
here were thus based on a core dataset of 220 observations from
14 species (12 Eucalyptus species; sensu lat. as per Brooker
and Kleinig (1994), plus Terminalia ferdinandiana Exell and
Erythrophleum chlorostachys (F.Muell.) Baill.) across 11 sites
(Table 1). The number of individuals per species and site varied from
5 to 20 (Table 1).

Model formulation and selection

The core dataset contained two basic measures of tree size, D and H,
which have been routinely used as predictor variables for AGB.
Commonly, AGB estimation models have been formulated by using
the natural logarithm (ln) of either variable alone or in combination.
In some cases, combinations have involved second-order polynomials
of these variables. Here, instead of evaluating all possible forms of
model specification involving these variables, we selected eight of the
more commonly used formulations as candidate models for evaluation
with our dataset (loosely, the models for evaluation were selected
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a priori; see Montagu et al. 2005). The model forms evaluated are
listed below:

ln(AGB) = β0 + β1 ln(H), (1)

ln(AGB) = β0 + β1 ln(D × H2), (2)

ln(AGB) = β0 + β1 ln(D × H), (3)

ln(AGB) = β0 + β1 ln(D)2 + β2 ln(H), (4)

ln(AGB) = β0 + β1 ln(D), (5)

ln(AGB) = β0 + β1 ln(D2 × H), (6)

ln(AGB) = β0 + β1 ln(D) + β2 ln(H), and (7)

ln(AGB) = β0 + β1 ln(D) + β2 (ln(H))2, (8)

where AGB = aboveground biomass (kg tree−1), H = tree height (m),
D = diameter at breast (1.3 m) height (cm) and β0, β1 and β2 are
parameter estimates.

Selection of the best-performing models from these eight candidate
models was based on the Akaike information criterion (AIC; for details
see Burnham and Anderson 2002). Briefly, consider that there is a true,
but unknown, model that underlies the data being analysed. When the
true model is unknown, a set of candidate models is fitted to the data
to identify that which best fits the data. AIC values of fitted candidate
models provide estimates of expected relative distance (i.e. how far) the
candidate models are from the true model that underlies the observed
data. In addition, aptly, the AIC value is an estimate of the expected
loss of information when a fitted model is used to approximate the true
model (Burnham and Anderson 2002). The candidate model with the
smallest AIC is considered closest to the true model and, therefore,
selected as the best approximation. In practice, candidate models are
fitted to the same dataset, and comparisons are carried out relative to the
model with the smallest AIC. Generally, when the difference between
the AIC value of a candidate model and the model with smallest AIC
exceeds 10, then the candidate model with the higher AIC is said to be
not supported by the data. If differences are between 0 and 10, the
data provide empirical support that the model with the lower value is
approximating the true model, but closer scrutiny may be necessary
before selecting one model over another. Fitting of data to the eight
candidate models specified above was carried out by the maximum
likelihood procedure (by using S-PLUS Version 6.0, Insightful Corp.,
Seattle, WA). All analyses were undertaken on ln-transformed data to
stabilise variance.

There were 20 unique species–site groups. One of our primary
questions was whether one general model could fit these data or
whether there was a need for species–site-specific models. For each
of the eight models, the performance of general v. species–site-
specific models was also evaluated, using AIC. Model performance was
further evaluated by examining the patterns of residuals arising from
species–site-specific models and those arising from the non-specific
form of the same model.

The approach employed here is useful for identifying best-
performing models in a given dataset. However, it might not indicate
predictive performance of each model when tested against new data that
have not been used in model building. Thus, for these models, a leave-
one-out cross-validation was carried out to evaluate how each of these
models would perform when applied to ‘new data’ not used during
parameter estimation.

Finally, for each model, the performance of the general
model—without site or species effects, but including diameter

and or height as variates—was evaluated by comparing observed
values with predicted results. The various models were used to predict
AGB for each individual tree, following back-transformation
of the log-transformed values with the correction factor of
Baskerville (1972).

Results

Variation in tree size

Across the data set tree AGB varied by more than three orders
of magnitude from ∼2 to 3696 kg tree−1 (Fig. 1). There was
variation among sites and species in tree size. The minimum
diameter was set at >2.5 cm (see above); maximum diameter
varied from ∼15 cm for Erythrophleum chlorostachys at
Humpty Doo to 86 cm for E. populnea at Oakvale. Tree
height also varied among sites and species; minimum heights
ranged from 2.9 to 9.2 m, whereas maximum tree heights in
the sample data ranged from 9.4 to 26.5 m (Table 1).

Site and species effects on the relationships between tree
dimensions

The overlaid plot of tree biomass against tree height for
each species–site combination showed considerable scatter
(Fig. 1a). E. populnea trees from Oakvale had the highest
AGB for a given H. In contrast, E. crebra F.Muell.
from Kiauroo generally had lowest AGB for a given H.
Aboveground biomass as a function of tree D showed
a smaller degree of scatter than AGB v. H (cf. Fig. 1a, b).
E. crebra from Kiauroo had the highest AGB biomass for
a given D, whereas E. populnea from Oakvale had the
lowest (Fig. 1b). The overlaid plot of tree height v. D showed
that E. crebra and E. populnea generally were tallest and
shortest, respectively, for a given D (Fig. 1c). When AGB
was examined as a function of both H and D, on a ln–ln
scale, there was a convergence in the relationship across sites
and species except for large E. populnea trees from Oakvale
(Fig. 1d).

Comparative model performance

The eight candidate models that related ln(AGB) to predictor
variables ln(D), ln(H), or linear and quadratic combinations
of these two variables are presented in Table 2. Of these,
Model 1, which used height alone as a predictor gave the
poorest fit as indicated by the AIC and the root mean square
error (RMSE). The predictor ln(D) alone (Model 5) was
superior to ln(H). However, the best models involved ln(D) in
some combination with ln(H), viz. ln(D) + (ln(H))2, closely
followed by ln(D) + ln(H).

Comparative plots of predicted against observed data
(log–log scale) are shown in Fig. 2. Consistent with the results
in Table 2, the agreement between predicted and observed
values was poor for height as the only predictor. Agreement
increased with decreasing values of RMSE (Table 2), with
the best based on the model that included both ln(D) and
(ln(H))2 (Fig. 2).
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Fig. 1. Relationship between aboveground biomass (AGB) and tree size variables (diameter at breast height, D, and height above
ground, H) for various species and sites. (a) AGB v. H, (b) AGB v. D, (c) H v. D, (d) ln(AGB) as a function of ln(D) and ln(H). Sites
and species pooled. See Table 1 for abbreviations of species and sites.

The comparison of predicted results with observed
values, following back transformation, allowed more detailed
examination of species–site effects. This is shown for our
best-performing model (Model 8) and the most commonly
used model form (Model 5) in Fig. 3. Over the entire
range of tree sizes (Fig. 4), predicted values of biomass
from Model 8a were between 0.56 and 1.76 times the
measured AGB value (Model 8b = 0.54–1.69 times), whereas
for Model 5a the range was slightly wider, at 0.45–2.1 times
the measured AGB (Model 5b = 0.46–1.89). This relative
difference was independent of tree size. Consequently, the
absolute difference between measured and predicted AGB
increased with increasing tree size, particularly for termite-
hollowed E. populnea trees from Oakvale and Rockhampton.
At Oakvale, for example, more than 35% of trunk biomass
was missing in trees with D ≥ 30 cm. When data were

re-analysed by excluding hollow trees from Oakvale
(Models 5b and 8b, Table 2), there was a remarkable
consistency across sites and species in the pattern of observed
and predicted values. The intercepts are not significantly
different from zero, and the slopes (which should be 1.0 for
constancy) are >0.99 for ln(D) + (ln(H))2 as predictors and
>0.95 for ln(D) alone as a predictor).

For the eight models, comparison of the distribution
of residuals from species–site-specific models
(‘specific models’) and residuals arising from model
parameterisation based on the entire data (‘general models’)
are shown in Fig. 5. Generally, these diagnostic plots
show that for all models, the spread of residuals from
the specific models was narrower than that from the
general models. Nonetheless, for Models 5–7 differences
between the specific and the general parameterisations were
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Table 2. Selected models, their parameters with standard errors (in parenthesis) and fit statistics
Sample size was 220 except for Models 5b and 8b n = 213. Note that although Models 5b and 8b can be compared by using AIC, neither

can be compared with the remaining 8 models because of differences in the datasets

Model Inputs Intercept ln(D) ln(H) ln(DH) ln(D2H) (ln(H))2 (ln(D))2 ln(DH2) RMSE AIC
(cm) (m) (m2) (m3) (m2) (cm2) (m3)

1 ln(H) −3.5413 3.5337 0.8299 548.3
(0.2732) (0.1188)

2 ln(DH2) 1.5794 1.1051 0.4656 294.0
(0.0586) (0.0193)

3 ln(DH) 3.9254 1.5571 0.3348 147.1
(0.0235) (0.0192)

4 ln(H) + (ln(D))2 −0.6266 1.0475 0.3497 0.3109 118.3
(0.1300) (0.0815) (0.0096)

5a ln(D) −2.2111 2.4831 0.2696 53.5
(0.0679) (0.0245)

5bA ln(D) −2.3046 2.5243 0.2570 41.5
(0.0671) (0.0246)

6 ln(D2H) 5.9821 0.9659 0.2549 30.2
(0.0226) (0.0090)

7 ln(D) + ln(H) −2.6392 2.1735 0.5574 0.2362 −2.6
(0.0800) (0.0438) (0.0689)

8a ln(D) + (ln(H))2 −2.0596 2.1561 0.1362 0.2319 −10.6
(0.0611) (0.0430) (0.0156)

8bA ln(D) + (ln(H))2 −2.1432 2.2143 0.1251 0.2242 −8.6
(0.0617) (0.0435) (0.0152)

AParameters of these models were estimated by excluding E. populnea trees from Oakvale whose hollow area exceeded 25% of the stem
cross-sectional area at breast height.

relatively small, suggesting the general model performed
comparatively well.

The distribution of residuals arising from three of the
general models as applied to all 20 possible site-specific
combinations (a test of the level of systematic variation) is
illustrated in Fig. 6. Not surprisingly, for the general model
with H as the only predictor, 17 of the 20 species–site
combinations exhibited systematic over- or under-estimation.
The distribution of residuals across species and sites
was markedly more stable with D as the only predictor.
Importantly, there was only a modest further improvement
when (ln(H))2 was added to ln(D).

Model cross-validation

The evaluation of the performance of the candidate models
in predicting new responses that were not used in model
development, via leave-one-out cross-validation, gave
averaged mean square errors of prediction that reflected
the order by AIC. The mean square error was highest for
the model with H alone as the predictor and lowest for
model that included ln(D) and (ln(H))2 as predictor variables
(Table 3).

Discussion

Allometric generality

The principal objective of this analysis was to explore the
potential of developing, for the savanna, general allometry

that is not species or site specific. The 14 species included
in this analysis account for most of the aboveground tree
biomass in tropical and sub-tropical woodlands of Australia
(O’Grady et al. 2000; Burrows et al. 2002). We combined raw
data from multiple sources, allowing formal tests of species
and site, identification of idiosyncratic sites and/or species
and individuals, and comparisons of differing model forms,
a process not possible when relying on published equations
alone (Keith et al. 1999; Jenkins et al. 2003).

Despite the wide range of species and sites (Fig. 1,
Table 1), combining data to produce a general allometric
relationship led to only a small decrease in the amount of
variation in AGB accounted for, compared with species–site-
specific allometry. Thus, although we were able to
statistically detect species–site differences, largely
because of the power of testing a large number of
samples, the amount of variation accounted for by
species–site factors was less than 0.5%. Consequently, when
our best general equations are compared with species–site-
specific equations it is difficult to observe the difference
(Fig. 5). This conclusion is strengthened by the fact that we
analysed data from species that are phylogenetically distinct,
representative of their respective regions at landscape scales,
and drawn from different locations and environments in
northern Australia. We therefore conclude that there is
excellent potential for the use of general allometry across
the eucalypt woodlands of northern and eastern Australia.



General predictive allometric equations for estimating aboveground tree biomass Australian Journal of Botany 613

1 

1 
1 1 

1 

1 

1 

1 

2 2 
2 

2 

2 
2 2 

2 
3 

3 
3 3 

3 
3 

3 3 

3 

3 3 

3 

3 3 
3 

3 3 
3 

3 3 4 

4 
4 

4 4 

4 
4 

4 

4 

5 
5 5 

5 
5 

5 

5 5 

5 5 

5 

5 

u u
u

u
u

u

u

u
u

uu

ee
e

e
e

e

ee

e

e

e

e
e

e

e

e e

e

e

e
s s

s

s
s

s

s ss

aaa
a

aaa

a

a

x
xx xxxx

xx

x

0

2

4

6

8

10

1 

1 
1 1 

1 

1 
1 

1 

2 2 2 

2 

2 

2 2 
2 3 

3 
3 

3 

3 
3 

3 
3 

3 

3 
3 

3 

3 3 

3 

3 3 
3 

3 3 4 

4 
4 

4 
4 

4 

4 

4 

4 

5 

5 5 

5 
5 

5 

5 
5 

5 5 

5 

5 

u
u

u

u

u

u

u

u
u

uu

ee
e

e
e

e

e
e

e

e

e

e
e

e

e

e e

e

e

e
s s

s

s
s

s
s ss

aaa
a

aa
a

a

a

x
xx xxxx

xx

x

1 
1 
1 1 

1 

1 
1 

1 

2 
2 2 

2 

2 

2 2 
2 3 

3 
3 

3 

3 
3 

3 
3 

3 

3 
3 

3 

3 
3 

3 

3 3 
3 

3 3 
4 

4 
4 

4 
4 

4 

4 

4 

4 

5 

5 
5 

5 
5 

5 

5 
5 

5 
5 

5 

5 
u

u
u

u

u

u

u

u
u

u
u

ee
e

e
e

e

e
e

e

e

e

e
e

e

e

e
e

e

e

e
s

s
s

s
s

s
s ss

aaa
a

a
a

a

a

a

x
x

x xxxx
x

x

x

ln(AGB) measured (kg tree–1)

0 2 4 6 8 10

ln
(A

G
B

) 
 p

re
di

ct
ed

 (
kg

 tr
ee

–1
)

0

2

4

6

8

10

1 
1 1 1 

1 

1 
1 

1 
2 2 2 

2 

2 

2 2 
2 3 

3 

3 
3 

3 
3 

3 

3 

3 

3 

3 

3 

3 
3 

3 

3 3 
3 

3 3 
4 

4 
4 

4 4 
4 

4 

4 

4 

5 

5 5 

5 
5 

5 

5 
5 

5 5 

5 

5 
u

u
u

u

u

u

u

u
u

u
u

ee
e

ee

e

ee

e

e

e

e
e

e

e

e
e

e

e

es
s

s

s
s

s

s ss

a
a

a
a

a
a

a

a

a

x
x

x x
xxx

x
x

x

0

2

4

6

8

10

1 
1 1 1 

1 

1 
1 

1 
2 

2 2 

2 

2 

2 
2 

2 3 

3 

3 
3 

3 
3 

3 

3 

3 

3 

3 

3 

3 
3 

3 

3 3 
3 

3 3 

4 

4 
4 

4 
4 

4 

4 

4 

4 

5 

5 
5 

5 
5 

5 

5 
5 

5 
5 

5 

5 
u

u
u

u

u
u

u

u
u

u

u
ee e

e
e

e

e
e

e

e

e

e
e

e

e

e
e

e

e

es
s

s

s
s

s
s

ss

a
aaa

a
a

a

a

a

x
xx xxxx

x
x

x

1 
1 1 1 

1 

1 
1 

1 
2 

2 2 

2 

2 

2 2 
2 3 

3 

3 
3 

3 
3 

3 

3 

3 

3 

3 

3 

3 
3 

3 

3 3 

3 

3 3 
4 

4 
4 

4 
4 

4 

4 

4 

4 

5 

5 5 

5 
5 

5 

5 
5 

5 
5 

5 

5 
u

u
u

u

u
u

u

u
u

u
u

ee
e

e
e

e

e
e

e

e

e

e
e

e

e

e
e

e

e

es
s

s

s
s

s
s ss

aaaa
a

a
a

a

a

x
xx xxxx

x
x

x

0

2

4

6

8

10

1 
1 1 1 

1 

1 
1 

1 
2 

2 2 

2 

2 

2 2 
2 3 

3 

3 
3 

3 
3 

3 

3 

3 

3 

3 

3 

3 
3 

3 

3 3 
3 

3 3 
4 

4 
4 

4 
4 

4 

4 

4 

4 

5 

5 
5 

5 
5 

5 

5 
5 

5 
5 

5 

5 
u

u
u

u

u
u

u

u
u

u
u

ee e

e
e

e

e
e

e

e

e

e
e

e

e

e
e

e

e

es
s

s

s
s

s
s ss

a
aaa

a
a

a

a

a

x
xx xxxx

x
x

x

0 2 4 6 8 10

1 
1 1 1 

1 

1 
1 

1 
2 

2 2 

2 

2 

2 2 
2 3 

3 

3 
3 

3 
3 

3 

3 

3 

3 

3 

3 

3 
3 

3 

3 3 
3 

3 3 
4 

4 
4 

4 
4 

4 

4 

4 

4 

5 

5 
5 

5 
5 

5 

5 
5 

5 
5 

5 

5 
u

u
u

u

u
u

u

u
u

u
u

ee e

e
e

e

e
e

e

e

e

e
e

e

e

e
e

e

e

es
s

s

s
s

s
s ss

a
aaa

a
a

a

a

a

x
xx xxxx

x
x

x

1

2

3

4

5

6

7

8

Fig. 2. Comparative plots of measured and predicted aboveground biomass (AGB) from the eight candidate
models. Numbers in panels (1–8) correspond to models shown in Table 2. Symbols as for Fig. 1.

Below we discuss the most appropriate model for general
allometry, deviations from the general equation and the
advantages in using general allometry.

We examined a number of candidate models to identify
one that is empirically best supported by our data (Table 2).
There was consistency in the ranking of the models, with
the model form ln(AGB) = ln(D) + (ln(H))2 identified as the
best for this dataset, on the basis of the model selection

and validation methods employed (Tables 2, 3). The simple,
most commonly used model form, based on D alone,
also performed well. In both model forms, there was very
good agreement between predicted and observed values
on both ln–ln and linear scales (Figs 2, 3, respectively).
A further examination of these general equations also
indicated a marked stability of residuals, with a low level
of systematic under- or over-estimation (Fig. 6). The greatest
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deviation from the general equation was at the species–site
combination of E. populnea at Oakvale, which could be
attributed to the high degree of hollowness in the larger
trees. For seven of the largest trees more than 35% of
the cross-section area at 1.3 m was lost because of termite
activity. Although woodland trees typically have some degree
of hollowness, the extent of hollowness for these trees
was exceptional. Thus, the general equation over-predicted
AGB for these trees (Figs 3, 4, 6). The removal of these
seven trees from the analysis (Models 5b and 8b; Table 2)
further increased the agreement between the observed and
predicted AGB, such that the slopes of the relationships
were 0.99 for the best-performing model and 0.95 for the
model with ln(D) alone as the predictor (Fig. 3). Thus, we
recommend that some measure of hollowness, e.g. coring
of standing trees, be undertaken to determine whether the
stand contains trees that are significantly hollowed. Although
more detailed examination of the effect of trunk hollowing on
allometric relationships is warranted, from our limited dataset
we suggest that, as a rule of thumb, the general equation
should not be used where more than ∼20% of the trunk cross-
sectional area is missing.

The development of general allometric relationships
produces a number of benefits. First, it greatly simplifies

the conversion of inventory measurements to regional
estimates of biomass carbon stocks and fluxes.
Decisions regarding which species–site equations
to use are avoided. Second, general models allow
increases in sample numbers that are used to generate
allometric equations, compared with species–site-
specific relationships. The high cost of destructively
harvesting trees, and in some cases restricted access
to certain species and tree sizes, combine to limit
the number of trees sampled. The data used in
this study were typical of published allometry, with
unique species–site combinations having between
5 and 20 samples (Table 1). With such sample
numbers the parameter and regression variance estimates are
inherently unstable. Thus, parameter estimates can be quite
sensitive to single data points. Furthermore, such sample
numbers produce uncertain regression variance estimates.
When log–log equations are used, this has a subsequent
impact on bias-correction factors relying on regression
variance (Baskerville 1972; Beauchamp and Olson 1973).
Combining data to produce general allometric relationships
overcomes many of these limitations by increasing sample
size, thereby producing stable parameter and regression
variance estimates.
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Fig. 4. Ratios of predicted to measured AGB displayed as a function of measured AGB for all candidate models,
on linear scale. Numbers in panels (1–8) correspond to models shown in Table 2.

Using the equations to derive estimates
Tree height—is it a surrogate for species or site
differences?
The evidence from this study is that although D accounts

for more than 97% of the AGB variation, the addition

of height does improve the performance of the general
allometric model. Globally, the evidence regarding the value
of including height in allometric equations is equivocal, with
neutral, positive and negative results reported. Madgwick
and Satoo (1975) concluded that height added little
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Fig. 5. Comparison of residuals v. fits for the different models. The graphs are plotted in decreasing order of AIC.
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on the plot correspond to the models in Tables 2 and 3.

to the predictive capacity of diameter-based allometric
equations at a site. In contrast, inclusion of tree height in
allometric relationships may account for variations in the
allometric relationship across contrasting sites (Schmitt and
Grigal 1981). By comparison, incorporating height into the
allometric equation decreased the performance of a general
equation across sites in one eucalypt species (E. pilularis Sm;
not analysed in this study), compared with the relationship
based on D alone (Montagu et al. 2005). Given the mix of
species and sites in this study, it is not possible to tease out
whether height is acting as a surrogate for species or site, or
some combination of both.

Height alone did not improve model performance.
Performance was improved only when height was specified
in some models as a second order polynomial. Even

where inclusion of height as a predictor improved model
performance, there are practical and statistical reasons for
using diameter alone as the predictor variable when making
estimates of AGB from inventory measurements (Montagu
et al. 2005). Typically, the errors associated with diameter
measurement are less than 3% and this feature makes it
a more appropriate predictor (Gregoire et al. 1989). This
is an important feature, since parameter estimates are often
derived without taking into account measurement errors in
predictor variables. By contrast, measurements of tree height
in mature stands are usually only within 10–15% of the true
height (Brown et al. 1995); they are also time-consuming,
and thus costly. Therefore, predictive equations that require
tree-height measurements may be limited in their application.
However, in open savanna woodlands (as opposed to forest),
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where tree cover is typically 20–40%, and trees <20 m
tall, measuring tree height may be a practical option for
improving predictive capacity. The final choice of model form
will depend on the cost of measuring additional predictor
variables, the resulting improvements in AGB estimates,
and the benefits of measuring fewer predictor variables at
additional locations. In terms of regional carbon accounting,
it may be that, per unit of effort and expense, evaluating
diameter at more sites, as opposed to measuring both diameter
and height at fewer sites, will reduce uncertainties associated
with deriving regional estimates. Further simulation studies,
preferably based on combined datasets, are warranted to test
such scenarios.

The application of allometry in carbon accounting
in savannas

We regard it as axiomatic that tree-based allometry
will continue to be important in estimating changes in
terrestrial biomass carbon stocks. Allometry provides
the means to calibrate local and regional estimates of
AGB, and for providing the basis of future estimates
in stocks and fluxes. Allometry will continue to have
important applications in savannas, because predictive,
mechanistic models of the impact of vegetation
changes on the carbon budget need baseline estimates
of change, to account for landscape-scale changes in
land management.
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Table 3. Average predictive errors of the different models
from leave-one-out cross validation

Model no. Predictors Averaged mean square
error of prediction

1 ln(H) 0.6987
2 ln(DH2) 0.2203
3 ln(DH) 0.1140
4 ln(H) + (ln(D))2 0.1005
5 ln(D) 0.0743
6 ln(D2H) 0.0661
7 ln(D) + ln(H) 0.0574
8 ln(D) + (ln(H))2 0.0538

There are numerous long-term inventory studies based
on changes in diameter of permanently marked trees at
multiple reference sites across northern Australia (TRAPS
in Queensland, Burrows et al. 2000; Kapalga in the NT,
Williams et al. 1999, 2003; Cook et al. 2005; Munmarlary,
Russell-Smith et al. 2003) that will continue to be important
meso-scale sampling points for the monitoring of change
in stand structure, and hence the derivation of regional
estimates of carbon, in the coming decades. For example, the
mesic savannas of the NT, Western Australia and Queensland
are subject to frequent fire (Williams et al. 2002), and the
impact of fire varies considerably with tree size and fire
intensity (Williams et al. 1999, 2003). The post-fire trajectory
of biomass accumulation or depletion may also depend on
stand structure (G. D. Cook, A. Liedloff and R. J. Williams,
unpubl. data). Alternatively, in many savanna areas, woody
vegetation is thickening (Dyer et al. 2001; Burrows et al.
2002). In these cases, stand-based allometry will be integral
to predicting biomass changes as a function of stand structure
and land use.

We have developed a general allometric relationship
across 14 woodlands species, from different regions of
northern Australia, with little loss in accuracy, compared
with 20 species–site-specific equations. The small reduction
in accuracy of general allometry is more than countered
by the simplification of regional estimates of aboveground
estimates and the greater certainty in equation parameters
and variance estimates. Our results indicate that in addition
to D, height improved model performance. However,
we were unable to determine whether height was acting
as a surrogate for species or site, or a combination
of both.

Accounting for the inputs required to manage landscapes
for optimising carbon sequestration, and minimising
greenhouse gas emissions, will require accurate estimates
of changes in stand structure and survival and growth of
individual trees. Tree-based allometric equations applied to
stand-based inventories will continue to be an important
component of carbon accounting at local, regional and
national scales.
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