Table 12 Callistemon varieties

	'UnicalOne'	*‘Little Joh	'Captain Cook'
PLANT: DEN	TY dense	dense	sparse
PLANT: HEIG	fT small	small	medium
PLANT: BR	CHING HAB strong	strong	medium
LEAF: COLO young leaf mature leaf (upper side) mature leaf (lower side)	R (RHS, 1995) yellow-green RHS144A green RHS 137A green RHS 137B	yellow-green RHS 143A greyed-green RHS 189A greyed-green RHS 189A	yellow-green RHS 143A green RHS 137A green RHS 137B
LEAF: SHAP	lanceolate	oblanceolate	lanceolate
LEAF: LENG mean std deviation LSD/sig	$\begin{gathered} \hline \mathrm{H}(\mathrm{~mm}) \\ 32.4 \\ 3.47 \\ 5.55 \end{gathered}$	$\begin{aligned} & 41.4 \\ & 4.62 \\ & \mathrm{P} \leq 0.01 \end{aligned}$	$\begin{aligned} & 49.5 \\ & 6.50 \\ & \mathrm{P} \leq 0.01 \end{aligned}$
LEAF: WIDT mean std deviation LSD/sig	$\begin{aligned} & (\mathrm{mm}) \\ & 5.9 \\ & 0.56 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 0.67 \\ & \mathrm{P} \leq 0.01 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 0.48 \\ & \mathrm{~ns} \end{aligned}$
LEAF: LENG mean std deviation LSD/sig	$\begin{aligned} & \text { H/WIDTH RA } \\ & 5.50 \\ & 0.44 \\ & 0.52 \end{aligned}$	$\begin{aligned} & \hline \Gamma \mathrm{IO} \\ & 4.98 \\ & 0.24 \\ & \mathrm{P} \leq 0.01 \end{aligned}$	$\begin{aligned} & 8.66 \\ & 0.65 \\ & \mathrm{P} \leq 0.01 \end{aligned}$
FLOWER: STA	$\begin{aligned} & \text { MEN AND S } \\ & \text { red } \\ & \text { RHS 46B } \end{aligned}$	$\begin{aligned} & \text { IGMA COLOI } \\ & \text { red } \\ & \text { RHS 46A } \end{aligned}$	UR red RHS 46C
PETAL: DIST	NCTIVENESS distinct	OF MARGIN indistinct	indistinct
PETAL: COLO	UR OF MAR red RHS 48B	IN (in apical r red RHS 49C-D	gion) red RHS 49D

PETAL: COLOUR OF MIDZONE
yellow-green yellow-green yellow-green RHS 150A-B RHS 145A-B RHS 150C

PETAL: TRANSPARENCY		
transparent	non- transparent	transparent

CALYX LOBE: RED COLOURATION OF MARGIN
strong weak

BUD: DISTINCTIVENESS OF RED COLOUR

(before bud burst)
distinct indistinct distinct

BUD: COLOUR (prior to reflexing of petals)

red	green	red
RHS 63B	RHS 138B	RHS 63C

SEED CAPSULE: COLOUR (IMMATURE)
green green green

RHS 143B-C RHS 143A RHS 143B-C

Citrus reticulata X Citrus sinensis
Mandarin
'IrM1'
Application No: 1998/243 Accepted: 2 Dec 1998.
Applicant: The State of Queensland through its Department of Primary Industries, Brisbane, QLD.

Characteristics (Table 13, Figure 33) Plant: main branch attitude spreading, young shoot anthocyanin absent. Leaf: petiole development of wings absent or rudimentary. Flower: terminal bud anthocyanin absent, viable pollen present, flowering habit flowering once. Fruit: size medium (mean diameter 70.4 mm at equator), shape oblate, shape at basal end moderately depressed, shape of distal end truncate, colour of surface yellow to orange RHS N25C (mean 0.27*), relief of surface smooth, areola absent, presence of navel absent or very rare, conspicuousness of navel not visible, thickness of rind thin (mean 3.6 mm), adherence of rind to flesh medium, main colour of flesh orange RHS 26A (mean 0.12*), colour of juice yellow to orange, acid content of juice medium (mean 1.10% citric equivalent), total soluble solids of juice high (mean 13.05° Brix), polyembryonic seeds present, time of maturity late, Brix to acid ratio: high (mean 12.4), number of flat seeds mean 0.6 per fruit, number of plump seeds mean 6.3 per fruit, weight mean 152 g per fruit. (Note: All RHS colour chart numbers refer to 2001 edition. $* a / b$ value from the L, a, b colour space measured with a Minolta Chromameter CR-200, average of 3 readings per fruit and 35 fruit per variety.)

Origin and Breeding Induced mutation: of 'Murcott' budwood. Gamma irradiation from a ${ }^{60} \mathrm{Co}$ (Cobalt 60) source was applied at different doses to 150 mm bud sticks on $16 / 9 / 1991$. Five hundred treated buds were budded onto Troyer citrange rootstock. One hundred and thirty six buds survived treatment and developed into trees, which were field planted at Bundaberg Research Station on the $27 / 8 / 1992$. As trees commenced fruiting the fruit were cut and inspected for seed numbers from different limbs on each tree. This procedure was carried out in 1995, 96, 97 and 98. 'IrM1' was identified as showing consistently lower seed number than the parent variety with no apparent reduction in fruit size and good fruit quality in all four seasons. Budwood was taken from the original 'IrM1' tree and budded to Troyer citrange rootstock to establish daughter trees at two field sites in Oct 1998. A further generation of trees was established by taking budwood from these daughter trees and establishing grand-daughter trees (again budded to Troyer citrange rootstock), which were planted in Sep 2000. All trees of all three generations of 'IrM1' have consistently shown reduced seed numbers in each season. Selection criteria: consistent low number of seeds. Propagation: vegetatively through budwood. Breeder: Queensland Department of Primary Industries, Bundaberg, QLD.

Choice of Comparators The grouping characteristics used in identifying the most similar varieties of common knowledge were - Fruit: shape oblate, colour of surface yellow to orange, relief of surface smooth, presence of navel absent or very rare, total soluble solids of juice high. Seed: percentage of polyembryonic seeds high. Time of maturity of fruit: late. On the basis of these characteristics, the parental variety 'Murcott' was chosen as the most similar variety of common knowledge in existence at the time of lodgement of this application. Two additional selections from the same mutation breeding program, 'IrM2' (PBR Application No: 2001/176) and 'M22' were also included in the comparative trial to establish differences between mutations derived from 'Murcott'.

Comparative Trial Location: Mundubbera, QLD (Latitude $25^{\circ} 37^{\prime}$ South, $151^{\circ} 15^{\prime}$ East, elevation 166m), planted Oct 1998, DUS data collected Aug 2001 and 2002. Conditions: trial conducted in a commercial mandarin orchard with standard management practices, all trees budded to Troyer citrange rootstock, and tree spacing of $2.75 \times 7 \mathrm{~m}$. Trial design: planted in a single row with the 4 varieties arranged in a randomised complete block design with 7 replicates. Measurements: five organs (leaf/fruit/seed) randomly selected from each tree and assessed individually, such that all variables have a mean derived from 35 individual measurements.

Prior Applications and Sales

No prior applications. First budwood sold in Australia in Dec 2002.

Description: Malcolm W. Smith, Department of Primary Industries Queensland, Bundaberg, QLD.

Table 13 Citrus varieties

	'IrM1'	*‘IrM2'	*'M22,

FRUIT: COLOUR OF ALBEDO

FRUIT: MAIN COLOUR OF FLESH

std deviation	0.01	0.03	0.01	0.02

FRUIT: MAIN COLOUR OF FLESH 'L' VALUE*
LSD (P ≤ 0.01) $=1.3$
mean
std deviation
std

FRUIT: MAIN COLOUR OF FLESH 'a' VALUE* $\operatorname{LSD}(\mathrm{P} \leq 0.01)=1.0$

mean	4.0^{a}	5.9^{b}	4.1^{a}	4.4^{a}
std deviation	0.6	1.1	0.4	0.8

FRUIT: MAIN COLOUR OF FLESH 'b’ VALUE*
$\operatorname{LSD}(\mathrm{P} \leq 0.01)=1.7$

mean	34.5^{ab}	36.1^{b}	33.4^{a}	35.1^{ab}
std deviation	1.4	1.0	1.0	1.1

FRUIT: ACID CONTENT OF JUICE (\% citric acid equivalent)
$\operatorname{LSD}(\mathrm{P} \leq 0.01)=0.20$

mean	1.10^{ab}	0.92^{a}	1.15^{b}	0.90^{a}
std deviation	0.22	0.11	0.09	0.08
	medium	medium	medium	medium

FRUIT: PERCENTAGE OF POLYEMBRYONIC SEED

(\%) LSD $(\mathrm{P} \leq 0.01)=12.3$				
mean	100^{a}	90^{a}	97^{a}	100^{a}
std deviation	0	17	8	0
	high	high	high	high

FRUIT: TIME OF MATURITY
late medium late lat

FRUIT: BRIX TO ACID (ratio)	LSD $(\mathrm{P} \leq 0.01)$	$=2.0$		
mean	12.4^{a}	14.8^{b}	12.6^{a}	$14.3^{\text {ab }}$
std deviation	2.1	0.9	1.2	1.3

FRUIT: NUMBER OF FLAT SEEDS (per fruit)
$\operatorname{LSD}(\mathrm{P} \leq 0.01)=1.1$

mean	0.6^{a}	0.7^{a}	0.4^{a}	2.3^{b}
std deviation	0.5	0.6	0.2	1.1

FRUIT: NUMBER OF PLUMP SEEDS (per fruit)
$\operatorname{LSD}(\mathrm{P} \leq 0.01)=1.9$

mean	6.3^{b}	6.6^{b}	2.5^{a}	21.9^{c}
std deviation	1.2	1.5	0.5	1.4

FRUIT: WEIGHT (g per fruit) LSD $(\mathrm{P} \leq 0.01)=26$				
mean	152^{a}	154^{a}	119^{b}	159^{a}
std deviation	17	22	10	9

*Colour was measured objectively using a Minolta Chromameter CR-200 in the L , a, b colour space. ' a / b ' provides an indication of 'redness' with higher values representing increased red colouration.

Means followed by the same letter are not significantly different at $\mathrm{P} \leq 0.01$, Duncan's Multiple Range Test.

